
ORIGINAL RESEARCH
published: 12 July 2018

doi: 10.3389/fphys.2018.00922

Frontiers in Physiology | www.frontiersin.org 1 July 2018 | Volume 9 | Article 922

Edited by:

Gabriele Giacomo Schiattarella,

Università degli Studi di Napoli

Federico II, Italy

Reviewed by:

Alessandro Tonacci,

Istituto di Fisiologia Clinica (IFC), Italy

Luca Carnevali,

Università degli Studi di Parma, Italy

*Correspondence:

Hangsik Shin

hangsik.shin@jnu.ac.kr

Specialty section:

This article was submitted to

Autonomic Neuroscience,

a section of the journal

Frontiers in Physiology

Received: 10 October 2017

Accepted: 25 June 2018

Published: 12 July 2018

Citation:

Choi A and Shin H (2018) Quantitative

Analysis of the Effect of an Ectopic

Beat on the Heart Rate Variability in

the Resting Condition.

Front. Physiol. 9:922.

doi: 10.3389/fphys.2018.00922

Quantitative Analysis of the Effect of
an Ectopic Beat on the Heart Rate
Variability in the Resting Condition

Ahyoung Choi 1 and Hangsik Shin 2*

1Department of Software, Gachon University, Seongnam, South Korea, 2Department of Biomedical Engineering, Chonnam

National University, Yeosu, South Korea

The purpose of this study is to quantitatively analyze the effect of an ectopic beat on

heart rate variability (HRV) in the time domain, frequency domain, and in a non-linear

analysis. A quantitative analysis was carried out by generating artificial ectopic beats

that probabilistically contained a missed beat or a false-detected beat, and the statistical

significance was evaluated though a comparison with an ectopic-free HRV by increasing

the ratio of the ectopic beat in 0.1% increments from 0 to 50%. The effect of the

interpolation on the ectopic HRV was also investigated by applying nearest-neighbor

interpolation, linear interpolation, and cubic spline interpolation. The results confirmed

a statistically significant difference (P < 0.05) even in the less-than-1% ectopic HRV in

every domain. When interpolation was applied, there were differences according to the

interpolation method used, but statistical significance was secured for an ectopic beat

ratio from 1 to 2% to several tens of a percent. In the effect, linear interpolation, and

spline interpolation were confirmed to have a higher effect on the high-frequency related

HRV variables, and nearest-neighbor interpolation had a higher effect on low-frequency

related variables.

Keywords: ectopic effect, ectopic beat, ectopic interpolation, heart rate variability, interbeat interval

INTRODUCTION

Heart rate variability (HRV) refers to the mathematical analysis of changes in the interbeat interval
(IBI) of the heart, and this technique can be used to back track autonomic nervous system (ANS)
activity (Taskforce, 1996). An ectopic beat has a beat-to-beat interval that deviates from the normal
heartbeat interval including unwanted additional beats or skipped beats. Themajor cause of ectopic
beating is a problem in the cardiac conduction system expressed as premature atrial contractions
or premature ventricular contractions. The ectopic beat can result in a beating interval that is too
short or too long, so the IBI can become too large or too small. Since these ectopic beats are caused
by abnormalities in cardiac conduction rather than as the effects of the autonomic nervous system,
the results for HRV in assessments of ANS can be distorted if the heart beat variability is analyzed
without removing ectopic beats (Taskforce, 1996).

In practice, false QRS detection is the biggest obstacle to an accurate HRV analysis. When
calculating the interval between beats, a false QRS detection appears as an ectopic beat and
causes a main error in the HRV analysis of a normal person without an arrhythmia. A failure
in the QRS detection can have many causes, including the use of electrosurgical instruments,
powerline interference, respiration effects, electromyogram (EMG) artifacts, loose contact of
electrocardiogram (ECG) electrodes and motion artifacts (Friesen et al., 1990).
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Previous studies have developed QRS detection algorithms,
several of which achieve more than 99% accuracy (Kim and Shin,
2016). However, the technology for high-accuracy detection in
an electrocardiogram with motion noise has not yet been clearly
described. In other words, the occurrence of an ectopic beat is
inevitable in actual ECG utilization.

