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Plant nitrogen concentration (PNC) is a critical indicator of N status for crops, and can be

used for N nutrition diagnosis and management. This work aims to explore the potential

of multispectral imagery from unmanned aerial vehicle (UAV) for PNC estimation and

improve the estimation accuracy with hyperspectral data collected in the field with a

hyperspectral radiometer. In this study we combined selected vegetation indices (VIs)

and texture information to estimate PNC in rice. The VIs were calculated from ground and

aerial platforms and the texture information was obtained from UAV-based multispectral

imagery. Two consecutive years (2015 & 2016) of experiments were conducted, involving

different N rates, planting densities and rice cultivars. Both UAV flights and ground

spectral measurements were taken along with destructive samplings at critical growth

stages of rice (Oryza sativa L.). After UAV imagery preprocessing, both VIs and texture

measurements were calculated. Then the optimal normalized difference texture index

(NDTI) from UAV imagery was determined for separated stage groups and the entire

season. Results demonstrated that aerial VIs performed well only for pre-heading stages

(R2
= 0.52–0.70), and photochemical reflectance index and blue N index from ground

(PRIg and BNIg) performed consistently well across all growth stages (R2
= 0.48–0.65

and 0.39–0.68). Most texture measurements were weakly related to PNC, but the optimal

NDTIs could explain 61 and 51% variability of PNC for separated stage groups and

entire season, respectively. Moreover, stepwise multiple linear regression (SMLR) models

combining aerial VIs and NDTIs did not significantly improve the accuracy of PNC

estimation, while models composed of BNIg and optimal NDTIs exhibited significant

improvement for PNC estimation across all growth stages. Therefore, the integration of

ground-based narrow band spectral indices with UAV-based textural information might

be a promising technique in crop growth monitoring.
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INTRODUCTION

Nitrogen (N) is one of the most important elements for crop
growth. In order to ensure high yield, excess N fertilizer
was put into the field, which results in severe N leaching
and environmental pollution (Ju et al., 2006; Li et al., 2007).
Therefore, precision N management is urgent and essential,
which might bring significant economic and environmental
benefits. Precision N status monitoring is prerequisite
for determining optimal N rate. Traditional method for
monitoring crop N status was through destructive sampling and
chemical analysis, which was tedious and time-consuming. As
a nondestructive method, remote sensing techniques have been
applied to monitor N status in the past several decades (Filella
et al., 1995; Tarpley et al., 2000; Hansen and Schjoerring, 2003;
Zhu et al., 2007; Stroppiana et al., 2009; Inoue et al., 2012; Yao
et al., 2015; Sun et al., 2017).

Crop N concentration estimation with remote sensing was

studied widely (Table 1), and the majority of studies used

ground-based hyperspectral reflectance. Vegetation indices (VIs)
were commonly used to estimate crop leaf/plant N concentration

(LNC/PNC), and new VIs were proposed to improve estimation
accuracy (Stroppiana et al., 2009; Tian et al., 2011; Wang
et al., 2012). One of the early studies found the red edge and
near-infrared ratio performed best in cotton LNC estimation
among all the combinations with 20 spectral bands (Tarpley
et al., 2000). Matrix plots were commonly used to find the best
performing normalized difference vegetation index (NDVI) or
ratio vegetation index (RVI) among thousands of wavelength
combinations. For example, Zhu et al. (2007) found that the
combination of 1,220 and 610 nm as either simple ratio (SR)
or a normalized difference index (NDI) performed best in
LNC estimation of rice and wheat crops. Tian et al. (2013)
reported that SR (R553, R537) was the optimal combination
for rice LNC estimation. Stroppiana et al. (2009) proposed
an optimal normalized difference index [NDIopt = (R553-
R483)/(R553+R483)], which was strongly correlated with rice
PNC (R2 = 0.65), but least correlated with leaf area index
(LAI) and aboveground biomass. For PNC estimation in
winter wheat, the optimal NDVI or RVI was composed of
reflectance in 400 and 370 nm (Li et al., 2010b). Furthermore,
Tian et al. (2011) proposed two new three-band spectral
indices [R434/(R496+R401) and R705/(R717+ R491)] to estimate
rice LNC with hyperspectral reflectance data, and these two
indices significantly outperformed other existing VIs in LNC
estimation. Similarly, (R924-R703+2×R423)/(R924+R703-2×R423)
was proposed with hyperspectral data and proved to be
significantly related to LNC of both rice and wheat crops (Wang
et al., 2012).

