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Fusarium Head Blight (FHB) has emerged in spring wheat production in Pacific
Northwest during the last decade due to factors including climate changes, crop
rotations, and tillage practices. A breeding population with 170 spring wheat lines was
established and screened over a 2-year period in multiple locations for FHB incidence
(INC), severity (SEV), and deposition of the mycotoxin, deoxynivalenol (DON). A genome-
wide association study suggested that the detectable number of genetic loci and effects
are limited for marker-assisted selection. In conjunction with the success of breeding on
FHB resistance in other programs, genomic selection (GS) was suggested as a better
option. To evaluate the prediction accuracy of GS in the current breeding population,
we conducted a variety of validations by varying proportions of testing populations and
cohorts based on both FHB resistance and market class, including soft white spring
(SWS), hard white spring (HWS), and hard red spring (HRS). We found that INC had
higher heritability, higher correlation across years and locations, and higher prediction
accuracy than SEV and DON. Prediction accuracy varied among the scenarios that
restricted the testing population to a certain cohort. For a small set of newly developed
or introduced lines (<17), prediction accuracy will be about 60% if the lines have
similar genetic relationships as those among the current 170-line training population.
However, we expect a lower prediction accuracy if new lines are selected for a specific
characteristic, such as FHB resistance or market class. With the exception of DON in
the SWS lines, the current training population is capable of making reasonably accurate
predictions for FHB-resistant lines in most of the major market classes. For SWS,
adding more lines or further phenotyping is required to improve prediction accuracy.
These results demonstrate the potential and challenges of GS, especially for developing
FHB-resistant varieties in the SWS market class.

Keywords: wheat, fusarium head blight, genomic selection, disease resistance, cross validation, molecular
breeding, cultivars, Pacific Northwest
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INTRODUCTION

Fusarium head blight (FHB) is a devastating disease that
affects corn and small grain crops such as wheat in humid
conditions (Schroeder and Christensen, 1963; Wang et al.,
1982; Snijders, 1990). FHB causes shriveled kernels, significant
yield losses, and deposition of the mycotoxin, deoxynivalenol
in the infected seeds, which renders the grain unsuitable for
human consumption and animal feed (McMullen et al., 1997).
Historically, during the last three decades, FHB has been an
endemic disease in the north-central and eastern regions of
the United States. However, in recent years, the disease has
emerged in the Pacific Northwest (PNW), coinciding with
increased corn production, reduced tillage farming practices,
and changing climate in the region (Marshall et al., 2012). Due
to higher temperatures and greater humidity during flowering
time in the PNW, spring wheat is more susceptible to FHB
than winter wheat. Most of the wheat cultivars currently grown
in the PNW are susceptible to FHB and, when infected,
often produce high levels of deoxynivalenol (Marshall, 2014).
Therefore, development of FHB-resistant wheat cultivars for the
region is critically needed to reduce the impending negative
consequences, including reduced crop yield and quality and
increased costs for fungicides.

The traditional genetic marker-based breeding method is
called marker-assisted selection, which utilizes known, previously
identified quantitative trait loci (QTL)-associated markers. In the
last two decades, more than 200 FHB-resistant QTL have been
identified across the entire wheat genome (Buerstmayr et al.,
2009; Liu et al., 2009). However, none of these QTL confer
promising resistance to FHB. For example, although one of the
major QTL, Fhb1 identified on chromosome 3BS (Anderson et al.,
2001; Liu and Anderson, 2003) could reduce disease occurrence
by 20–25% (Pumphrey et al., 2007), this QTL was originally
identified from the Chinese line, Sumai 3, and the favorable
allele has a very low frequency in North American germplasm
(Sneller et al., 2010; Bernardo et al., 2012). Introducing this allele
may not only take time, but also risk the diversity among North
America germplasm. Additional QTL were also confirmed on
chromosomes 2D (Shen et al., 2003a; Yang et al., 2005; Cuthbert
et al., 2007), 3A (Shen et al., 2003a; Steiner et al., 2004; Yang et al.,
2005), 5AS (Buerstmayr et al., 2003; McKendry et al., 2004; Chen
et al., 2006), and 6B (Shen et al., 2003b; Yang et al., 2005; Cuthbert
et al., 2007). Similar to Fhb1, most of these QTL were originally
derived from Chinese wheat germplasm.