Recently, the use of digital health care has proliferated,
increasing the need for ambulatory ECG measurements. In
addition to clinical uses, studies on ECG use in daily life to
manage health, exercise, stress, and emotional well-being have
been actively conducted (Taelman et al., 2009; Hynynen et al.,
2010; Kaikkonen et al., 2010, 2012; Choi et al., 2012; Valenza
et al., 2014, 2015; Guo et al., 2015; Hernando et al., 2016; Rakshit
et al., 2016; Verkuil et al., 2016; Goessl et al., 2017; Lischke et al.,
2018; May et al., 2018; Van Boxtel et al., 2018). As the use of
ECG increases in ambulatory environments, removing motion
artifacts has become more important to properly detect the QRS
complex. Weak motion artifacts can lead to a slight wandering
baseline in the electrocardiogram, and a QRS complex can
be properly detected through conventional filtering. However,
severe motion artifacts have a very large amplitude and can thus
saturate the electrocardiography amplifier or distort the ECG
waveform significantly, resulting in a loss of QRS information.
Thus, it is obvious that ectopic beats due to a false QRS detection
will increase.

The simplest method to correct unwanted beats is to delete
ectopic beats, but eliminating ectopic beats reduces the total
number of IBIs, which results in errors in the HRV analysis.
Researchers have previously recommended avoiding deletion in
artifact correction for HR variability spectrum analyses (Salo
et al., 2001; Mateo and Laguna, 2003). Salo et al. found that
errors in the HF and LF components of the short-term RR
interval time series were more than 5% when less than 5%
of the RR intervals had been deleted. These effects on the
waveform also make deletion unsuitable for VLF and ULF
component analyses (Salo et al., 2001). Furthermore, researchers
have also reported that deletion editing may produce a false
increase in α1 values in patients with acute myocardial infarction
(Peltola et al., 2004) and in patients with coronary artery disease
(Tarkiainen et al., 2007) in a detrended fluctuation analysis
(DFA). These studies commonly indicate that removing IBIs
is not recommended for a time-domain analysis of HRV and
for a frequency domain analysis of HRV without interpolation.
Therefore, various interpolation algorithms have been adapted
and evaluated to calibrate the ectopic beating interval to prevent
failure in the HRV analysis (Birkett et al., 1991; Lippman et al.,
1994; Salo et al., 2001; Mateo and Laguna, 2003; Clifford and
Tarassenko, 2005; Kim et al., 2007, 2009, 2012; Colak, 2009).

Interpolation replaces abnormal RR intervals with the
interpolated RR interval, and unlike deletion-only, it removes
the ectopic beat while maintaining the total number of IBIs.
Interpolation is recommended for power spectral HRV analyses,
especially when the RR interval time series contains ectopic
beats or artifacts. The representative interpolation methods in
the HRV analysis include zero-order, first order, spline, and non-
linear predictive interpolation (Peltola, 2012). The zero-order
interpolation method, which is referred to as nearest neighbor

interpolation (NNI), replaces the abnormal RR interval with the
previous RR interval. The first order interpolationmethod, which
is referred to as linear interpolation (LI), derives a straight line
connecting the adjacent RR intervals and calculates a new RR
interval from the straight line. Cubic spline interpolation (CSI),
which approximates a smooth curve through cubic polynomials
fitted with multiple data values, is frequently used as spline
interpolation. In addition, comparing–merging (Cheung, 1981),
predictive autocorrelation (Albrecht and Cohen, 1998), non-
linear predictive interpolation (Lippman et al., 1993), excluding
RR interval segments with ectopic duration (Rottman et al., 1990;
Lombardi et al., 1996), integral pulse frequency model (IPFM)
(Mateo and Laguna, 2003; Solem et al., 2006), and non-linear
filtering through wavelet-based trend removal (Thuraisingham,
2006) have also been proposed.

