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Diagnosis of peripheral neuropathies relies on neurological examinations,

electrodiagnostic studies, and since recently magnetic resonance neurography

(MRN). The aim of this study was to develop and evaluate a fully-automatic segmentation

method of peripheral nerves of the thigh. T2-weighted sequences without fat suppression

acquired on a 3 T MR scanner were retrospectively analyzed in 10 healthy volunteers

and 42 patients suffering from clinically and electrophysiologically diagnosed sciatic

neuropathy. A fully-convolutional neural network was developed to segment the MRN

images into peripheral nerve and background tissues. The performance of the method

was compared to manual inter-rater segmentation variability. The proposed method

yielded Dice coefficients of 0.859 ± 0.061 and 0.719 ± 0.128, Hausdorff distances

of 13.9 ± 26.6 and 12.4 ± 12.1 mm, and volumetric similarities of 0.930 ± 0.054

and 0.897 ± 0.109, for the healthy volunteer and patient cohorts, respectively. The

complete segmentation process requires less than one second, which is a significant

decrease to manual segmentation with an average duration of 19 ± 8 min. Considering

cross-sectional area or signal intensity of the segmented nerves, focal and extended

lesions might be detected. Such analyses could be used as biomarker for lesion burden,

or serve as volume of interest for further quantitative MRN techniques. We demonstrated

that fully-automatic segmentation of healthy and neuropathic sciatic nerves can be

performed from standard MRN images with good accuracy and in a clinically feasible

time.

Keywords: health, sciatic nerve, peripheral nervous system diseases, magnetic resonance imaging, magnetic

resonance neurography, machine learning, segmentation

1. INTRODUCTION

Current state-of-the-art to diagnose and monitor the effects of potentially available treatments
for peripheral neuropathies relies on clinical examination and electrodiagnostic studies (EDX).
Certain regions of the body are less amenable to EDX, or may show ambiguous symptoms and
signs regarding localization of lesions when affected: e.g., brachial and lumbosacral plexus, nerves
situated deeply in the extremities such as the sciatic nerve, and nerves close to the trunk. Magnetic
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resonance neurography (MRN) (1, 2) has emerged as
a complementary diagnostic instrument for peripheral
neuropathy, especially where neurological examinations are
difficult or inconclusive. While MRN has mostly been used as
a qualitative diagnostic method, image-derived morphometric
parameters (e.g., cross-sectional areas, CSA) and quantitative
MR measures based on relaxometry, magnetization transfer,
or diffusion-weighted imaging of peripheral nerves have
increasingly been reported recently (3–11), and could potentially
serve as outcome measures (12).

Quantitative assessment of peripheral nerves from MRN
typically proceeds either by assessment of CSA or by the
identification of regions of interest in which abnormal signal
behavior or quantitative MR parameters are further analyzed.
In both cases, a segmentation of the peripheral nerve at
interest is typically performed manually. It has been shown
that for clinically relevant image-based quantification, fully- and
semi-automatic computer-assisted segmentation is favorable to
manual segmentation regarding reproducibility, time-efficiency,
and cost-efficiency (13, 14). Computer-assisted segmentation of
peripheral nerves from MRN images has been addressed by
Felisaz et al. (15). They proposed a semi-automatic method to
compartmentalize the tibial nerve in micro-neurography images
and showed the potential of computer-assisted segmentation
by associating peripheral neuropathy with decreased fascicular-
to-nerve volume ratio, increased nerve volume, and increased
CSA (16). Unfortunately, potential MR-based outcome measures
of peripheral nerves will be of little clinical use if the
assessment remains a manual, user-dependent, and tedious task
for physicians or trained personnel, or is limited to a small field
of view (FOV) as in Felisaz et al. (16). Fully- or semi-automatic
computer-assisted segmentation of peripheral nerves with a

FIGURE 1 | Overview of the proposed peripheral nerve segmentation method. (A) Training of the neural network with T2 and ground truth image slices, and

(B) testing of the trained neural network yields a segmentation of the peripheral nerve without the need of a ground truth.

large extremities coverage may be an important future step
to obtain quantitative imaging outcome measures at a larger
scale for disease-specific diagnosis and treatment monitoring of
peripheral neuropathies.