Efforts to identify FHB resistance in native North American
winter wheat germplasm have been undertaken (Sneller et al.,
2010; Arruda et al., 2016). Both Sneller et al. (2010) and Arruda
et al. (2016) showed that FHB resistance is conferred by many
small effect QTL in soft red winter wheat lines grown in the
eastern United States. A research has been conducted on other
native spring wheat germplasm without Sumai 3 backgrounds,
which included 170 lines developed by wheat breeders at PNW
and the International Maize and Wheat Improvement Center
(CIMMYT) (Wang et al., 2017). This study also suggested that
FHB resistance in spring wheat is controlled by a relatively large
number of QTL with small effects. Thus, there is a critical need to

assemble the total genetic effects of individual lines—accounting
not only for QTL with large or moderate effects, but also QTL
with small effects, which collectively control a large proportion of
the total genetic variance. This method is commonly known as
genomic selection (GS).

GS was introduced to plant breeding in 1994 to evaluate
yield potential in maize inbred lines as the Best Linear
Unbiased Prediction (BLUP), using restriction fragment length
polymorphism (RFLP) markers covering the maize genome
(Bernardo, 1994). The method is now known as genomic
BLUP, or gBLUP. GS has been used to predict genetic merit
in animals (Hayes et al., 2009; Guo et al., 2011) and plants
(Heffner et al., 2009; Jannink et al., 2010). GS has also been
applied in winter wheat programs for FHB resistance in the
mid-western and eastern United States and Canada. Rutkoski
et al. (2012) compared the accuracy of different GS models
for FHB-related traits using 170 winter wheat lines from 18
different breeding programs and more than 2,000 diversity
array technology markers and single-sequence repeat markers.
Arruda et al. (2015) evaluated different factors affecting the
accuracy of genomic prediction using 273 winter wheat breeding
lines and 5,054 genotyping-by-sequencing markers. Both studies
demonstrated that GS is a very promising breeding strategy for
FHB resistance in winter wheat.

Our study aimed to fill the knowledge gaps on FHB in
spring wheat by evaluating prediction accuracy of using the
existing 170 lines under three conditions: (1) no restriction
on testing cohort of market class and segmentation of FHB
resistance; (2) restriction of testing cohort to market classes;
and (3) restriction of testing cohort to segmentation of FHB
resistance. This knowledge was intended to provide guidance
for developing a GS pipeline for breeding FHB-resistant wheat
in the PNW. Additionally, we expect the new knowledge and
the approach used to benefit similar breeding programs in
other traits, geographic areas, and breeding programs for other
crops.

MATERIALS AND METHODS

Plant Materials and Disease Evaluation
The spring wheat panel used in this study and the FHB disease
evaluation were described in Wang et al. (2017). In short, a total
of 170 spring wheat cultivars and elite lines developed from the
breeding programs in the PNW and CIMMYT were used in this
study. The 170 lines (PNW panel, hereafter) include 26 lines
from Washington State University (WSU), 33 from University
of Idaho (UI), 34 from University of California, Davis (UCD),
25 from Montana State University (MSU), 49 from CIMMYT,
two from Limagrain Cereal Seeds (LCS), and one from SSK
(Agriculture and Agri-Food Canada, Saskatchewan). Over 50%
of lines have been used as parental lines in one or more breeding
programs. Therefore, this PNW panel is representative of the
genetic diversity in currently used germplasm. Based on the end-
use products, the panel contains three main market classes of
spring wheat: soft white spring (SWS), hard white spring (HWS),
and hard red spring (HRS) wheat.
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The phenotypes of the 170 lines were collected from three
field nurseries [Saint Paul, MN (StP), Crookston, MN (CrK),
and Aberdeen, ID (AB)] and one greenhouse (GH) over 2 years
(2015 and 2016). Fields were divided into zones according to
field orientation. Checks were placed in each zone for validation.
The checks included the FHB resistant cultivars Alsen, BacUp,
W14, and AC Barrie (Chen et al., 2006; Zhang et al., 2016) and
the FHB susceptible cultivars Roblin, Wheaton, and UI Platinum
(Chen and Marshall, 2012; Zhang et al., 2016). In MN fields, 190
lines, including the 170 lines that were genotyped and used in
this study, were randomly assigned to two zones by using an un-
replicated augmented complete block design. In each zone, 95
lines and five checks (Alsen, BacUp, W14, Roblin and Wheaton)
were randomly assigned. In Aberdeen fields, the 190 lines were
randomly assigned to five zones. In each zone, 38 lines and two
checks (AC Barrie and UI Platinum) were randomly assigned
with two replications. In GH, two checks (AC Barrie and UI
Platinum) were used, and each line had four replications. The
inoculum for StP and CrK nurseries was prepared by balanced
mixing 30–39 F. graminearum isolates, as used in Zhang et al.
(2016).