Many preexisting beat correction techniques have improved
the significance of an HRV analysis. However, the quantitative
relationship between the quantity of ectopic beats and the
significance of HRV has not yet been investigated in depth.
Previous studies analyzing the effects of ectopic beats examined
the effects of missing beats in the time domain (Kim et al.,
2007), frequency domain (Kim et al., 2009), and non-linear (Kim
et al., 2012) HRV analyses. In those studies, the quantity of
ectopic beats was defined based on the time duration, including
the artifact, and they investigated how the HRV varied with
the length of time including the noise. Those studies analyzed
the significance of HRV according to the duration of noise
and provided practical guidance. However, their research does
not provide a strict quantitative evaluation because a capacitive
sensor was used instead of a standard electrode to measure the
ECG or the ECG used as reference cannot confirm whether or
not it contains ectopic beats.

In summary, the specific heartbeat has already been confirmed
to cause errors in HRV analyses, but the extent to which an
ectopic beat is acceptable has not been quantitatively determined.
For example, there is no evidence yet to quantitatively address the
following problem: what is the number or ratio of the ectopic beat
that could change the results of the HRV analysis? How many
ectopic beats are allowed to produce a flawless HRV analysis?
Thus, the purpose of our study is to quantitatively analyze how
the quantity of ectopic heartbeats affects the HRV analysis.

This study also includes a quantitative review of the
performance of ectopic beat correction algorithms according to
the number of ectopic beats included in the electrocardiogram.
A quantitative analysis of the effect of applying ectopic beat
correction algorithms according to the number of ectopic beats
could be applied in the development and application of ECG-
based analytic methods that take ectopic beats into account in
the future. Specifically, it is expected to be useful in studying
the significance of heart rate variability measured during HRV
calculations in a mobile environment containing motion noise.

MATERIALS AND METHODS

Data Summary
This study complied with the Chonnam National University
(Gwangju, Republic of Korea) research ethics regulations, and all
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subjects signed informed consent forms before the experiment.
We obtained ECG measurements from 30 volunteers and used
data from 28 subjects, except for data duplicated by operational
mistakes or data distorted due to severe motion artifacts. Finally,
a dataset from 28 subjects (20 males, 8 females, age 22.0 ±

2.9 years, height 170.2 ± 7.3 cm, and weight 70.5 ± 15.4 kg)
was used for the analysis. All data were recorded for 20min
with a 10 kHz sampling frequency in the supine position with
the Lead II configuration. The subjects were asked to be at
rest without sleeping or producing motion noise during the
signal acquisition. No participant reported any cardiovascular
disease. Also, all participants were instructed to avoid caffeine,
alcohol and smoking a day before and during the experiment
since these could affect the autonomic nervous activity. MP150,
ECG100C, and Acknowledge 4.0 (Biopac Systems Inc., Santa
Barbara, CA, USA) were used for 16-bit analog and digital
conversion, ECG amplification and data recording, respectively.
From the recorded ECG, the normal QRS dataset (DBnQRS)
was constructed for each subject. To ensure the integrity of the
QRS locations, each QRS location was checked and qualified by
several experts using an in-houseMatlab GUI tomanually correct
the QRS location after automatic QRS screening based-on Pan-
Tompkins QRS detection algorithm (Pan and Tompkins, 1985).
To remove the pre-existing ectopic beats, IBIs that increased by
more than 32.5% or decreased by less than 24.5% with respect to
the previous interval were removed before artificial ectopic beat
generation (Kamath and Fallen, 1995).

Artificial Ectopic Beat Generation
Artificial ectopic beats were generated with two types of error;
miss detected QRS and false detected QRS. To construct the QRS
dataset with ectopic beats (DBeIBI), we generate miss-detection
by deleting the QRS location or create a false QRS by inserting
additional QRS between two adjacent peaks. The total number of
ectopic beats is determined with a predefined error rate, and the
ratio between the number of miss detected QRS and the number
of false detected QRS is randomly selected. Figure 1 shows a
graphical representation of the beat error generation procedure.
Figure 1A is a miss-detection generation procedure. The dashed
box represents the miss-detected QRS that will be deleted, and
the removed QRS location will be filled with the next adjacent
QRS.

