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CIRCULANT MATRICES:
NORM, POWERS, AND POSITIVITY
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Abstract. In their recent paper “The spectral norm of a Horadam circulant matrix”,
Merikoski, Haukkanen, Mattila and Tossavainen study under which conditions the spec-
tral norm of a general real circulant matrix C equals the modulus of its row/column sum.
We improve on their sufficient condition until we have a necessary one. Our results connect
the above problem to positivity of sufficiently high powers of the matrix C>C. We then
generalize the result to complex circulant matrices.
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1. INTRODUCTION AND PRELIMINARIES

For n ∈ N and x = (x0, . . . , xn−1) ∈ Rn, look at the circulant matrix

Cx :=




x0 x1 · · · xn−1

xn−1 x0
. . . ...

... . . . . . . x1
x1 · · · xn−1 x0



∈ Rn×n.

Motivated by studies of so-called Horadam or Fibonacci circulant matrices, the authors
of [2, 3] ask in [2] under which conditions the spectral norm of Cx equals |x0 + x1 +
. . .+ xn−1|. We give a sufficient and a necessary condition. Both have to do with the
positivity of powers of C>x Cx.

If R := C(0,1,0,...,0) denotes the cyclic backward shift R : (u1, . . . , un) 7→
(u2, . . . , un, u1), then

Cx = x0R0+x1R1+. . .+xn−1Rn−1 = c(R) with c(t) := x0t
0+x1t

1+. . .+xn−1t
n−1.
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The polynomial c is called the symbol of Cx. Most of the time, we understand c
as a function on

Tn := {t ∈ C : tn = 1} = {ω0, ω1, . . . , ωn−1} with ω := exp( 2π
n i).

It is easy to see that R diagonalizes as R = FDF∗, where D = diag(ω0, . . . , ωn−1)
and F is the so-called Fourier matrix 1√

n

(
ωjk
)n−1
j,k=0. Note that F is unitary, so that

F−1 = F∗. Consequently,

Cx = c(R) = c(FDF∗) = F c(D) F∗ = F diag(c(ω0), . . . , c(ωn−1))F∗ = FDxF∗

with Dx := diag(c(ω0), . . . , c(ωn−1)). Since F is an isometry of Cn with the Euclidean
norm,

‖Cx‖ = ‖FDxF∗‖ = ‖Dx‖ = max
(
|c(ω0)|, |c(ω1)|, . . . , |c(ωn−1)|

)
=: ‖c‖∞, (1.1)

where ‖ · ‖ denotes the spectral norm of a matrix; it is the matrix norm that is induced
by the Euclidean norm. Of course, all of this is standard [1]. The Fourier transform F
turns the convolution Cx into a multiplication Dx. We are just fixing notations here.

The question of [2] is essentially, under which conditions

‖Cx‖ = ‖c‖∞ equals |x0 + x1 + . . .+ xn−1| = |c(1)| = |c(ω0)|. (1.2)

So let

Cn :=
{

x = (x0, . . . , xn−1) ∈ Rn : ‖Cx‖ = |x0 + x1 + . . .+ xn−1|
}
.

Looking at (1.2), we see that

x ∈ Cn ⇐⇒ ‖c‖∞ = |c(1)|, i.e. |c(·)| assumes its maximum on Tn at t = 1 = ω0.

We will work with the latter condition in what follows. We will also study the following
subset of Cn if n ≥ 2. Let

C′n :=
{

x ∈ Cn : max
t∈Tn\{1}

|c(t)| < |c(1)| = ‖c‖∞
}
⊂ Cn.

While, for x ∈ Cn, the maximum of |c(·)| in Tn is attained at t = 1, for x ∈ C′n it
is only attained at t = 1, so that Cx has a spectral gap between the two largest
(in modulus) eigenvalues. We start with a simple sufficient condition for membership in
Cn and C′n, respectively. Here we write x ≥ 0 (x > 0) or M ≥ 0 (M > 0) if each entry
of, respectively, the vector x or the matrix M is nonnegative (positive).