We present, to the best of our knowledge, the first attempt of a
fully-automatic, deep learning-based segmentation of peripheral
nerves obtained from a larger coverage MRN image set of the
thigh acquired in a clinical setting, containing healthy volunteers
and patients suffering from peripheral nervous system (PNS)
disorders.

2. MATERIALS AND METHODS

2.1. Healthy Volunteer and Patient Data
All healthy volunteers and patients receiving aMRN examination
at our institution between 2013 and 2017 have been enrolled
in a registry. We developed and evaluated the proposed

method on retrospectively chosen images of the human thigh
from healthy volunteers, and all patients with clinically and
electrophysiologically diagnosed sciatic neuropathy enrolled in
our registry. The healthy cohort consisted of 10 volunteers

(4 female, 6 male; age= 25.0± 2.6). The patient cohort consisted
of 42 patients (21 female, 21 male; age = 55.7 ± 15.7), with
sciatic neuropathy as confirmed by senior physicians (over 10

years of experience) in our neuromuscular disease unit based on
clinical examination and EDX. The study was approved by the
local ethical committee, and informed consent was obtained from

all participants.

2.2. MR Acquisition
For this retrospective study, a turbo spin-echo T2-weighted
sequence without fat suppression (T2) was chosen, which is part
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of the routine MRN examination protocol at our institution. The
sequence was acquired using either a circular 15-channel knee
coil or an anterior body surface and posterior built-in spine coil
in a clinical scanner running at 3 Tesla (Siemens MAGNETOM
Verio, Siemens Healthcare GmbH, Erlangen, Germany) with
following sequence parameters: repetition time (TR) of 4690 ms,
echo time (TE) of 82 ms, FOV of 384× 330 mm2, flip angle (FA)
of 134 ◦, turbo factor of 12, voxel size of 0.52 × 0.52 × 4.0 mm3,
and 60 axial-oriented slices with an inter-slice gap of 0.4 mm.
The acquisition time was 4 min 43 s. Anatomical coverage was
one image stack for each volunteer and patient, with image
stacks positioned at the distal thigh in all volunteers, and variably
between the distal thigh up to the head of the femur in patients,
respectively.

2.3. Manual Ground Truth Segmentation
Three physicians (experienced in clinical, electrophysiological,
and imaging-based assessment of neuromuscular diseases: author
OS, senior neurologist and neuroradiologist > 14 years,
author BW, neuroradiologist > 4 years, and author LG,
neuroradiologist > 2 years) manually segmented the sciatic
nerve including its branches the tibial and peroneal nerve. Each
physician individually segmented the available data to study the
inter-rater agreement for manual sciatic nerve segmentation.
A consensus segmentation (referred hereafter as consensus
ground truth) for the evaluation of our computer-assisted
segmentation approach was obtained using majority voting of
the three rater segmentations, i.e., a voxel belongs to peripheral
nerve if at least two raters segmented it. All segmentations were

FIGURE 2 | Segmentation evaluation metrics of our method (Auto-GT) compared to inter-rater variability (R-R). Boxplot of the (A) Dice coefficient, (B) Hausdorff

distance, (C) volume similarity, and (D) segmentation time separated by healthy volunteer and patient cohort. *The segmentation time of our method is less than 1 s

and therefore barely visible in the boxplot.
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TABLE 1 | Detailed segmentation evaluation metrics for both healthy volunteer and patient cohorts.