Figure 1B presents an example of the false-detected QRS
(fQRS) generation procedure. In this example, the fQRSk refers
to the k-th false detected QRS that is randomly selected between
theQRSn andQRSn+1. The updatedQRS dataset that includes the
false detected QRS location will be rearranged after the insertion
of the fQRS between the adjacent QRS locations. The procedure
to update the QRS dataset including the beat error is described in
Figure 2.

Ectopic Restoration
To investigate the effect of the interpolation in the HRV analysis
with ectopic beats, we applied the representative interpolation
methods after thresholding based on the standard deviation.
To create the restored IBI database (DBrIBI), we removed the
ectopic IBI from the DBeIBI and then filled the deleted value
with interpolated data. In this procedure, we first remove the

abnormal IBI. According to Kamath’s suggestion, we considered
an abnormal heartbeat when the heartbeat interval increased
by more than 32.5% or decreased by more than 24.5%
compared to the previous heartbeat interval (Kamath and Fallen,
1995). Equation (1) shows the mathematical expression for
the thresholding method to acquire the ectopic-removed IBIs
(IBIER).

IBIER = {IBI | 0.675IBIn−1 < IBIn < 1.245IBIn−1} (1)

During interpolation, we used three types of general interpolation
methods; including NNI, LI, and CSI. NNI is the simplest method
to conduct multivariate interpolation in one or more dimensions.
The nearest neighbor algorithm selects the value of the nearest
point and does not consider the values of the neighboring points
at all, yielding piecewise-constant interpolant. The LI is another
simple method. In general, linear interpolation takes two data
points, say (xa, ya) and (xb, yb), and the interpolant (x, y) is given
by Equation (2).

y =
x − xa

xb − xa
(yb − ya) + ya (2)

The LI is quick and easy, but it is not very precise. Another
disadvantage is that the interpolant is not differentiable at the
point xk. Moreover, the error of the linear interpolation is
proportional to the square of the distance between the data
points. The error in some other methods, including polynomial
interpolation and spline interpolation, is proportional to higher
powers of the distance between the data points, and these
methods also produce smoother interpolants.

The CSI uses three order polynomials in each of the
intervals and chooses the polynomial pieces such that they
fit smoothly together. The resulting function is called a
spline. Like polynomial interpolation, spline interpolation
incurs a smaller error than linear interpolation with smoother
interpolant. However, the interpolant is easier to evaluate than
the high-degree polynomials used in polynomial interpolation,
and spline interpolation requires a higher computational
load.

HRV Metrics
An HRV time domain analysis was performed with the different
indices proposed by Taskforce in 1996 (Taskforce, 1996),
including average NN interval (AVNN), standard deviation of
NN interval (SDNN), standard deviation of successive difference
between adjacent NN intervals (SDSD), root mean square of
successive difference between adjacent NN intervals (RMSSD),
the number of pairs of successive NNs that differ by more than
50ms (NN50), and proportion of NN50 in total NN intervals
(pNN50). The variables for long-term HRV monitoring, such as
the mean of the 5-min standard deviation of the NN interval
(SDNN index) and standard deviation of average NN intervals
(SDANN) were excluded in this study as we focused on short-
term physiological activities.

For the HRV frequency domain analysis, the interbeat
intervals were transformed to an evenly-sampled time series
by resampling at a 4Hz sampling frequency after cubic spline
interpolation with 1 kHz interpolation frequency, and then both
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FIGURE 1 | Graphical representation to update the dataset including the beat errors. (A) Procedure to generate the miss-detected QRS dataset, (B) procedure to

generate the false-detected QRS dataset.