Lemma 1.1. Let n ≥ 2 and x ∈ Rn.

a) If x ≥ 0 or −x ≥ 0 (i.e. ±Cx ≥ 0) then x ∈ Cn. (This is [2, Corollary 2].)
b) If x > 0 or −x > 0 (i.e. ±Cx > 0) then x ∈ C′n.
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Proof. a) By triangle inequality, every |c(t)| with t ∈ Tn is bounded as follows

|c(t)| =
∣∣x0 + x1t

1 + . . .+ xn−1t
n−1∣∣ ≤ |x0|+ |x1|+ . . .+ |xn−1| since |t| = 1.

But this upper bound, and hence the maximum ‖c‖∞, is attained by |c(1)| = |x0 +
. . .+ xn−1| as soon as all xk have the same sign, x ≥ 0 or −x ≥ 0.

b) The statement can be derived by the Perron-Frobenius theorem but here is
a more elementary proof. Let x > 0. (The argument is similar for −x > 0.) By a),
we have |c(1)| = ‖c‖∞. For every t ∈ Tn \ {1}, it holds |x0 + x1t| < |x0|+ |x1t| since
x0, x1 > 0 and 1 and t have different directions in C. Consequently, noting that |t| = 1,

|c(t)| =
∣∣x0 + x1t

1 + . . .+ xn−1t
n−1∣∣ ≤ |x0 + x1t|︸ ︷︷ ︸

<|x0|+|x1t|

+|x2t
2|+ . . .+ |xn−1t

n−1|

< |x0|+ |x1|+ |x2|+ . . .+ |xn−1| = x0 + . . .+ xn−1 = c(1) = |c(1)| = ‖c‖∞.

This sufficient condition for membership in Cn or C′n seems quite generous.
[2] suggests the following improvement. Put

Bx := C>x Cx = C∗xCx = (FDxF∗
)∗(FDxF∗) = FD∗xDxF∗ = FAxF∗ (1.3)

with
Ax := D∗xDx = diag(b(ω0), . . . , b(ωn−1)),

where
b(t) := c(t)c(t) = |c(t)|2 for all t ∈ Tn,

so that
‖b‖∞ := max

t∈Tn

|b(t)| = max
t∈Tn

|c(t)|2 = ‖c‖2
∞.

Then Bx is again a real circulant matrix. Applying Lemma 1.1 to Bx (in place of Cx),
we get the following result.

Lemma 1.2. Let n ≥ 2, x ∈ Rn and put Bx := C>x Cx.

a) If Bx ≥ 0 then x ∈ Cn. (This is [2, Theorem 4].)
b) If Bx > 0 then x ∈ C′n.
Proof. Recall that the symbol b of Bx is related to the symbol c of Cx by b(t) = |c(t)|2
for all t ∈ Tn. So b assumes its maximum at the same point(s) as |c(·)| does.

For a), by Lemma 1.1 a),

Bx ≥ 0 ⇒ ‖b‖∞ = |b(1)| ⇒ ‖c‖2
∞ = |c(1)|2 ⇒ ‖c‖∞ = |c(1)| ⇒ x ∈ Cn.

b) By Lemma 1.1 b), positivity Bx > 0 implies that |b(t)| < ‖b‖∞ for all t ∈ Tn\{1}.
But then also |c(t)| = |b(t)|1/2 < ‖b‖1/2

∞ = ‖c‖∞ for all t ∈ Tn \ {1}. So x ∈ C′n.
Note that the case −Bx ≥ 0 is impossible (unless x = 0, in which case Bx = 0)

since the main diagonal of Bx carries the entry ‖x‖2
2.
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2. ITERATING THE ARGUMENT UNTIL SUFFICIENT BECOMES NECESSARY

Looking at Lemmas 1.1 and 1.2, the following questions seem natural:
(Q1) Is the new condition C>x Cx ≥ 0 substantially weaker than the old condition

±Cx ≥ 0?
(Q2) Do we get a chain of increasingly weaker sufficient conditions if we repeat the

argument?
(Q3) Does that chain end in a necessary condition?

Let us address those questions, starting with (Q1): It is easy to see that for
n ∈ {1, 2}, the two conditions are equivalent but for n ≥ 3 they differ. Table 1 below
indicates that the quotient of their probabilities grows as n grows. As an example for
n = 3, look at x = (1,−2,−3), where

Cx =




1 −2 −3
−3 1 −2
−2 −3 1


 6≥ 0, −Cx 6≥ 0 but Bx := C>x Cx =




14 1 1
1 14 1
1 1 14


 ≥ 0.