The inoculum used in AB nursery and GH experiment was
isolated as single spore isolate from natural infected seeds in
Idaho. This isolate is virulent to most wheat cultivars in Idaho.
The plots in the StP and AB nurseries were individually sprayed
two to three times with the prepared inoculum using a CO2-
pressure backpack sprayer. The plants in the GH experiment
were point inoculated with approximately 5 µl of macroconidia
suspension at the concentration of 8–10 × 104 ml−1 using a
pipette dropper. For both methods (spray and point inoculation),
to facilitate even distribution and adherence of fungal spores on
the plant, a surfactant (Tween 20: polyoxyethylene-20-sorbitan
monolaurate) was added (100 µl per liter) to the inoculum
suspension before use. Corn spawn method was applied to the
CrK nursery. The colonized corn grains were spread throughout
the nursery twice at the wheat jointing stage and at 1 week later.
For all nurseries and GH experiments, the plants were misted
immediately after inoculation to promote infection.

Due to variable disease pressure, disease assessment was
performed at 21 days after inoculation in the StP and CrK
experiment locations, and at 28 days after inoculation in the
AB and GH experiment locations. Incidence (INC), severity
(SEV), and deoxynivalenol concentration (DON) were assessed
as FHB disease reactions. INC was recorded as the percentage of
infected spikes in a headrow plot. SEV was visually diagnosed as
the percentage of infected spikelets in each spike. DON (ppm)
was measured using grain samples from 30 randomly selected
heads for each line in the StP and CrK field nurseries and from
the composite of all plants in the AB nursery (Supplementary
Table S1). The procedure to quantify DON is described in Fuentes
et al. (2005) and Mirocha et al. (1998) and briefly summarized in
Wang et al. (2017). In short, the sample was prepared and passed
through a column and then the dried filtrate was derivatized for
gas chromatography-mass spectrometry (GC/MS) analysis. The
characteristic ions of DON with fragment ion (m/z value) of
235.10 was detected as target while the fragment ions of 259.10
and 422.10 as reference ions.

Phenotypic Data Analysis
In this study, we treated each year-location combination as
an environment. We evaluated FHB SEV in five environments
and assessed FHB INC and DON in four environments. In
each environment, the raw phenotypic values within replicates
were adjusted by using a spatial analysis. The analyses were
performed by using R package “lme4” (Bates et al., 2015) with
zone fitted as random effect. For the phenotypic data collected
from GH, no spatial adjustment was applied. The arithmetic
mean of all replications in each trial was calculated and used
as the single environment phenotypic data value. We applied
R package “lme4” to estimate the BLUP values for the three
phenotypes (INC, SEV, and DON) across different environments
(Supplementary Table S1). The lines and environments were
considered random effects in the mixed model. Raw phenotypes,
means and BLUPs were displayed by the pairs.panel function in R
package “psych” (Revelle, 2017) to illustrate the distributions with
trends indicated by the correlations ellipse.

Genotypic Markers
Of the total 170 lines in the PNW panel, 143 belong to the
Spring Wheat Association Mapping (SWAM) panel developed
by Triticeae Coordinated Agricultural Project (T-CAP). The
Illumina 90K genotypic markers for these 143 lines were
downloaded from the Triticeae Toolbox (T3) website1 operated
by T-CAP. The remaining 27 lines were also genotyped with
the Illumina 90K SNPs assay at the USDA-ARS Cereal Crops
Research Unit, Fargo, ND and the allele calls were performed
with GenomeStudio v2011.1 (Illumina Inc., Hayward, CA,
United States). Finally, a total of 11,523 common SNP markers
were selected by combining the two sets of genotyping data.
Genetic positions for the selected SNP markers were retrieved
from the consensus map for 90K SNP markers developed by
Wang et al. (2014). After filtering out SNP markers with a
missing rate of more than 10% or with a minor allele frequency
(MAF) less than 0.05, 10,101 SNPs were retained for further
analysis. The missing genotypes were imputed using the java
package “LinkImpute” (Money et al., 2015), based on a k-nearest
neighbor genotype imputation method, LD-kNNi (Troyanskaya
et al., 2001), which is designed for unordered markers.

Principal Component (PC) Analysis
Principal Component analysis was conducted with all genetic
markers by using the prcomp function in R (R Core Team, 2017).
We used the default (correlation) option to derive eigen values
and eigen vectors, which implied that all genetic markers were
weighted the same. The markers with large MAFs contributed the
same as markers with small MAFs. The first three PCs were used
to present the population structure categorized by market classes
and origins. The first three PCs were also used as the fixed effects
for estimation of heritability and genomic prediction.