From the aforementioned studies, the majority focused on
crops LNC and a limited number of studies were on plant
N concentration (PNC), which has been taken as an effective
indicator of crop N status. When actual PNC is compared to
the critical N concentration at the corresponding biomass level,
the N nutrition index (NNI) could be obtained for determining
crop N nutrition status and guiding N applications for a target
yield (Lemaire et al., 2008; Zhao et al., 2016; Ata-Ul-Karim et al.,

2017). Therefore, precise PNC estimation is critical and useful for
in-season site-specific N management.

Ground-based spectral data has been used to estimate
crop PNC, but the estimation accuracy is not so satisfactory
(Stroppiana et al., 2009; Li et al., 2010b), especially with a
multispectral sensor (Li et al., 2010a; Cao et al., 2013). Because
canopy reflectance is dominated by leaves and hardly receive
the signal of stem and panicle (after heading stage), and PNC is
consisted of leaf, stem and panicle concentration, thus canopy
reflectance is hard to explain the variation of PNC. Moreover,
ground-based platform is often limited by low spatial coverage
and unfavorable weather conditions.

Recently, unmanned aerial vehicles (UAVs) offer particular
advantages over other remote sensing platforms with a high
spatial resolution, a spectral resolution adapted for a specific
purpose (here PNC estimation) and an appropriate revisit time.
UAVs have been applied in many aspects related to crop growth
monitoring, as summarized in Yang et al. (2017), but few studies
about rice N status monitoring could be found. Because canopy
structural variable (e.g., LAI and biomass)might greatly influence
the interaction between leaves and radiation, which covered
the signal of N status, thus making difficult to estimate N
concentration (Stroppiana et al., 2009). Furthermore, previous
studies have reported that the ultraviolet, violet and blue regions
were shown to be consistently important for PNC estimation
(Stroppiana et al., 2009; Li et al., 2010b). However, bands from
these regions are generally missing from the current UAV-based
sensors. Hunt et al. (2005) found crop N nutrition status could
not be detectable with UAV RGB imagery. Lebourgeois et al.
(2012) used two sensors (RGB and NIR-G-B cameras) mounted
on a UAV to detect N status in sugarcane and found the best
correlation of LNC with a broadband version of the simple ratio
pigment index (SRPIb) (R

2
= 0.7) among all indices examined.

Furthermore, Schirrmann et al. (2016) found the ratio of the
red and green channels from UAV RGB imagery correlated well
(R2 = 0.68) with PNC in winter wheat for only the heading
stage. Liu et al. (2017) used UAV imagery to estimate LNC in
wheat winter successfully with the cost of hyperspectral camera.
Whether rice PNC could be estimated with UAV multispectral
imagery at multiple stages remains to be addressed.

Texture is an important characteristic used to identify objects
or regions of interest in any images (Haralick et al., 1973), and
it has been commonly used for image classification (Laliberte
and Rango, 2009; Murray et al., 2010). Since the beginning of
twenty-first century, texture from satellite imagery has been used
to estimate aboveground biomass but only for the forest (Lu and
Batistella, 2005; Sarker and Nichol, 2011; Kelsey and Neff, 2014).
UAV imagery takes the advantage of ultra-high spatial resolution,
which indicates that texture is also an important source of
information (Podest and Saatchi, 2002; Dell’Acqua and Gamba,
2003). However, texture in the UAV imagery was rarely used for
crop growthmonitoring. In addition, whether combining ground
hyperspectral data could compensate for the limited bands of
UAV sensors and improve the estimation accuracy of PNC is
worthy to be explored. Therefore, the objectives of this study were
(i) to explore the capability of UAV-based multispectral imagery
in rice PNC estimation with spectral and textural information,
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TABLE 1 | Summary of studies on nitrogen concentration estimation in crops.

References Species Spectral range Related to Best method Best accuracy (R2)

Tarpley et al., 2000 Cotton 350–1,050 nm LNC Red-edge and near-infrared ratio >0.65

Hansen and Schjoerring, 2003 Winter wheat 438–883 nm LNC 6 principle components 0.71

Stroppiana et al., 2009 Rice 350–2,500 nm PNC NDIopt: (R503-R483)/(R503+R483) 0.65

Li et al., 2010b Winter wheat 350–1,075 nm PNC NDI: (R410-R365)/(R410+R365) 0.57

Tian et al., 2011 Rice 350–2,500 nm LNC Three-band spectral index: R434/(R496+R401 ) 0.83

Lebourgeois et al., 2012* Sugarcane NIR, R, G, B LNC SRPIb 0.70

Cao et al., 2013 Rice NIR, RE, G PNC REGDVI: red edge green difference vegetation index 0.33

Feng et al., 2014 Winter wheat 350–2,500 nm LNC (R755+R680-2×RREPig)/(R755-R680) 0.85

Yao et al., 2015 Winter wheat 350–2,500 nm LNC SVM with first derivative canopy spectra 0.78

Schirrmann et al., 2016* Winter wheat R, G, B PNC Ratio of the red and green channel 0.68

Liu et al., 2017* Winter wheat 450–950 nm LNC Back Propagation (BP) neural network methods 0.97

Van Der Meij et al., 2017* Oat 400–950 nm PNC Simple difference (780 nm – 765 nm) 0.68

The references are indexed by the year of publication and summarized with the species examined, the spectral range of the reflectance data, the expression of nitrogen concentration,

the analytical method, and the best result within each study. The UAV studies were marked with *.