Cohort Comparison Dice coefficient Hausdorff distance (mm) Volume similarity

Volunteer OS-BW (n = 10) 0.865 ± 0.018 0.521 ± 0.000 0.917 ± 0.038

OS-LG (n = 10) 0.878 ± 0.034 0.749 ± 0.722 0.973 ± 0.024

OS-GT (n = 10) 0.938 ± 0.015 0.469 ± 0.165 0.964 ± 0.015

BW-LG (n = 10) 0.862 ± 0.038 0.840 ± 0.935 0.922 ± 0.044

BW-GT (n = 10) 0.927 ± 0.021 0.417 ± 0.220 0.951 ± 0.030

LG-GT (n = 10) 0.936 ± 0.034 0.541 ± 0.836 0.970 ± 0.025

R-R (n = 30) 0.869 ± 0.031 0.703 ± 0.672 0.937 ± 0.043

Auto-OS (n = 10) 0.850 ± 0.057 13.9 ± 26.5 0.950 ± 0.057

Auto-BW (n = 10) 0.830 ± 0.078 12.2 ± 23.3 0.897 ± 0.075

Auto-LG (n = 10) 0.834 ± 0.052 14.1 ± 26.3 0.934 ± 0.052

Auto-GT (n = 10) 0.859 ± 0.061 13.9 ± 26.6 0.930 ± 0.054

Patient OS-BW (n = 42) 0.807 ± 0.088 8.68 ± 15.7 0.890 ± 0.073

OS-LG (n = 42) 0.784 ± 0.074 10.2 ± 16.2 0.909 ± 0.076

OS-GT (n = 42) 0.906 ± 0.040 2.02 ± 4.56 0.939 ± 0.041

BW-LG (n = 42) 0.766 ± 0.112 14.9 ± 23.9 0.893 ± 0.107

BW-GT (n = 42) 0.896 ± 0.073 4.99 ± 13.4 0.942 ± 0.069

LG-GT (n = 42) 0.870 ± 0.070 7.11 ± 15.5 0.939 ± 0.064

R-R (n = 126) 0.786 ± 0.093 11.2 ± 19.0 0.897 ± 0.087

Auto-OS (n = 42) 0.695 ± 0.137 13.9 ± 13.4 0.868 ± 0.121

Auto-BW (n = 42) 0.690 ± 0.139 15.9 ± 14.6 0.878 ± 0.117

Auto-LG (n = 42) 0.678 ± 0.126 14.7 ± 13.3 0.886 ± 0.119

Auto-GT (n = 42) 0.719 ± 0.128 12.4 ± 12.1 0.897 ± 0.109

The comparisons are: rater pairs (OS-BW, OS-LG, BW-LG), rater to consensus ground truth (OS-GT, BW-GT, LG-GT), inter-rater variability (R-R), method to raters (Auto-OS, Auto-BW,

Auto-LG), and method to consensus ground truth (Auto-GT). Values are given as mean ± standard deviation.

performed with the ITK-SNAP software1 (17) using the polygon
or paintbrush tool.

2.4. Computer-Assisted Segmentation
We developed a fully-automatic, deep learning-based approach
to segment peripheral nerves from MRN images. The input
of our method was the T2 image, and the output of the
method was a binary segmentation of the T2 image into
peripheral nerve and background. Our method bases on fully-
convolutional neural networks (fCNNs), often referred to as
deep learning algorithms or simply as neural network, which
have shown excellent performances in various medical image
segmentation tasks (18). The main working principle behind
fCNNs is supervised learning, a machine learning paradigm
in which a computer learns to distinguish peripheral nerve
from background tissue using training data (Figure 1A). In
our case, the training data consisted of T2 images as well as
the corresponding consensus ground truth images. Our fCNN
processed the images slice-wise, i.e., the input was a T2 image
slice, and the output was a segmented binary mask of the T2
image slice. This segmented image slice was then compared to
the image slice of the consensus ground truth to improve the
segmentation during the training of the fCNN. Once a fCNN
is trained, new and previously unseen images can be segmented

1Available from www.itksnap.org

without the need of any ground truth image (Figure 1B). During
this so-called testing of the fCNN, the neural network segments
a T2 image slice into peripheral nerve and background without
the need for a manually segmented ground truth image slice.
Segmenting all T2 image slices resulted in an entirely segmented
peripheral nerve in the T2 image. The following sections describe
the pre-processing of our data, the neural network, and our
training strategy.