Estimation of Heritability
The observations in each environment, means and BLUPs across
environments, were the response variables in a fixed and random

1https://triticeaetoolbox.org/wheat/
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effects mixed linear model. The fixed effects were the first three
PCs. The random effects were the total additive genetic effects
of individuals in addition to the residuals. The variance and
covariance matrix of the total additive genetic effects was defined
as the product of the additive relationship matrix derived from
markers (Zhang et al., 2007) and the genetic variance. The
statistical model can be written as follows:

y = µ+ Xβ+ Zu+ ε (1)

where y is a vector (n × 1) of observations with n as number
of lines; µ is the overall mean; β is a vector (p × 1) of fixed
effects with p as the number of fixed effects, specifically, the
first three PCs derived from all markers (p = 3); X is a design
matrix (n × p) for fixed effects; u is a vector (n × 1) of random
effects of the total additive genetic effects of individuals; Z is a
design matrix (n× n) for random effects u; and ε is the residuals.
The random effects follow normal distributions: u∼N(0, Kσu

2),
ε∼N(0, Iσε

2), where I is the identity matrix and K is the additive
relationship matrix calculated from all genetic markers by using
VanRaden algorithm (VanRaden, 2008). The matrix was rescaled
to pedigree-like relationship matrix, implemented in GAPIT
(Lipka et al., 2012; Tang et al., 2016). The rescaled relationship
matrix had the maximum elements of 2 on the diagonals and the
minimum element of 0 off diagonal for the two individuals that
were the least related; σu

2 and σε
2, are the variance of individual

additive genetic effects and variance of residuals, respectively. The
estimations of the genetic and residual variances were conducted
by using the EMMA algorithm (Kang et al., 2008).

Genomic Prediction
Ridge regression was employed to perform genomic prediction by
using mixed.solve function implemented in R package “rrBLUP
v4.5” (Endelman, 2011). This statistical model has the same
format as the model to estimate heritability (1). However, matrix
Z and vector u are defined differently. Z is a design matrix
(n×m) for random effects, specifically, the matrix for genotypes;
u is a vector (m × 1) of random effects of markers with m
as number of markers. The random effects of markers follow
normal distributions: u∼N(0, Iσu

2), where I is the identity
matrix and σu

2 is the variance of individual marker genetic
effects.

Evaluation of Prediction Accuracy
Monte Carlo cross-validations (Xu and Liang, 2001) were
employed to evaluate accuracy of prediction by using rrBLUP.
A proportion, varying from 10 to 90%, of lines were randomly
selected as the testing population and the remaining lines as
the training population. Both the genotypes and the observed
phenotypes in the training population were used to estimate
the effects of genetic markers. The estimated marker effects and
the genotypes of the testing population were used to calculate
the predicted phenotypes, which also included the estimated
fixed effects of the first three PCs. The observed phenotypes of
the testing population were only used to calculate the Pearson
correlation coefficient between the observed and the predicted
phenotypes. The stochastic process was replicated 1,000 times

and the prediction accuracy distributions, means, and standard
errors were reported.

Selection of testing populations and training populations was
also restricted to specific cohorts of the spring wheat lines.
The first scenario had no restriction; all 170 lines were treated
homogeneously. The second scenario restricted the testing
population to either FHB-resistant lines or FHB-susceptible lines.
The third scenario restricted the testing population to the lines
from a specific market class. We also created some scenarios
that restricted both the training and testing populations. For
example, when we restricted the testing population to SWS, we
also restricted the training population to SWS.

Data Availability
Genotypes, phenotypes and the classification information
(market classes, origins, and FHB susceptibility) of 170 wheat
lines are available in Supplementary Table S1.

RESULTS

We designed a PNW FHB genomic breeding pipeline that
includes six elements in addition to input and output (Figure 1).
Central to the pipeline are the 170 PNW and CIMMYT spring
wheat lines, which are used as the primary training population
to develop new varieties with FHB resistance. The input is the
newly introduced germplasm. The output is the newly developed
varieties. The six surrounding elements of the pipeline are
advanced breeding lines (F6), genotyping, GS, FHB nursery, field
trials, and genetic evaluation. GS is used to assess new genotypes
and genetic evaluation is used to assess new phenotypes. Both
the FHB nursery and field trials focus on phenotyping, but the
FHB nursery evaluates FHB resistance and the field trials evaluate
agronomic traits such as grain yield and quality. Our primary
interest was to determine how accurately we could predict the
newly developed or the newly introduced varieties to our existing
training population. We investigated the phenotypic correlation
across environments, trait heritability under each environment
and heritability of mean across environments, and prediction
accuracy through validation.