So Lemma 1.1 is not strong enough to show x ∈ C3, i.e. ‖Cx‖ = |1− 2− 3| = 4, but
Lemma 1.2 is.

About (Q2): With Bx = C>x Cx, let us now look at B>x Bx. But since B>x = Bx,
one has B>x Bx = B2

x. This is still a circulant, to which we can apply Lemma 1.1.
Then one can again multiply B2

x with its transpose (itself) or just with Bx and continue
like that.
Theorem 2.1. Let n ≥ 2, x ∈ Rn and Bx = C>x Cx.
a) If Bm

x ≥ 0 for some m ∈ N then x ∈ Cn.
b) If Bm

x > 0 for some m ∈ N then x ∈ C′n.
Proof. For every m ∈ N, we have, by (1.3),

Bm
x = F Am

x F∗ = F
n−1
diag
k=0

b(ωk)m F∗,

so that ‖Bm
x ‖ = n−1max

k=0
|b(ωk)|m = ‖b‖m∞ = ‖c‖2m

∞ .

(2.1)

So Bm
x is a circulant matrix with symbol t 7→ b(t)m = |c(t)|2m. It assumes its maximum

at the same point(s) of Tn as |c(·)| does. Now argue as in the proof of Lemma 1.2.

Looking at m = 20, 21, 22, . . . and noting that M,N ≥ 0 implies M ·N ≥ 0,
we get that

±Cx ≥ 0 ⇒ Bx ≥ 0 ⇒ B2
x ≥ 0 ⇒ B4

x ≥ 0 ⇒ B8
x ≥ 0 ⇒ · · · ⇒ x ∈ Cn,

±Cx > 0 ⇒ Bx > 0 ⇒ B2
x > 0 ⇒ B4

x > 0 ⇒ B8
x > 0 ⇒ · · · ⇒ x ∈ C′n.

To illustrate that these are indeed chains of increasingly weaker conditions, let us
approximately compute1) the portion of the unit ball in Rn that satisfies the corre-
sponding condition (see Table 1).

1) using a Monte Carlo simulation with one million equally distributed points in the unit ball



Circulant matrices: norm, powers, and positivity 853

Table 1. An approximate computation of the portion of points x ∈ Rn of the unit ball (note
that all conditions are invariant under scaling of x) that satisfy the corresponding condition
in the header. Reading from left to right, every row seems to grow – in the limit – up to the
portion of the ball that belongs to C′n. This is a positive sign with respect to our question (Q3)

n ±x > 0 Bx > 0 B2
x > 0 B4

x > 0 B8
x > 0 B16

x > 0 B32
x > 0 · · · x ∈ C′n

n = 2 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% · · · 50.0%
n = 3 25.0% 42.3% 42.3% 42.3% 42.3% 42.3% 42.3% · · · 42.3%
n = 4 12.5% 25.0% 27.3% 28.9% 29.8% 30.3% 30.5% · · · 30.8%
n = 5 6.3% 23.2% 25.4% 27.1% 28.1% 28.6% 28.9% · · · 29.2%
n = 6 3.1% 16.7% 20.0% 21.9% 22.8% 23.1% 23.3% · · · 23.5%
n = 7 1.6% 14.7% 18.1% 20.4% 21.7% 22.4% 22.8% · · · 23.2%
n = 8 0.8% 10.4% 14.3% 16.8% 18.1% 18.8% 19.2% · · · 19.5%
n = 9 0.4% 10.3% 14.4% 17.0% 18.3% 18.9% 19.2% · · · 19.5%
n = 10 0.2% 7.5% 11.6% 14.3% 15.7% 16.3% 16.6% · · · 16.9%

...
...

...
...

...
...

...
...