2.4.1. Pre-processing

We pre-processed the T2 images by intensity normalization, and
cropping. First, we normalized the intensities of each T2 image to
zero mean and unit variance. Second, we cropped each T2 image
to 320 × 320 pixels in the axial plane to be able to reduce the
image size evenly, which is a requirement of our neural network
architecture.

2.4.2. Neural Network

Our fCNN architecture adopts the fully-convolutional
DenseNet (19). It consists of four transition down (TD)
in the downsampling path and four transition up (TU)
in the upsampling path. We defined a layer in our neural
network to be the following sequence of operations: batch
normalization (20), rectified linear unit (ReLU) activation
function, 3 × 3 convolution with stride one and same padding,
and dropout (21) with probability p = 0.2. Our dense blocks
consist of four consecutive layers each with 12 filters (growth
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rate 12). A TD applied batch normalization, ReLU, 1 × 1
convolution with stride one and same padding, dropout with
p = 0.2, and 2 × 2 max pooling with stride two. Therefore, the
input resolution was 20× 20 pixels in the bottleneck dense block.
A TU applied a transposed 3× 3 convolution with stride two and
same padding. Before the first dense block in the downsampling
path, a 3 × 3 convolution with stride one, same padding,
and 48 filters was applied to the input. Similarly, we applied
a 1 × 1 convolution with stride one, same padding, and two
filters, the desired number of classes, after the last dense block
in the upsampling path. Finally, a softmax non-linearity was
applied to calculate the pixel-wise probability distribution for
background and peripheral nerve. The fCNN was implemented
using PyTorch 0.4.0 (Facebook, Inc., Menlo Park, CA, U.S.)
with Python 3.6 (Python Software Foundation, Wilmington,
DA, U.S.).

2.4.3. Training

We trained the neural network on the 10 healthy volunteers and
42 patient images using a randomly generated four-fold cross-
validation. That is, the network was trained on 39 images, and
its performance was tested on 13 images. This procedure was
repeated for all four folds, such that the network’s performance on
each image could be assessed. During the fold randomization, we
balanced healthy volunteer and patient images (i.e., we ensured
that each fold contained at least two volunteer images among the
13 test images). For training, we used a cross entropy loss and the
Adam optimizer (22) with a learning rate of 1× 10−3, β1 = 0.9,
and β2 = 0.999. We decreased the learning rate to 1× 10−4 after
30 epochs, and to 1× 10−5 after 80 epochs. The training was
run with a batch size of eight image slices for 100 epochs, which
we empirically found to be sufficient. Additionally, we used data
augmentation during the training to prevent memorization of
training data and to introduce artificial variety: random flipping,
random translation, and random elastic deformation. Note that
we tuned the neural network on one randomly chosen cross-
validation split and did not use the other splits to develop and
tune the method.

2.5. Evaluation and Statistical Analysis
We compared the performance of our method to the consensus
ground truth (Auto-GT), and additionally to the inter-rater
variability (R-R). The inter-rater variability quantifies the
difficulty of peripheral nerve segmentation and served as baseline
for our method. It was obtained by comparing the manual
segmentations of each possible rater-rater pair (i.e., OS-BW, OS-
LG, and BW-LG) and aggregating these comparisons per cohort
[cf. Section III-E in (23)]. Therefore, the inter-rater variability
consisted of n = 30 (healthy volunteer cohort) and n = 126
(patient cohort) results for every evaluation metric.