Phenotypic Correlation Across Locations
and Years
Three FHB-related traits, INC, SEV, and DON, were measured in
two to four locations during a 2-year period. The distributions
of the three traits under different environments and their
BLUPs were demonstrated in our previous study (Wang et al.,
2017). In this study, we detailed the phenotypic correlation
across environments with scatter plots and Pearson correlations
(Figure 2). As shown by the distributions on the diagonals, DON
and SEV exhibit close to a normal distribution. However, the INC
distribution is close to the Poisson distribution. The side of tails
varied across environments for the Poisson distribution. Two of
them were on the left and one on the right. Nevertheless, INC
had the highest correlation, ranging from 0.24 to 0.5 with mean
of 0.33. SEV had the lowest correlations across environments,
ranging from 0.07 to 0.52 with mean of 0.25. In general, the
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FIGURE 1 | Proposed PNW FHB genomic breeding pipeline. The pipeline is centralized by the training population which currently contains 170 lines from Pacific
Northwest (PNW) and the International Maize and Wheat Improvement Center (CIMMYT). The 170 lines have been assessed for FHB resistance in two different
states (Idaho and Minnesota) over 2 years (2015 and 2016). The training population will be expanded from both internal and external germplasm. The external
germplasm will include the lines with genotypes and phenotypes on FHB resistance. The internal germplasm includes the newly developed F6, F7, and F8 lines that
will be genotyped and phenotyped for FHB resistance, grain yield, and end-use quality. The outputs of the pipeline are lines with FHB resistance and good
agronomic performance.

correlations were low for all three traits. This finding suggests that
FHB must be evaluated with multiple locations and multiple years
to achieve reliable mean values.

Similarity Between Mean and BLUP
To examine prediction accuracy through validation, the training
population and testing population should be completely separate
so that the phenotypes of the testing population are not used
as the training data. Means across the environments straightly
satisfies this requirement. Although BLUP is derived in a mixed
linear model with individual lines treated as uncorrelated, BLUPs
are potentially dependent among lines due to adjustments for
the effects of location, year, and replicate. In our previous gene
mapping study (Wang et al., 2017), BLUPs were used as the
response variable, instead of means. In this study, we wanted to
know how similar the mean is to BLUP.

We demonstrated that the BLUP was almost identical to
the mean, especially for INC and SEV, where the data were

nearly balanced and missing data were minimal (Figure 3).
In the case of lines treated as unrelated, the BLUP is identical
to the mean. Even for DON, BLUPs were almost identical to
the means except for a few lines with missing values. The
BLUPs of these lines equal their means adjusted by the means
of the other lines. Using the BLUP of the training population
involves the phenotypes of the testing population. Therefore,
we chose to use means to evaluate prediction accuracy through
validation.

Market Classes and Origin of Lines in
Relation to PC Analysis
Market class is a major characteristic in wheat breeding. Three
major classes of spring wheat are grown in the PNW. HRS and
HWS wheat are used for different end-use products compared
to SWS wheat. Therefore, HRS and HWS differ from SWS in
important requirements such as protein content, flour hardness,
and other quality traits. Among the 170 lines we studied, 79 were
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FIGURE 2 | Correlation and distribution of FHB phenotypes at different environments. The three FHB traits studied were incidence (INC), severity (SEV), and
deoxynivalenol concentration (DON). The environments were defined as combinations of year and location. The study locations were StP (Saint Paul, MN,
United States), CrK (Crookston, MN, United States), AB (Aberdeen, ID, United States), and greenhouse (GH). Years included 2015 (15) and 2016 (16). Environments
are labeled on the diagonals. The diagonals also illustrate the distribution of the means across replicates within each environment. The dots on the scatterplots off the
diagonals represent the mean across replicates. The red line is the robust fitting using lowess regression, the red dot and the circle represent the correlation ellipse.

HWS lines, 65 were HRS, and 24 were SWS. The remaining two
lines were soft red spring (SRS) wheat. The 170 lines were from
seven origins. The top five major origins (UCD, UI, WSU, MSU,
and CIMMYT) contributed 26–49 lines each and 167 in total. The
remaining lines consisted of two from LCS and one from SSK
(Supplementary Table S1).

To explore the relationship among lines, origins, and market
classes, PCs were derived from all available SNPs. The first
three PCs explained around 20% of the total variance. Pairwise

relationships for the 170 lines are illustrated in Figure 4 with
market classes and origins indicated by colors and shapes,
respectively. The SWS market class stands out from the other
two classes on all three plots. Substantial overlap occurs between
HRS and HWS. Most of the lines with the same origin were
clustered. For example, the lines from CIMMYT (circles) are
centered in the upper half of the PC1 vs. PC2 plot. The lines
from MSU (diamonds) are concentrated in the top left of the PC2
vs. PC3 plot. We found a strong association between origins and
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FIGURE 3 | Alignment between mean and Best Linear Unbiased Prediction (BLUP). The three FHB traits studied were INC, SEV, and DON. The mean was
calculated as the mean across replicates, locations, and years. BLUP was calculated in our previous study (Wang et al., 2017) by using mixed linear model with lines
treated as unrelated. The diagonally oriented bar graphs illustrate the distribution of the mean and BLUP values for each phenotype. Displayed below the diagonal,
are the scatter plots for mean and BLUP values; displayed above the diagonal are their Pearson correlation values. The red line is the lowess regression fitting curve;
the red dot and circle construct the correlation ellipse.

market classes. Almost all the individuals from UI are SWS, those
from MSU are mostly HRS, and those from CIMMYT are mostly
HWS.