NIR, RE, R, G, and B represent near infrared, red edge, red, green and blue bands, respectively.

and (ii) to improve PNC estimation accuracy through combining
ground hyperspectral data and UAV imagery.

MATERIALS AND METHODS

Experimental Designs
Two consecutive years’ experiments were conducted in the
experimental station of National Engineering and Technology
Center for Information Agriculture (NETCIA) located in Rugao,
Jiangsu province, China (120◦45′ E,32◦16′ N). The predominant
soil type was loam and the organic carbon concentration in the
soil was 12.95 g kg−1. The annual average temperature, number
of precipitation days, and precipitation were about 14.6◦C, 121.3,
and 1055.5mm, respectively. In 2015, two rice (Oryza sativa L.)
cultivars were planted with four levels of nitrogen fertilizer (0
(N0), 100 (N1), 200 (N2) and 300 (N3) kg N ha−1 as urea). The
treatments with minimum and maximum N rates (N0 and N3)
were planted with one density (22 plants m−2) and the treatments
with intermediate N rates (N1 and N2) were planted with two
densities (13 and 22 plants m−2). The experiment was organized
in 36 plots (5× 6m for each plot) with a completely randomized
block design (Figure 1).

In 2016, the experiment was similar to the former with same
rice varieties. Two rice cultivars were planted with two densities
(13 and 22 plants m−2) and three levels of nitrogen fertilizer
(0 (N0), 150 (N1) and 300 (N2) kg N ha−1 as urea). In these
two experiments, other field management practices during the
experiment followed the local production standards.

Data Collection
Ground Sampling and N Concentration Determination
Ground destructive samplings were taken along with the UAV
campaigns at rice critical growth stages (Table 2). Three hills
of rice plants were randomly selected from the sampling region
of each plot and separated into different organs (leaf, stem and
panicle). All the samples were oven-dried for 30min at 105◦C
and later at 80◦C to a constant weight, then weighed, ground and

stored in plastic bags for chemical analysis. The total N content in
different organs was determined with the micro-Keldjahl method
(Bremner and Mulvaney, 1982). The plant N concentration was
calculated as:

PNC = (Lw×LN + SW×SN + PW×SN)/(LW + SW + PW) (1)

Where LW, SW and PW are the dry weights of leaf, stem
and panicle samples, respectively. LN, SN and SN are the N
concentrations of leaf, stem and panicle samples, respectively.

UAV Image Acquisition
The UAV used in this study was a multi-rotor Mikrokopter
OktoXL (Zhou et al., 2017). It was equipped with a six-
band multispectral (MS) camera, a 1.3 Megapixel (1,280 ×

1,024) Tetracam mini-MCA6 (Tetracam, Chatsworth, CA, USA)
camera with center wavelengths of 490, 550, 680, 720, 800, and
900 nm. The angular field of view is 38.26◦ × 30.97◦, resulting
in an individual image footprint of 69 × 55m, and a nominal
resolution of 0.054m ground sampling distance at 100m above
ground level.

Images were captured at one frame per 3 s and saved as a
10 bit RAW format. Camera settings were adjusted to lighting
conditions and set to a fixed exposure for each flight. After the
flight, only one image (covering all the 36 plots) was selected
for post analysis due to the small study area. All the flights were
executed in stable ambient light conditions between 11:00 a.m.
and 1:30 p.m.

Field Spectral Measurements
Rice canopy spectral reflectance was collected with an ASD
FieldSpec Pro spectrometer (Analytical Spectral Devices,
Boulder, CO, USA) with a 25◦ field of view. The spectral range
was 350–2,500 nm, with a 1.4 nm sampling interval between 350
and 1050 nm and a 2 nm sampling interval between 1,000 and
2,500 nm. All the spectral measurements were taken at a height
of 1.0m above the rice canopy from 11:00 a.m. to 1:00 p.m.
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FIGURE 1 | Experimental design: rice experiment at the experimental station of National Engineering and Technology Center for Information Agriculture in 2015;

GCPs, ground control points used for band registration and GPS georeferencing.

TABLE 2 | Synthesis of experimental design and data acquisition calendar.