We used the following three evaluation metrics to evaluate
the performances: (1) The Dice coefficient (24), which measures
the spatial overlap between the segmentation and the ground
truth. (2) The Hausdorff distance (HD) (25), which measures
the 95th percentile distance between the segmentation and
the ground truth boundaries. (3) The volumetric similarity
(VS) (26), which measures the absolute difference between the

segmentation and ground truth volume divided by the sum of
the two volumes. We used the open-source evaluation metrics
implementation presented in Taha and Hanbury (27) (version
2017.04.25) and refer the reader to the reference formathematical
details. Furthermore, we measured the execution time of our
method and the raters’ segmentation time .

We hypothesized that there is no statistically significant
difference between our method (Auto-GT) and the inter-rater
baseline (R-R). The hypothesis was tested for both cohorts and
the three evaluationmetrics independently. We used an unpaired
Mann-Whitney U-test to confirm the hypothesis due to non-
normal distributed data and different sample size between Auto-
GT and the aggregated R-R results. All tests were performed with
a significance level of 0.05 (95 % confidence interval) using R
(R Core Team, Vienna, Austria) version 3.5.0.

3. RESULTS

The proposed approach yielded Dice coefficients of 0.859 ±

0.061 and 0.719 ± 0.128 for the healthy and patient cohorts,
respectively. Regarding the HDmetric, the approach yielded 13.9
± 26.6 and 12.4 ± 12.1 mm, respectively. Finally, the VS metric
resulted in 0.930 ± 0.054 and 0.897 ± 0.109, respectively. The
inter-rater performance was 0.869± 0.031 and 0.786± 0.093 for
the Dice coefficient, 0.70 ± 0.67 and 11.2 ± 19.0 mm for the

FIGURE 3 | Segmentation of the sciatic nerve of a patient. (Left)

3-dimensional rendering of the segmentation. The color map encodes the

surface-to-surface distance of the segmentation to the ground truth. (Right)

The segmentation boundaries (green) and ground truth boundaries (blue) on

the T2 image are shown for three slices along the nerve course.
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HD, and 0.937 ± 0.043 and 0.897 ± 0.087 for the VS. Overall,
for each metric, the segmentation performance was better for the
healthy volunteer cohort than the patient cohort (Figures 2A–C).
No statistical significant differences (p > 0.05) between Auto-GT
and R-R were found for the volunteer Dice coefficients (p= 0.6),
the volunteer VS (p= 0.8), and the patient VS (p= 0.3). Statistical
significant differences (p < 0.05) were found for patient Dice
coefficients (p = 0.002), volunteer HD (p = 0.02), and patient
HD (p≤ 0.001). The detailed results of the segmentation analysis
between individual raters, the consensus ground truth, and our
proposed approach for both cohorts are summarized in Table 1.

A post-hoc analysis revealed that the distribution of image
stack location along the thigh was more variable in patients than
in healthy volunteers. For healthy volunteers, slice stacks were
predominantly taken from the mid-thigh, while in patients the
stacks were variously taken from the distal, medial, and proximal
portions of the thigh. To analyze the location dependence
of the segmentation, we subdivided the patient cohort into
locations distal, medial, and proximal thigh, with medial being
approximately at the same location as the healthy volunteer
cohort. Dice coefficients were 0.687 ± 0.144 for distal thigh
(n = 14), 0.720 ± 0.109 for medial thigh (n = 7), and 0.741 ±

0.123 for proximal thigh (n= 21) in the patient cohort.
A color-coded three-dimensional rendering of a segmented

sciatic nerve for a representative patient result, showing the
similarity between the segmentation and the ground truth, is
depicted in Figure 3. A higher surface-to-surface distance is
present at over-segmented locations as can be seen on the T2
image sections with the segmentation (green) and ground truth
boundaries (blue).

Segmenting the image stack of one subject with our method
on a standard desktop computer equipped with a graphics

processing unit (GPU) required less than 1 s for the volunteer
and the patient cohort (Ubuntu 16.04 LTS, 3.2 GHz Intel Core
i7-3930K, 64 GB memory, NVIDIA TITAN Xp with 12 GB
memory). The time required to segment the ground truth of one
subject manually was 21.1 ± 7.68 and 18.2 ± 7.42 min for the
volunteer and patient cohort, respectively (Figure 2D). Note that
the one-time training (without any user interaction) of the fCNN
before segmenting new subjects required approximately 5 h.