Heritability Estimation
We estimated the narrow sense heritability by using a fixed
effect and random effect mixed linear model. Besides the residual
effects, the random effects are the individual total additive genetic

effects with variance structure defined by an additive relationship
matrix. The raw additive relationship matrix was derived by
using the VanRaden algorithm implemented in GAPIT. Most
of the elements in the matrix were close to zero, ranging from
−3 to 3 (Figure 5). The estimation of heritability requires
the minimum number of elements to be zero for uncorrelated
individuals and the maximum number of elements to be two
on the diagonals for inbred individuals. Thus, we conducted the
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FIGURE 4 | Wheat line origins and market classes revealed by principal component analysis. The principal components (PCs) were calculated by using all genetic
markers. The first three PCs explained 7.4, 6.2, and 4.9% of the total variation, respectively. The wheat market classes studied were Hard Red Spring (HRS), Hard
White Spring (HWS), Soft White Spring (SWS), and Soft Red Spring (SRS). The top five major origins for most of the lines are UCD (University of California, Davis); UI
(University of Idaho); WSU (Washington State University); MSU (Montana State University); and CIMMYT (the International Maize and Wheat Improvement Center)
plus two lines from LCS (Limagrain Cereal Seeds) and one line from SSK (Agriculture and Agri-Food Canada, Saskatchewan). Numbers in the brackets in legend
represent the amount of lines in each category.

pedigree kinship-like transformation, implemented in GAPIT.
The scaled relationship matrix had desirable features to estimate
heritability (Figure 5).

The variances of individuals’ total additive genetic effects and
residual effects were estimated by using the EMMA algorithm.
The total phenotypic variance was defined as the sum of
the additive genetic variance and the residual variance. The
proportion of the additive genetic variance over the total

variance was defined as the narrow sense heritability. The
heritability estimates for phenotypes measured under different
environments, the means across environments, and BLUP are
illustrated in Supplementary Table S2, Supplementary Figure S1,
and Figure 6. Overall, the estimated heritabilities of INC were
much higher than SEV and DON. This finding agrees with the
finding that the phenotypes of INC were more correlated among
environments.
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FIGURE 5 | Rescale of the relationship matrix into the kinship-like matrix. The raw matrix (left) was obtained from 10,101 SNPs for 170 spring wheat lines by using
VanRaden algorithm, implemented in GAPIT. After rescale by using the transformation in GAPIT, the range of elements in the matrix fell into the same range as the
kinship matrix (right), from 0 to 2.

FIGURE 6 | Estimate of heritability of three FHB traits. The three FHB traits studied were INC, SEV, and DON. Heritability was estimated for these traits under each
environment, and using the mean and BLUP across the environments. Environment was defined as the combination between location and year. The four locations
were Saint Paul, MN (StP), Crookston, MN (CrK), Aberdeen, ID (AB), and one GH, studied over 2 years (2015 and 2016).

Validation With a Homogenous Cohort
We were particularly interested in prediction accuracy when
crosses among our current 170-line training population were
advanced to higher generations (e.g., F6–F8) or when similar
new external lines were introduced. To fill this knowledge gap,
we randomly masked the phenotypes (i.e., means) of a certain
proportion of the 170 lines and treated the masked lines as the

future testing population (inference). The remaining lines were
treated as the training population (reference). The genotypes of
individuals in both the training and testing populations were used
to calculate the Genomic Estimated Breeding Values (GEBVs)
for all individuals, including those in the training and testing
populations. However, only the phenotypes of individuals in
the training population were used to estimate the effects of all
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markers by using the rrBLUP package in R. The prediction
accuracy was calculated as the Pearson correlation between
the predicted and the observed phenotypes. The predicted
phenotypes were the sum of GEBV and the fixed effects, the
first principal components. The randomization was replicated
1,000 times and the distributions, means, and standard deviations
of the prediction accuracies were reported (Figure 7 and
Supplementary Table S3).

Consistent to the higher correlation across environments
and higher heritability for INC compared to the other traits,
prediction accuracy was also higher for INC. Prediction accuracy
also depended on training population size. The scenario with 90%
of 170 lines as the testing population had the lowest prediction
accuracy. The scenario with 10% of the lines remaining as
the testing population had the highest prediction accuracy. In
practice, this latter scenario is the most useful because it uses
almost all of the currently available resources if the number
of introduced new lines is less than 17 and they have similar
relationships with the 170 lines. In this case, the prediction
accuracy is about 0.65 for INC and 0.45 for both SEV and
DON.