Year Cultivar N rate (kg ha−1) UAV flight Spectral measurement Sampling Growth stage

2015 Wuxiangjing 24

(V1)

Yliangyou 1 (V2)

0 (N0), 100 (N1),

200 (N2), 300 (N3)

5 August 28 July 31 July Jointing

14 August 14 August 15 August Booting

9 September 9 September 10 September Filling

2016 Wuxiangjing 24

(V1)

Yliangyou 1 (V2)

0 (N0), 150 (N1),

300 (N2)

6 August 6 August 6 August Jointing

14 August 16 August 14 August Booting

28 August 28 August 28 August Heading

8 September 9 September 8 September Filling

local time. Three observation points were fixed in each plot and
each point was measured five times with the ASD spectrometer.
The average of those measurements represented the reflectance
spectrum of each plot. Calibration measurements were taken
with a white reference panel every 10min.

UAV Imagery Processing
UAV images were processed in IDL/ENVI environment (Exelis
Visual Information Solutions, Boulder, Colorado, USA) and the
image preprocessing workflows followed Zhou et al. (2017).
Later, band registration was taken with the 25 ground control
points (GCPs) to obtain an image with six spectral bands.
Radiation correction was conducted with an empirical line
correction method (Smith and Milton, 1999; Zhou et al.,
2017) by using the six flat calibration canvas at different
reflectance intensities (Figure 1). The reflectance of each plot
was represented by the average of reflectance values over the
non-sampling area of the plot.

Calculation of Vegetation Indices
In this study, canopy spectral reflectance acquired from aerial and
ground platforms was used to calculate a number of vegetation
indices (Table 3), which were reported to be well correlated with
N or chlorophyll concentration. Because multispectral images
had only six spectral bands, only NDVI, CIG, CIRE, OSAVI and
VIopt were calculated with UAV imagery.

Texture Analysis
Gray level co-occurrence matrix (GLCM) was the most
commonly used texture algorithm (Haralick et al., 1973), and
employed to test the potential of texture analysis of UAV
images on PNC estimation. After the radiation correction was
conducted, eight GLCM-based texture measurements [e.g., mean
(MEA), variance (VAR), homogeneity (HOM), contrast (CON),
dissimilarity (DIS), entropy (ENT), second moment (SEM) and
correlation (COR)] were computed with a window size (3 × 3
pixels) in the direction of 45◦ using the ENVI software. Texture
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TABLE 3 | Vegetation indices used in this study.

Vegetation index Equation References Platform

Normalized difference vegetation index NDVI = (R800 − R680 )/(R800 + R680) Rouse et al., 1974 UAV, Ground

Green chlorophyll index CIG = (R800/R550 )− 1 Gitelson et al., 2005 UAV, Ground

Red edge chlorophyll index CIRE = (R800/R720)− 1 Gitelson et al., 2005 UAV, Ground

Optimized soil adjusted vegetation index OSAVI = (1+ 0.16)(R800 − R670)/(R800 + R670 + 0.16) Rondeaux et al., 1996 UAV, Ground

Optimal vegetation index VIopt = (1+ 0.45)[(R800)
2
+ 1]/(R670 + 0.45) Reyniers et al.,, 2006 UAV, Ground

Optimal normalized difference index NDIopt = (R503 − R483)/(R503 + R483) Stroppiana et al., 2009 Ground

MERIS terrestrial chlorophyll index MTCI = (R750 − R710)/(R710 + R680) Dash and Curran, 2004 Ground

Photochemical reflectance index PRI = (R570 − R531)/(R570 + R531) Peñuelas et al., 1994 Ground

Blue nitrogen index BNI = R434/(R496 + R401 ) Tian et al., 2011 Ground

The bands written correspond to the exact band used in this study. VI from aerial and ground-based platform were distinguished as VIa and VIg, respectively.

analysis was taken on five bands without 900 nm due to the close
correlation between the reflectance of two near infrared bands
(data not shown).

Since compared with spectral reflectance data, VIs were
shown to reduce the influence of canopy geometry, soil
background, illumination angles and atmospheric conditions
when estimating biophysical properties (Tucker, 1979; Huete
et al., 1985). Therefore, we assumed that texture index with ratio
or normalization of texture measurements might have the same
function. Then a normalized difference texture index (NDTI =
(T1-T2)/(T1+T2) was proposed, where T1 and T2 was random
texture measurement from the five bands). In order to select an
appropriate texture combination, the correlation between PNC
and NDTI was tested by using all possible combinations of
texture.

Statistical Analysis
The data collected from the two-year experiment were pooled
to examine the relationships of PNC with VIs, NDTIs and the
combinations with simple linear regression (SLR) and stepwise
multiple linear regression (SMLR). In order to simplify the
estimation model, the number of variables in multiple linear
regression (MLR) models was set no more than two. The
statistical analysis was executed in Graph-Pad Prism (GraphPad
Software Inc., San Diego, CA, USA, 1996) and SPSS 20.0 software
(SPSS INC., Chicago, IL, USA, 2002).