...
n = 20 2−19 1.9% 5.2% 7.9% 9.4% 10.1% 10.4% · · · 10.7%

Finally, we turn to our question (Q3) about necessary conditions for membership in
Cn or C′n. Nonnegativity / positivity of powers of Bx is not necessary for membership
in Cn (see Example 2.3 below). But, assuming a spectral gap, i.e. membership in C′n,
we get convergence of the power method and hence positivity of large powers of Bx
(due to the special structure of the corresponding eigenvector).
Theorem 2.2. If x ∈ C′n then there exists an m0 ∈ N such that Bm

x > 0 for all
m ≥ m0.
Proof. Let x ∈ C′n and abbreviate |c(ωk)| =: ck for k = 0, . . . , n − 1. Then ‖c‖∞ =
c0 > c1, . . . , cn−1 ≥ 0. From (2.1) we conclude

Bm
x

‖Bm
x ‖

= 1
c2m

0
F diag(c2m

0 , c2m
1 , . . . , c2m

n−1)F∗ = F diag
(

1,
(c1
c0

)2m
, . . . ,

(cn−1
c0

)2m)
F∗

→ F diag(1, 0, . . . , 0)F∗ = 1
n




1 · · · 1...
...

1 · · · 1


 > 0 as m→∞, (2.2)

so that Bm
x > 0 for all sufficiently large m ∈ N.

The argument in the proof of Theorem 2.2 does not work if |c(·)| attains its
maximum in another or in more than one point on Tn. The following example shows
that, indeed, C′n cannot be replaced by Cn in Theorem 2.2.
Example 2.3. Take n = 5 and Cx := F diag(1, 0, 1, 1, 0) F∗. The diagonal has
its maximum in the first but also in the 3rd and 4th position, so that x ∈ C5 \ C′5.
The first row of Cx is x = ( 3

5 , α, β, β, α) with α = 1
5 (1 + 2 cos( 4π

5 )) < 0 and β =
1
5 (1 + 2 cos( 2π

5 )) > 0, so that Cx 6≥ 0 and −Cx 6≥ 0. But also Bm
x 6≥ 0 since

Cx = C>x = Cm
x = Bm

x for all m ∈ N.
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So for membership in C′n, we have the following equivalence.

Corollary 2.4. Let n ≥ 2 and x ∈ Rn. Then the following are equivalent.

(i) x ∈ C′n,
(ii) ∃m ∈ N : Bm

x > 0,
(iii) ∃m0 ∈ N ∀ m ≥ m0 : Bm

x > 0.

Proof. (ii)⇒(i) is Theorem 2.1 b), (i)⇒(iii) is Theorem 2.2 b), and (iii)⇒(ii) is
obvious.

3. COMPLEX ENTRIES

The case x ∈ Cn is only slightly different. When we refer to Cn or C′n now, we mean
the corresponding subsets of Cn. In a complex version of Lemma 1.1 a) it would be
enough to have all entries of x of the same phase, i.e. on the same ray {rz : r ≥ 0} with
some z ∈ C. But for Lemma 1.2 a), that ray would again have to be the nonnegative
real axis, because the main diagonal entries of Bx := C∗xCx are always there. The
other entries of Bx or Bm

x need not even be real, let alone nonnegative or positive.
However, the proof of Theorem 2.2 shows that the entries of Bm

x are in a certain
neighborhood of the positive half axis if x ∈ C′n (also for the complex version) and m
is sufficiently large. On the other hand, by the continuity of each function value c(t)
with respect to x, one can generalize Lemma 1.1 to an appropriate neighborhood of
the positive half axis:

Lemma 3.1. If n ≥ 2 and x = (x0, . . . , xn−1) ∈ Cn is such that at least two adjacent
entries of x are nonzero and all phases are close to zero, precisely, each

ϕk := arg xk ∈ (−π, π] is subject to |ϕk| <
π

2n, (3.1)

then x ∈ C′n.
Proof. We start with n general complex numbers z0, . . . , zn−1 ∈ C and put
ψk := arg zk, which we put to zero if zk = 0. Then the following “generalized law of
cosines” is easily verified.

|z0 + . . .+ zn−1|2 = (z0 + . . .+ zn−1)(z0 + . . .+ zn−1) =
n−1∑

j,k=0
zjzk

=
n−1∑

j=0
|zj |2 + 2

n−1∑

j, k = 0
j < k

Re(zjzk)

=
n−1∑

j=0
|zj |2 + 2

n−1∑

j, k = 0
j < k

|zj ||zk| cos(ψj − ψk).