Validation With a Resistant Cohort
The newly developed varieties, or the new lines introduced
to the current breeding population, are most likely to be
resistant to FHB. The most critical question is how well a
certain amount of such lines can be predicted. Among the 170
lines in the current breeding population, 69 were identified by
the breeders (Dr. Jianli Chen and Dr. Michael Pumphrey) as
resistant lines and the rest as susceptible lines (Supplementary
Table S1 and Supplementary Figure S2). For each subpopulation,

we randomly masked a certain proportion of the lines (10–
100%) as the testing population. The remaining lines, including
all the lines from the opposite subpopulation, were treated as
the training population. The randomization was also replicated
1,000 times. The distributions, means, and standard deviations
of the prediction accuracies were reported (Figure 8 and
Supplementary Table S4).

We observed that prediction accuracies for the resistant
lines were less sensitive to the proportion of resistant lines
removed from the training population, compared with prediction
accuracies for the susceptible lines as the proportion of
susceptible lines were removed. This finding suggests that the
current FHB-susceptible lines are valuable for predicting the
resistant lines. Especially for the two low heritability traits, SEV
and DON, the prediction accuracies for susceptible lines dropped
almost to zero when the training population contained only
the resistant lines. In contrast, the prediction accuracies for the
resistant lines remained at 50, 35, and 20% for INC, SEV, and
DON, respectively, even when the training population contained
susceptible lines only.

We also observed that prediction accuracy was much lower
for the scenario that restricted the testing population to resistant
lines than the scenario with a homogeneous cohort. For example,
a homogeneous cohort with 90% of lines as the training
population resulted in a prediction accuracy of 0.63 for INC.
In contrast, a resistant cohort that retained all susceptible lines
and 90% of resistant lines as the training population, resulted
in a prediction accuracy of 0.53 for INC on resistant lines. This
finding suggests that to prevent the overestimate of prediction
accuracy as future testing population contains resistant lines only,
not a mixture of both resistant and susceptible lines, breeding

FIGURE 7 | Prediction accuracies for three FHB traits under different fold of cross-validation. The three traits studied were INC, SEV, and DON. The cross-validation
was performed by randomly selecting 10–90% of the lines from the total 170 lines and using that proportion as the testing population. The remaining lines were used
as the training population. The prediction accuracy was calculated as the Pearson correlation between the observed and predicted phenotypes.
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FIGURE 8 | Prediction accuracies of FHB traits when different proportions of FHB-resistant or FHB-susceptible lines were used as the testing population. The 170
wheat lines were classified into resistant (69) and susceptible (101) subpopulations. Both subpopulations were randomly sampled and used as the testing population
with proportions ranging from 10 to 100%. The three traits studied were INC, SEV, and DON. The prediction accuracy was calculated as the Pearson correlation
between the observed and the predicted phenotypes.

plans should be based on the scenarios that validate a resistant
cohort, not scenarios with a homogeneous cohort.

Validation With a Market Class Cohort
Our wheat breeding program involves three major market
classes (HRS, HWS, and SWS) for different end-use products
(Supplementary Table S1). The knowledge gap is how the
prediction accuracy relates to the amount of new lines from a
particular market class. To fill this gap, we randomly masked a
certain proportion (10–100%) of lines from a particular market
class into the testing population and used the remaining lines,
mainly from other market classes, as the training population. The
randomization was also replicated 1,000 times. The distributions,
means, and standard deviations of the prediction accuracies were
reported (Figure 9 and Supplementary Table S5).

As demonstrated by the population structure from the PC
plots (Figure 4), HRS and HWS are more connected to each other
than to SWS. Consequently, the HRS lines can be predicted well
from the HWS lines and vice versa. In contrast, the SWS lines
cannot be predicted from the HRS or HWS lines; for example,
the accuracies for DON were near or below zero. We narrowed
down the problem by conducting the validation for each market
class separately (Supplementary Figure S3 and Supplementary
Table S6). In this scenario, all the lines in the training population
were from the same market class as the lines in testing population.
We observed a similar trend as the scenarios with training
populations that contained lines from other market classes. The
number of lines in SWS was almost one third of other two classes
and almost all of them have the same origin. These are two
possible reasons caused the low prediction in SWS.
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FIGURE 9 | Prediction accuracies of FHB traits when different proportions of wheat market class lines were used as the testing population. The wheat market
classes studied were HRS, HWS, and SWS. For each market class, 10–100% were randomly removed as the testing population; the rest of the lines, including lines
from the other market classes, were used as the training population. The three FHB traits studied were INC, SEV, and DON. The prediction accuracy was calculated
as the Pearson correlation between the observed and the predicted phenotypes. The combination of 10% and SWS was not available because, in this scenario, only
two lines were in the testing population. The Pearson correlation would be either –1 or 1.
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DISCUSSION

In this study, various types of analyses and validations were
performed to evaluate the potential of genomic prediction to
improve resistance to FHB for spring wheat in the PNW.
The procedures we used included determination of response
variables, estimation of heritability, and validation of prediction
accuracy under different scenarios. Although some of the
procedures are specific to our own breeding program, other
wheat breeding programs and even other crop breeding programs
can also benefit from our methods and findings.