The establishedmodels were validated with all the data using a
k-fold (k = 10) cross-validation procedure, and evaluated by the
differences in the root mean square error (RMSE) and the relative
RMSE (RRMSE). The RMSE and RRMSE were calculated using
Equations (2, 3), respectively:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Pi − Oi)
2 (2)

RRMSE (%) =
100

Oi

√

√

√

√

1

n

n
∑

i=1

(Pi − Oi)
2 (3)

TABLE 4 | Simple linear relationship between PNC and vegetation indices (R2).

VI Pre-heading Post-heading Entire season

NDVIa 0.52*** 0.02ns 0.02ns

CIG−a 0.70*** 0.04* 0.02ns

CIRE−a 0.70*** 0.28*** 0.14***

OSAVIa 0.56*** 0.28*** 0.05**

VIopt−a 0.64*** 0.28*** 0.05**

NDVIg 0.43*** 0.35*** 0.10***

CIG−g 0.61*** 0.27*** 0.20***

CIRE−g 0.63*** 0.40*** 0.26***

OSAVIg 0.48*** 0.47*** 0.14***

VIopt−g 0.54*** 0.46*** 0.17***

NDIopt−g 0.01ns 0.00ns 0.28***

MTCIg 0.63*** 0.35*** 0.32***

PRIg 0.51*** 0.48*** 0.65***

BNIg 0.64*** 0.39*** 0.68***

VIa and VIg denote VI from aerial and ground-based platform, respectively. The numbers

in bold denotes the maximum in each column. Significance level: ns, not significant, *p

< 0.05, **p < 0.01, ***p < 0.001. NDVI, Normalized difference vegetation index; CIG,

Green chlorophyll index; CIRE , Red edge chlorophyll index; OSAVI, Optimized soil adjusted

vegetation index; VIopt, Optimal vegetation index; NDIopt, Optimal normalized difference

index; MTCI, MERIS terrestrial chlorophyll index; PRI, Photochemical reflectance index;

BNI, Blue nitrogen index.

Where Oi, Pi and Oi were the observed, predicted and mean
values of rice PNC, respectively, and n was the number of
samples.

RESULTS

Performance of Spectral Vegetation
Indices
Table 4 shows the simple linear relationships between PNC
and VIs from two platforms. For aerial VIs, NDVIa, and
OSAVIa exhibited moderate performance and CIG−a and CIRE−a

performed equally well and best amongst all VIs for pre-heading
stages. For post-heading stages and the entire season, all aerial
VIs were weakly related to PNC with the highest R2 of 0.28 and
0.14, respectively.
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For ground VIs, the majority of VIs only performed well for
pre-heading stages. OSAVIg and VIopt−g showed no significant
difference in PNC estimation before or after heading stage, while
PRIg and BNIg exhibited equal performance cross all growth
stages. Compared with VIs from ground-based platform, aerial
VIs performed better for pre-heading stages and worse for post-
heading stages and entire season (Figure 2).

Performance of Texture Features and
Texture Indices
The relationships between PNC and texture measurements of
all spectral bands were found to be poor across all growth
stages, though stronger correlation was observed with MEA800

(R2 = 0.51), MEA800 (R2 = 0.41) and HOM720 (R2 = 0.42) for
pre-heading, post-heading stages and entire season, respectively
(Supplementary Table 1). Compared with individual texture
measurements, NDTIs performed significantly better in PNC
estimation across all growth stages (Table 5). NDTI1, composed
by MEA800 and MEA720, performed best in PNC estimation
for the pre-heading stages. For post-heading stages, the top
eight best-performing NDTIs were mainly composed by texture
measurements from red edge and near infrared bands. The
top one was NDTI9 with MEA800 and DIS720, explaining 61%
variability of PNC for the post-heading stages. Similar to the
result for post-heading stages, NDTIs showing close relationship
with PNC for entire season were all composed of texture
measurements in 720 and 800 nm. NDTI17 could explain 50%
variability of PNC, which was superior to other NDTIs.

Performance of VI and NDTI Combinations
Table 6 shows the best performance of SMLR models combining
VIs and NDTIs. Combining NDTIs and aerial VIs, SMLRmodels
did not show significant improvement in comparison to the
optimal VI or NDTI with SLR models across all growth stages.
The optimal model for pre-heading stages was still composed of
CIRE−g with SLR, while the MLR models for post-heading and
entire season were all consisted of the top two best-performing
NDTIs.