FIGURE 2 | Procedure to update the QRS dataset that includes the beat

errors.

the mean and linear trends were removed. The power spectral
density was estimated by the fast Fourier transform (FFT), non-
parametric spectral analysis method. To assess the HRV in the
frequency domain, we measured and assembled the values of
the very low frequency (VLF, 0.0033 to 0.04Hz), low frequency
(LF, 0.04 to 0.15Hz), high frequency (HF, 0.15 to 0.4Hz),
LF/HF ratio (LF/HF), normalized LF (nLF), and normalized
HF (nHF).

A non-linear analysis is another effective method for HRV
analysis with non-stationary and non-linear characteristics. In
this research, we used a Poincaré plot to evaluate the dynamic

TABLE 1 | HRV metrics used in this study.

Domain HRV metric Unit Description

Time AVNN ms Average normal-to-normal interval

SDNN ms Standard deviation of normal-to-normal

interval

SDSD ms Standard deviation of successive

difference of normal-to-normal interval

RMSSD ms Root mean square of successive

difference of normal-to-normal interval

pNN50 % Percentage of normal-to-normal interval

exceeds 50ms

Frequency TP ms2 Total frequency power

VLF ms2 Very low frequency power of HRV

(≤0.04Hz)

LF ms2 Low frequency power of HRV

(0.04-0.15Hz)

HF ms2 High frequency power of HRV

(0.15-0.4Hz)

LF/HF n.u. Ratio LF/HF

nLF n.u. LF power in normalized units

LF/(Total Power–VLF)

nHF n.u. HF power in normalized units

HF/(Total Power–VLF)

Non-linear SD1 ms Standard deviation of points (QRSn,

QRSn+1) perpendicular to the axis of

line of identity

SD2 ms Standard deviation of points (QRSn,

QRSn+1) along the axis of line of identity

ApEn n.u. Approximate entropy or

normal-to-normal interval

automatic modulation and approximated entropy (ApEn) that
describes the complexity or R-R behavior (Beckers et al., 2001;
Yang, 2006). The Poincaré plot is quantified by measuring SD1
and SD2. SD1 indicates the standard deviation of the Poincaré
plot perpendicular to the line-of-identity, while SD2 represents
the standard deviation of the Poincaré plot along the line-of-
identity. The HRV metrics used in the analysis are described in
Table 1.

Frontiers in Physiology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 922



Choi and Shin Ectopic Beat Effects on HRV

FIGURE 3 | Ectopic-HRV simulation protocol.

FIGURE 4 | Interbeat intervals. (A) Including ectopic beats, (B) After removing ectopic beats, and (C) After interpolation. NNI, Nearest Neighbor Interpolation; LI,

Linear Interpolation; CSI, Cubic Spline Interpolation.
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FIGURE 5 | Result of time-domain HRV analysis according the beat error rate. The number in the figure represents the beat error rate that begins with a significant

difference. The dark solid line, bright solid line, dark dashed line, and bright dashed line indicate non-interpolated, NNI, LI, and CSI, respectively. (A) AVNN, (B) SDNN,

(C) SDSD, (D) RMSSD, (E) pNN50. Markers (N,•, �, H) represent the position of the error rates that start to have a statistically significant difference compared to

the HRV variable derived with ectopic-free IBIs.

Simulation Protocol
Figure 3 shows the ectopic-HRV simulation protocol. There are
three simulations for HRV analysis in the time and frequency
domain: DBnIBI, DBeIBI, and DBrIBI. After that, ectopic IBI was
corrected using a restoration procedure mentioned above. In the
case of the beat error and restoration simulation, the beat error
rate varied from 0 to 50% in 0.1% increments, and the simulation
was repeated N times to obtain a more normalized result. In our
simulation, the number of repetitions, N, is set to 30.

Statistical Analysis
After generating each of the simulation results, we calculated
the percentage of fractional change (%FC) between the results
of the HRV analyses derived from each dataset: DBnIBI, DBeIBI,
and DBrIBI. Then, the statistical significance in the difference
of DBeIBI and DBrIBI was compared to that with DBnIBI. The
%FC is calculated by dividing the HRV variable derived from
DBeIBI or DBrIBI with the HRV variable derived from DBnIBI
using Equation (3).