Mean vs. BLUP
The validation of GS requires that the phenotypes of the testing
population be used only for comparison of the prediction
accuracy. In this study, we chose to use the mean for two reasons.
First, we wanted to satisfy the requirement of validation that
prevents the use of phenotypes in the testing population to
predict themselves. Second, the mean and BLUP were highly
identical in this study. The correlation between mean and BLUP
was 100% for INC and SEV and 99% for DON. Thus, the results
inferred from mean are robust enough to presume similar results
in future GS based on BLUP.

Marker-Based Kinship and Heritability
Estimation
Heritability is defined as the proportion of genetic variance over
the total variance, which is the sum of the genetic variance and
the residual variance. Genetic variance and residual variance are
usually estimated in a mixed linear model with genetic effect and
residual effect as the random effects. The variance structure of
the genetic effect is the relationship matrix derived from either
pedigree or genetic markers. The matrix is twice of co-ancestry,
which is the probability of identical by descent. Consequently,
the minimum element is zero indicating no relationship. The
maximum element is two for identical twins or an inbred with
itself. The genetic variance estimated with such a relationship
matrix is adjusted to the base genetic variance among founder
who are completely uncorrelated. When the matrix is derived
from pedigree, it satisfies all the requirements.

Many algorithms can be used to calculate the relationship
matrix among individuals based on genetic markers, including
Loiselle (Loiselle et al., 1995) and VanRaden. Most of these
relationships do not have the properties corresponding to
pedigree-based kinship. Consequently, the estimated genetic
variances do not correspond to the genetic variance among
individuals of the base population. The proportion to the
total variance is artificially defined based on the selection of
algorithms.

The 170 lines used in this study were inbred wheat. The
diagonals of the relationship matrix should be two. If we
assume the farthest two inbred lines are uncorrelated, their
corresponding element should be the minimum, zero. With
these assumptions, we applied a transformation, implemented
in GAPIT, for the raw relationship matrix calculated by the
VanRaden algorithm. After the transformation, the maximum

element was 2 and the minimum element was 0. The maximum
element was more likely to be correct than the minimum element.
Therefore, interpretation of estimated heritability should be
inferred with caution, even the pedigree-like relationship matrix
used in this study.

Breeding for FHB Resistance for SWS
Our primary interest is to develop and introduce new varieties
with resistance to FHB, especially for SWS, a very important
market class in PNW. Although the prediction accuracies were
reasonably high under homogenous scenario, the scenario is far
from practice. The future testing lines are more likely to be
resistant lines from SWS market class. This study suggested that
the current training population has reduced prediction accuracies
when the testing population is restricted to either resistant lines,
or the market class (Figures 8, 9). Introducing lines in these
categories and phenotyping them on multiple locations across
years are critical to ensure the success of GS in breeding to
improve FHB resistance.

The actual prediction accuracy should be better than reported
in this study for scenarios where the testing populations
contained less than 15 lines, such as the testing cohort that was
restricted to SWS. Pearson correlation coefficient is downward
biased in such case (Zhou et al., 2017). It is expected that larger
training population leads to higher prediction accuracy. This was
true for all cases in this study except the scenarios with testing
population restricted to SWS for SEV and DON (Figure 9). As
there were only 24 SWS lines, 20–50% of them as inference
corresponded to that there were only 5–12 lines in the testing
population. The smaller the proportion, the more downward
biased on the Pearson correlation coefficient. After applying the
unbiased correction with the Olkin and Pratt’s method (Olkin and
Pratt, 1958), the reversed trend disappeared for SEV. For DON,
all the averages of accuracies were below zero. The measurements
of DON on the 24 SWS lines were not able to be predicted among
themselves, or from the lines of the other two market classes.

CONCLUSION

Correlation across environments were low for the three
measurements of FHB: INC, SEV, and DON. Heritabilities of
the means across the environments were 0.87, 0.68, and 0.44
for INC, SEV, and DON, respectively. Among the 170 lines,
randomly selecting 90% as training population had accuracy of
0.63, 0.43, and 0.42 to predict the rest of 10% as testing population
for INC, SEV, and DON, respectively. When testing population
were restricted to resistant lines, or the wheat market class,
substantial reductions of prediction accuracy were observed.
Introducing new resistant soft white lines and phenotyping them
in multiple environments would benefit GS for developing new
wheat varieties with resistance to FHB.
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