However, when combining NDTIs and groud-based VIs, the
performance of MLR models improved significantly across all
growth stages. Interestingly, all the models were consisted of
optimal NDTI and BNI, explaining 72, 73, and 75% variability
of PNC for pre-headings stages, post-heading stages and entire
season, respectively. Therefore, the combination of ground-based
VIs and NDTIs with MLR models could be taken as an efficient
approach in PNC estimation.

Model Validation
All the regression models were cross-validated with all data
and the best performing VI from both platforms, texture
index and MLR models were shown in Figures 3–5 for
different stage groups. For pre-heading stages, all the selected
models had close performance and MLR models showed
minor advantages (Figure 3). The highest estimation accuracy
(RMSE = 0.16 and RRMSE = 10.92%) was obtained by
model-4, composed of NDTI1 and BNIg. For post-heading
stages, NDTIs exhibited higher estimation accuracy than

that of VIs (Figure 4B). Significant improvements were
achieved by MLR models, and model-2 produced lowest
RMSE and RRMSE (Figure 4E) following with model-
5 consisted of NDTI9 and BNIg (Figure 4F). For entire
season, PRIg and BNIg performed equally well and were
superior to other VIs and NDTIs (Figures 5C,D). However,
compared with these two VIs, Model-6 combining BNIg
and NDTI17 yielded higher estimation accuracy with
RMSE and RRMSE of 0.17 and 13.49%, respectively
(Figure 5F).

DISCUSSION

Different Performance of VIs From Two
Platforms
In this study, counterpart VIs from UAV imagery performed
better than that from ground, but only for pre-heading stages
(Figure 2). That might be caused by the variation in reflectance
extracted from different sampling sizes. For UAV MS imagery,
reflectance was extracted from the non-sampling area (around
12 m2) within each plot. While the field view of the ASD
spectrometer placed at 1m above the canopy was a circle in
a diameter of approximately 0.22m (around 0.15 m2). For
post-heading stages, the canopy was more homogenous and
the ground-based VIs outperformed the aerial VIs in PNC
estimation.

The best-performing VI was CIRE−a before heading stage,
which was expected and in agreement with the findings of Li
et al. (2010b). At the early growth stages, biophysical parameters
(e.g. biomass, LAI) varied greatly and masked the contribution of
chlorophyll and N to the canopy reflectance (Haboudane et al.,
2002), thus VIs consisted of red edge and NIR bands performed
better than other indices (Table 4). However, aerial VIs had weak
capability in PNC estimation for post-heading and the entire
season, because those VIs, which are sensitive to the canopy
structure, became saturated in high biomass level and hard to
monitor N status. Furthermore, ground-based VIs performing
consistently well in PNC estimation across all growth stages were
composed of blue and green bands (Stroppiana et al., 2009; Yu
et al., 2013). UAV-based multispectral cameras were equipped
with limited bands with broad bandwidth, thus they can not
obtain those N concentration specific VIs. Hunt et al. (2005) also
found that UAV RGB imagery could not be used to detect crop
nutrient status due to the improper bands.

Ground hyperspectral data takes the great advantage of
abundant spectral bands and narrow bandwidth, thus it offers
more options for VI computation. In this study PRIg and
BNIg exhibited good performance across all growth stages,
because they were computed with blue and green bands that
are specifically sensitive to N concentration, which is consistent
with findings from Stroppiana et al. (2009) and Yu et al. (2013).
However, the highest correlation between PNC and ground VI
was not so satisfactory for post-heading stages with R2 < 0.50.
That might be because the presence of panicles changed the
plot structure and affected the spectral signature (Gnyp et al.,
2014). In a UAV-based grain yield prediction study, Zhou et al.
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FIGURE 2 | Plant nitrogen concentration (PNC, %) plotted against counterpart vegetation indices from two platforms: (A) NDVIa; (B) CIRE−a; (C) CIG−a; (D) OSAVIa;

(E) VIopt−a; (F) NDVIg; (G) CIRE−g; (H) CIG−g; (I) OSAVIg; (J) VIopt−g. The dashed line is fitted for all data points.
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TABLE 5 | Simple linear relationship between PNC and the top eight best-performing normalized difference texture indices (R2).