In the statistical validation, we check the data normality using
the Kolmogorov-Smirnov test, and then performed a paired t-test
when data normality was secured or used the Wilcoxon signed
rank test when data normality was not achieved. All statistical
analyses were conducted using IBM SPSS Statistics software,
Version 23.0 (IBM Corp., Armonk, NY, USA).

%FC =
Variable Error or interpolated

Variable normal
× 100 (3)

RESULTS

Ectopic Beat Generation and Interpolation
Figure 4 shows an example of the RR intervals including ectopic
events (Figure 4A), excluding ectopic by deleting (Figure 4B),
and after interpolation (Figure 4C). This result shows a
noticeable change in IBIs with an ectopic beat. In particular, we
regard the rapid increase in the RR interval as a missing beat and
a drastic decrease in the RR interval as a false detection beat. In
Figure 4B, when the ectopic beat has been removed, the number
of total beats decreases. Figure 4 also shows an example of IBI
changes according to deletion or interpolations. IBI including
ectopic (IBIectopic) was 982.8 ± 283.0ms, IBIdelete, which simply
removed ectopic, was 1013.8 ± 52.5ms and IBI was 1010.1 ±

53.3ms, 1012.0 ± 53.2ms, and 1013.5 ± 63.5ms after nearest
neighbor (IBINNI), linear (IBILI), and cubic spline interpolation
(IBICSI), respectively.

Fractional Changes and Statistical
Significance
Figures 5–7 represents the fractional changes in the HRV
variables depending on the beat error rate in the time-domain
analysis, frequency-domain analysis, and non-linear analysis.
The numbers in the figure represent the error rates that start to
have a statistically significant difference compared to the HRV
variable derived with ectopic-free IBIs. Prior to the statistical
validation, data normality was tested using the Kolmogorov-
Smirnov test, then the statistical differences were assessed using

Frontiers in Physiology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 922

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Choi and Shin Ectopic Beat Effects on HRV

FIGURE 6 | Result of frequency-domain HRV analysis according the beat error rate. The number in the figure represents the beat error rate that begins with a

significant difference. The dark solid line, bright solid line, dark dashed line, bright dashed line indicate non-interpolated, NNI, LI, and CSI, respectively. (A) TP, (B) VLF,

(C) LF, (D) HF, (E) LF/HF, (F) nLF, (G) nHF. Markers (N,•, �, H) represent the position of the error rates that start to have a statistically significant difference

compared to the HRV variable derived with ectopic-free IBIs.

FIGURE 7 | Result of non-linear HRV analysis according to the beat error rate. The number in the figure represents the beat error rate that begins a significant

difference. The dark solid line, bright solid line, dark dashed line, bright dashed line indicate non-interpolated, NNI, LI, and CSI, respectively. (A) SD1, (B) SD2, (C) ApEn

(N,•,�, H) represent the position of error rates that start to have a statistically significant difference compared to the HRV variable derived with ectopic-free IBIs.
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TABLE 2 | Correlation coefficient of HRV metrics by the interpolation method.

Domain HRV metric Non-interpolated Interpolation method

NNI LI CSI

Time AVNN 0.920 (41.6%) – – –

SDNN 0.994 (0.2%) 0.997 (2.0%) 0.993 (3.0%) 0.993 (2.4%)

SDSD 0.986 (0.1%) 0.998 (2.2%) 0.983 (3.6%) 0.994 (3.3%)

RMSSD 0.986 (0.1%) 0.998 (2.2%) 0.983 (3.6%) 0.994 (3.3%)

pNN50 0.999 (4.9%) – 0.986 (31.8%) 0.992 (22.1%)

Frequency TP 0.992 (0.2%) 0.993 (2.4%) 0.981 (3.0%) 0.991 (2.4%)

VLF 0.971 (0.7%) 0.948 (4.9%) 0.988 (4.5%) 0.974 (4.0%)