(3.2)



Circulant matrices: norm, powers, and positivity 855

Putting zk := xk from above, we have ψk = ϕk and hence

|c(1)|2 = |x0 + . . .+ xn−1|2

(3.2)=
n−1∑

j=0
|xj |2 + 2

n−1∑

j, k = 0
j < k

|xj ||xk| cos(ϕj − ϕk).
(3.3)

Now take t = ω` ∈ Tn \ {1} with some ` ∈ {1, . . . , n− 1} and put zk := xkt
k in (3.2).

Then ψk = arg(xktk) = arg xk + k arg t = ϕk + k`ϑ with ϑ := argω = 2π
n . Plugging

this into (3.2), we get

|c(t)|2 = |x0t
0 + . . .+ xn−1t

n−1|2

(3.2)=
n−1∑

j=0
|xj |2 + 2

n−1∑

j, k = 0
j < k

|xj ||xk| cos
(
ϕj − ϕk + (j − k)`ϑ

)
.

(3.4)

By our assumption (3.1), all differences ϕj − ϕk are in the interval (−πn , πn ) =: In.
Since the length of In is ϑ = 2π

n ,

ϕj − ϕk + (j − k)`ϑ
{

= ϕj − ϕk, if (j − k)` ∈ nZ,
6∈ In, otherwise,

}
both modulo 2π.

Moreover, cosx < cos y whenever x 6∈ In and y ∈ In (modulo 2π). Consequently,
all cosines in (3.3) are larger than or equal to the corresponding cosines in (3.4).
So |c(1)| ≥ |c(t)|.

For our two adjacent j, k with xj and xk nonzero, we have j − k = −1 and hence
(j − k)` 6∈ nZ, so that the corresponding term in (3.3) is strictly larger than in (3.4).
Hence, |c(1)| > |c(t)|.

So it is already enough for x ∈ C′n that each entry of x is in a certain cone around
the positive real half axis. By the same arguments as in the real case, one can look at
a power of Bx := C∗xCx, which is again a circulant matrix, and check whether the
entries of its first (or any) row satisfy (3.1).

Theorem 3.2. Let n ≥ 2 and x ∈ Cn. Then the following are equivalent.

(i) x ∈ C′n,
(ii) ∃m ∈ N : at least two adjacent entries of the first row of Bm

x are nonzero and
satisfy (3.1),

(iii) ∃m ∈ N : all entries of the first row of Bm
x are nonzero and satisfy (3.1),

(iv) ∃m0 ∈ N ∀m ≥ m0 : all entries of the first row of Bm
x are nonzero and

satisfy (3.1).



856 Marko Lindner

Proof. The implications (iv)⇒(iii)⇒(ii) are obvious. It remains to check (ii)⇒(i)⇒(iv).
(ii)⇒(i) Let m ∈ N be as in (ii) and denote the circulant matrix Bm

x by Cy. By
Lemma 3.1, y ∈ C′n, i.e. the symbol b of Bm

x has its maximum at 1 and only there.
Arguing as in the proofs of Lemma 1.2 and Theorem 2.1, the same holds for the symbol
c of Cx, so that x ∈ C′n.

(i)⇒(iv) Let x ∈ C′n. Following the proof of Theorem 2.2 up to (2.2), we see that,
for all entries of Bm

x , let us denote them by b
(m)
jk , we have the following limits as

m→∞,
b

(m)
jk

‖Bm
x ‖
→ 1

n
, so that

|b(m)
jk |
‖Bm

x ‖
→
∣∣∣∣
1
n

∣∣∣∣ = 1
n

and hence
b

(m)
jk

|b(m)
jk |

=
b

(m)
jk

‖Bm
x ‖
‖Bm

x ‖
|b(m)
jk |

→ 1
n
· n = 1,

showing that arg b(m)
jk → 0. It follows that, for all sufficiently large m, all entries of

Bm
x are nonzero and subject to (3.1). This clearly implies (iv).

4. CONCLUSION

Theorems 2.1 and 2.2 are clearly not meant to give efficient ways of computing the
spectral norm of a generic real circulant matrix – one cannot beat formula (1.1)
in terms of the computational cost. Rather than that, our theorems connect two
apparently different questions to each other:

(i) whether ‖Cx‖ equals |x0 + . . .+ xn−1|, and
(ii) eventual positivity of the semigroup (Bm

x )∞m=0.

In the complex case, one has the same results but instead of being real and positive,
the matrix entries of Bm

x only have to belong to a certain cone (3.1) around the
positive half axis.
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