Pre-heading Post-heading Entire season

NDTI T1 T2 R2 NDTI T1 T2 R2 NDTI T1 T2 R2

NDTI1 MEA800 MEA720 0.61 NDTI9 MEA800 DIS720 0.61 NDTI17 COR800 COR720 0.50

NDTI2 MEA680 MEA550 0.50 NDTI10 COR800 COR720 0.59 NDTI18 MEA720 HOM720 0.45

NDTI3 MEA680 ENT550 0.50 NDTI11 MEA800 CON720 0.56 NDTI19 ENT800 DIS720 0.42

NDTI4 ENT720 MEA680 0.49 NDTI12 MEA800 ENT550 0.53 NDTI20 SEM800 HOM720 0.42

NDTI5 ENT800 MEA680 0.48 NDTI13 MEA800 ENT720 0.52 NDTI21 MEA800 CON720 0.41

NDTI6 DIS720 MEA680 0.47 NDTI14 HOM720 HOM550 0.51 NDTI22 SEM720 MEA720 0.41

NDTI7 MEA680 HOM490 0.47 NDTI15 MEA800 VAR720 0.50 NDTI23 ENT720 DIS720 0.41

NDTI8 MEA680 SEM490 0.47 NDTI16 HOM720 HOM490 0.46 NDTI24 ENT800 CON720 0.40

All regressions are statistically significant (p < 0.001).

MEA, Mean; VAR, Variance; HOM, Homogeneity; CON, Contrast; DIS, Dissimilarity; ENT, Entropy; SEM, Second Moment; COR, Correlation. The acronyms represent the texture

parameter from corresponding band. For example, MEA800 represents the mean texture parameter from 800 nm.

TABLE 6 | Plant nitrogen concentration (PNC) estimates derived using UAV

imagery texture indices and spectral vegetation indices from aerial or ground

platform with stepwise multiple linear regression.

Platform Stage Model Optimal PNC

estimation model

R2

UAV Pre-heading Model-1 PNC = 0.392 ×

CIRE−a+0.93

0.70

Post-heading Model-2 PNC = 1.695 × NDTI9

+ 0.252 ×

NDTI10-0.562

0.65

Entire season Model-3 PNC = 0.507 ×

NDTI17 + 2.715 ×

NDTI18+3.369

0.59

UAV+ground Pre-heading Model-4 PNC = 7.066 × BNIg
+ 0.857 ×

NDTI1-2.479

0.72

Post-heading Model-5 PNC = 4.258 × BNIg
+ 2.385 ×

NDTI9-3.144

0.73

Entire season Model-6 PNC = 9.286 × BNIg
+ 0.354 ×

NDTI17-3.545

0.75

CIRE−a, Red edge chlorophyll index from aerial platform; BNIg, Blue nitrogen index from

ground platform. NDTI1=(MEA800-MEA720)/(MEA800+MEA720);

NDTI9=(MEA800-DIS720)/(MEA800+DIS720);NDTI10=(COR800-

COR720)/(COR800+COR720);

NDTI17=(COR800-COR720)/(COR800+COR720);NDTI18=(MEA720-

HOM720)/(MEA720+HOM720).

(2017) also found that the estimation accuracy of grain yield
decreased as rice panicles emerged from the sheath at heading
stage. Therefore, it is essential to improve PNC estimation for
post-heading stages and the entire season with new data source.

Difference in Texture Features Between
Stage Groups
Texture can be used as a description of spectral feature
distribution in spectral image space (Ning, 1998), which might be
interpreted with biological meaning as for the spectral features.

In this study we found most texture measurements were weakly
related to PNC across all growth stages (Supplementary Table
1), which corresponds well to the findings of Lu and Batistella
(2005). Besides, Jin et al. (2015) found only MEA texture feature
was useful in residue cover estimation in maize. MEA490 and
MEA680 performed well only for pre-heading stages, because
reflectance in the visible bands varied slightly at low chlorophyll
content levels and saturated at high levels (Hatfield et al., 2008).
As a result, the texture features from the visible bands fluctuated
slightly and it was difficult to use visible texture features for
detecting the variation in PNC. HOM720 and MEA800 performed
well at late growth stages and the majority of texture features
at 720 nm were superior to other texture features for the entire
season. That might due to the fact that the reflectance at red
edge and NIR bands had a broader variation through the growing
season and the texture features from these bands could explain
more variation in PNC.

However, texture indices performed significantly better than
individual texture measurements, which might be similar to
advantages of vegetation index that could reduce the influence
of canopy geometry and soil background over raw reflectance
data (Tucker, 1979; Huete et al., 1985). Sarker and Nichol
(2011) also reported that the ratio of texture parameters
could improve the estimation accuracy of forest biomass.
Given different stage groups, the optimal NDTI was different,
because canopy structure varies as rice plants grow, and
leaves dominate the canopy before heading stage. After that
panicles emerge out from the sheath, which makes the canopy
reflectance more complicated due to the difference in leaf
and panicle reflectance (Tang et al., 2007). Interestingly, the
optimal NDTIs across all growth stages consisted of texture
parameters from red edge and NIR bands (Table 5). Since
they are good indicators of canopy chlorophyll (Gitelson
et al., 2003b, 2005), LAI and biomass (Gitelson et al.,
2003a), the NDTIs from those bands performed well in PNC
estimation.