LF 0.985 (0.2%) 0.978 (2.0%) 0.968 (2.3%) 0.985 (1.9%)

HF 0.995 (0.1%) 0.998 (1.8%) 0.993 (3.0%) 0.997 (2.2%)

LF/HF 0.837 (0.3%) 0.234 (14.3%) 0.652 (6.3%) 0.604 (6.3%)

nLF – 0.786 (8.3%) 0.905 (5.1%) 0.898 (5.1%)

nHF 0.887 (0.2%) 0.995 (0.1%) 0.991 (0.1%) 0.993 (0.1%)

Non-linear SD1 0.932 (0.1%) 0.998 (1.1%) 0.986 (1.9%) 0.995 (1.7%)

SD2 0.994 (0.3%) 0.997 (2.4%) 0.981 (3.0%) 0.995 (2.4%)

ApEn 0.889 (0.2%) 0.872 (2.5%) 0.838 (3.3%) 0.847 (3.0%)

NNI, Nearest Neighbor Interpolation; LI, Linear Interpolation; CSI, Cubic Spline Interpolation.

a Wilcoxon rank-sum test or a paired t-test according to data
normality. For example, in Figure 5A, 41.6 means that AVNN
will have a statistical difference from the ectopic-free HRV at a
41.6% beat error rate when no interpolation is performed (black
solid line). In the time domain analysis, AVNN preserves its
statistical significance even at 50% beat error when interpolated.
However, when the interpolation was not performed, there was a
statistically significant difference from the beat error of 41.6%. In
the case of SDNN, 0.2% of beat error was found to be statistically
significant when interpolation was not performed, and 2.0, 3.0,
and 2.4% of beat error were allowed for NNI, LI, and CSI,
respectively. SDSD, and RMSSD showed the same characteristics.
Significant statistical differences were found at 0.1% of the beat
error when interpolation was not performed in both variables.
After interpolation, error tolerance extended to 2.2, 3.6, and 3.3%
according to NNI, LI, and CSI, respectively. The pNN50 was
relatively robust against beat errors. pNN50 showed no statistical
difference up to 4.9% of the beat error without interpolation,
22.1% of beat error with spline interpolation, and 31.8% of beat
error with first order interpolation. Even with NNI, there was no
statistical difference in 50% of beat error.

The results of the frequency domain analysis of HRV are
shown in Figure 6. Most results of the frequency analysis showed
a similar pattern. In the case with no interpolation, a statistical
difference was observed at a very low beat error rate, and the error
tolerance increased with interpolation. The beat error rate, which
starts to show a significant difference when not interpolating, is
0.2, 0.7, 0.2, 0.1, 0.3, and 0.2% in TP, VLF, LF, HF, LF/HF, and
nHF, respectively. The maximum beat error rate according to the
interpolation method was different for each HRV variable. For
the TP, the beat error rate was 2.4, 3.0, and 2.4% for the NNI,
LI, and CSI, respectively, for statistically significant results. The
allowable beat error rate was expanded to 4.9, 4.5, 4.0% for VLF,

2.0, 2.3, 1.9% for LF 1.8, 3.0, 2.2% for HF, 14.2, 6.3, and 6.3% for
LF/HF, 8.3, 5.1, and 5.1% for nLF and 0.1, 0.1, and 0.1% for nHF,
respectively, when the NNI, LI and CSI were applied. Strangely,
nLF did not show any significant difference from the original
result in 50% beat error without interpolation, but it showed a
significant difference from the original signal when interpolation
was performed.

The non-linear analysis showed a similar tendency according
to the interpolation method. SD1, SD2, and ApEn were
significantly different at 0.1, 0.3, and 0.2% beat error rates,
respectively, when interpolation was not performed. The range
of the beat error rate which did not show a significant difference
was expanded to 1.1, 1.9, and 1.7% for SD1, 3.0, 2.4, and 2.4% for
SD2, and 2.5, 3.3, and 3.0% for ApEn, when applying the NNI, LI,
and the CSI, respectively. Figure 7 shows the fractional change
and the beginning of the significant difference of the HRV with
non-linear analysis according to the beat error rate.

Correlation Analysis
The correlation coefficient analysis shows a decrease in the
correlation coefficient as the beat error rate increases. Table 2
shows the correlation coefficient at a beat error rate when a
significant difference is observed compared to ectopic-free HRV
based on statistical validation (In parentheses, the beat error rate
at which the significant difference begins). In most results of the
correlation coefficient analysis, a strong correlation (>0.9) was
observed. Especially, in the time domain, every variable showed a
high correlation. In the frequency domain, normalized variables
such as LF/HF, nLF, and nHF showed slightly lower correlation.
In the case of LF/HF, the beat error rate with statistical error
was relatively high, but the correlation was noticeably low. In
the case of nLF and nHF, LI, and CSI also showed significant
results with high beat error rate, but a low correlation was
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observed. In the non-linear analysis, the results showed a high
correlation in all variables and relatively low correlation in ApEn.
The interesting fact is that the beat error rate, which starts to
show a significant difference when not interpolating and when
interpolating, shows a large difference, but there is no large
difference in the correlation. In some cases, the correlation is
higher when the interpolation is not performed. This means
that the correlations do not guarantee statistical significance in
the HRV analysis including the ectopic beat, suggesting that the
number of subjects is insufficient.

DISCUSSION

Suggestion for Non-ectopic HRV
Our result suggests that the results of the HRV analysis could be
distorted by just a few ectopic beats. Most of the HRV variables
showed a significant difference despite just 0.x% of ectopic beats
being included. Interpolation could be a good complement.
Although there are differences depending on the variables,
interpolation expanded the significance range by as little as
1–2% and as large as 10%. In terms of securing significance,
interpolation may be a good method, but there is still a problem
of estimating the value as too large or too small. In most variables,
such as SDNN, SDSD, RMSSD, pNN50, TP, VLF, LF, HF, nLF,
SD1, and SD2, the values were overestimated after interpolation.
On the other hand, underestimation was observed in ApEn,
and AVNN, while LF/HF and nHF showed an unspecified
variation.

Comparison of Interpolation Methods

In most cases, the use of interpolation reduced the error caused
by ectopic beats, and the reduction in error varies according to
the particular method that is used. Among the three interpolation
methods used in this study, the zero-order and first-order
interpolation showed similar trends, but spline interpolation
showed a slight difference. The interpolation method exhibited
a difference in mitigating the ectopic error. Overall, LI showed
the best performance. In the interpolation method, LI and CSI
showed a better performance in the time-domain and high-
frequency-related variables, whereas NNI showed better results
in the interpolation of low-frequency components such as VLF,
LF, LF/HF, and nLF. Linear interpolation and spline interpolation
can be assumed to interpolate an increasing or decreasing trend
as it is, and the power can be estimated. The interpretation

of the above results is consistent with the results presented by
Salo et al. (2001).

CONCLUSION

This studymade quantitative observations of the changes in HRV
results for errors in beat detection. This study quantifies the
ectopic beat rate and observes the results of the HRV analysis,
unlike in previous studies that compared the HRV result with the
length of the bit detection error interval or comparing before /
after ectopic elimination.

The findings of this study are somewhat surprising. Although
the ratio of ectopic beats in most HRV variables was very
low at 0.x%, a statistical difference was shown. In the case in
which interpolation is applied, a statistically significant difference
occurred when the ectopic beat rate exceeded several percent.
This result suggests that the ectopic beat should be removed in
the HRV analysis and also provides a perspective of the accuracy
requirements of electrocardiogram QRS detection algorithms for
HRV analysis. The results show that even if interpolation is
considered, a QRS detection accuracy of about 97% or more is
required to obtain a statistically significant HRV result. However,
this study has limitations in that the experimental conditions are
limited to the resting condition for healthy adult participants.
Since the HRV may be affected by age, health status, and exercise
status, expansion to a more diverse and larger population of
subjects is required to establish a more general outcome.
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