Actually, it is still complicated to select an appropriate
texture involving window sizes and image bands for a specific
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FIGURE 3 | Cross-validation scatter plots for measured PNC vs. estimated PNC derived from selected models for pre-heading stages: CIRE−a (A), NDTI1 (B), MTCIg
(C), BNIg (D), Model-1 (E), and Model-4 (F).

research topic. Although numerous studies have reported texture
features were useful in biomass (Lu, 2005; Sarker and Nichol,
2011), LAI (Wulder et al., 1998) and residue cover (Jin et al.,
2015) estimation, the underlying mechanism of selected texture
measurement remains to be better understood. Those questions
need to be clarified in the future studies.

Advantages of Combining Ground-Based
Spectral Data and UAV Imagery
The combination of spectral data and texture measurements has
been proposed to improve biomass (Lu, 2005; Eckert, 2012),
LAI (Wulder et al., 1998) and residue cover (Jin et al., 2015)
estimation with satellite data. In present study, we found that
the improvement was not pronounced in PNC estimation by
combining aerial VIs and NDTIs due to the limited bands of
UAV sensors. However, the combination of ground-based VIs
and NDTIs improved PNC estimation significantly across all
growth stages, especially for the post-heading stages (Table 6).
Because ground-based hyperspectral data is available for those
VIs that are highly sensitive to N concentration. In addition,

texture analysis could efficiently address saturation problems
associated with vegetation indices in dense canopies (Kelsey and
Neff, 2014) and detect variable canopy structural characteristics
well (Eckert, 2012). MLR models integrated both techniques and
could explain 75% variability of PNC for entire season with a
general model, which was superior to the findings of Li et al.
(2010b) and Stroppiana et al. (2009). Therefore, a combination
of UAV imagery and ground hyperspectral data could be taken
as an effective hybrid method for N status monitoring in rice.
Future work will focus on transferring such an integrative
methodology presented here to other agronomic parameters
estimation.

Implications for Future Applications
Most previous studies estimated crop PNC with ground-based
hyperspectral data, but the estimation accuracy was moderate
(Stroppiana et al., 2009; Li et al., 2010b). Although high
accuracy of PNC estimation in rice was obtained by Yu
et al. (2013), the optimal estimation model was established
by six bands, which was difficult for practical application.
In this study we found that CIRE from UAV multispectral
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FIGURE 4 | Cross-validation scatter plots for measured PNC vs. estimated PNC derived from selected models for post-heading stages: CIRE−a (A), NDTI9 (B),

OSAVIg (C), PRIg (D), Model-2 (E), and Model-5 (F).

imagery could be used to estimate PNC for pre-heading
stages. That indicates that UAV imagery might have potential
for N diagnose and management based on PNC, before the
heading stage (Ding et al., 2003; Cao et al., 2016). Texture
information from UAV imagery could be useful for PNC
estimation for post-heading stages, which shows that grain
yield and quality is predictable with PNC at late growth
stages. Therefore, UAV multispectral imagery could be used to
estimate rice PNC with independent models for different stage
groups.

Furthermore, the hybrid method combining ground-
based hyperspectral data and UAV imagery could
accurately estimate PNC across all growth stages. As
crop growth monitoring techniques develop, multiple
sensors from different platforms have been integrated
to collect data (Bendig et al., 2015; Tilly et al., 2015).
Additionally, UAV-based hyperspectral imaging might
execute this method easily. Therefore, this method is
feasible and offers technique support for N diagnose and
management, and grain yield and quality prediction in the
future.

CONCLUSIONS

This work showed UAV-based multispectral imagery could
be used to estimate rice PNC with spectral data only
for pre-heading stages, but texture information from
UAV imagery could be used to estimate PNC across all
growth stages with moderate accuracy. PRI and BNI
computed with ground-based hyperspectral data performed
consistently well across all growth stages. Furthermore,
the combination of ground VIs and NDTIs improved the
PNC estimation significantly, but the improvement with
aerial VIs and NDTIs was not pronounced. Therefore,
this hybrid method with ground spectral data and UAV
imagery texture information was promising in rice N status
monitoring.

Future work should focus on determining optimal
texture parameters involving different texture algorithms,
window sizes and spectral bands. Moreover, multiple year
datasets are needed to evaluate this new hybrid method to
improve the robustness and applicability. Most importantly,
realizing N diagnose and N management depending
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FIGURE 5 | Cross-validation scatter plots for measured PNC vs. estimated PNC derived from selected models for entire season: CIRE−a (A), NDTI17 (B), PRIg (C),

BNIg (D), Model-3 (E), and Model-6 (F).

on PNC with presented method is more essential and
anticipated.
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