4. DISCUSSION

A fully-automatic, deep learning-based segmentation of
peripheral nerves for T2-weighted MRN images was evaluated
on thigh scans acquired in a clinical setting. The proposed
method was successful in segmenting peripheral nerves with and
without lesions with good accuracy both in healthy volunteers
and patients suffering from sciatic neuropathy. Our fully-
automatic method results in a significant time gain for sciatic
nerve segmentation, compared to manual segmentation.

The peripheral nerves in our images can be considered as
small structures with a volume fraction (i.e., nerve volume
divided by background volume) of 0.143 ± 0.049 %.
Unfortunately, evaluating the segmentation performance
of methods applied to small structures is difficult because
commonly used metrics such as the Dice coefficient and the VS
are sensitive to small structures (27). While distance metrics
are more suitable for evaluating small structures, they might
not always be of interest to clinicians as they can be sensitive
to outliers (27). Our inter-rater study revealed that our method
reaches human level performance for volunteer Dice coefficients,
and VS in both healthy volunteers and patients. Inter-rater
disagreement for small cutaneous branches of the tibial and

FIGURE 4 | Interpretability of the Hausdorff distance (HD) metric for peripheral nerves. (A) The same nerves segmented by the three raters (left to right) are depicted in

red. One rater does not segment all branches (arrows), which results in a large HD. (B) The consensus ground truth (left) compared to the segmentation results by our

method (right). A falsely segmented vein (arrow) by our method results in a large HD.
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peroneal nerve was present in patients mostly because of more
distally located image stacks in this cohort, whereas in our
healthy volunteers the cutaneous branches were mostly not
branching from the tibial or peroneal nerves yet. Missing such
a branch on one or several image slices results in a higher mean
and standard deviation of the HD metric compared to the
volunteer cohort (see Figure 4A for an example). Furthermore,
large HD metrics arise in the case of false positive segmentations
of our method. A volunteer example with a Dice coefficient
of 0.772 but a HD of 64.1 mm is shown in Figure 4B, where
a falsely segmented vein contributes to the large HD. Overall,
interpreting the segmentation performance for peripheral nerves
is challenging, especially in the case of the HD metric, and may
be misleading when comparing metrics to other segmentation
tasks such as brain tumors.

Our approach has several limitations and difficulties, which
resulted in a slightly decreased segmentation accuracy for the
patient cohort. The difference in performance between the two
cohorts is mainly assumed to be caused by the variability in
PNS appearance, differences in the image quality and location
of the image stacks. While the volunteers were imaged with
a standardized positioning protocol for MRN sequence quality
assurance, the patient images were obtained retrospectively from
a clinical setting for which no standardized protocol was used.
Consequently, different peripheral nerve lesion types and muscle
pathologies were present in the images, and the position of the
MR acquisition differed considerably, which also might cause the
image stack to no longer be perpendicular to the main nerve
direction (e.g., in proximal parts of the thigh near the hip or
at the knee region). Further, the contrast between peripheral
nerve and its surrounding tissues was sometimes very limited
on distal image slices. These aspects ultimately increase the
complexity of the segmentation task, which is reflected in the
lower Dice coefficients found for distally located regions on
patient images, as compared to the regions located proximally or
at mid-thigh in volunteer and patient images. Besides increasing
the amount of training data, a potential workaround could
be the use of isotropic 3-D T2-weighted sequences for MRN
despite their lower resolution [e.g., SPACE, Sampling Perfection
with Application optimized Contrasts using different flip angle
Evolution (28)]. In addition, the quality of the patient images
was lower than the quality of the volunteer images. Movement
artifacts of varying strength were noticeable mostly in the
patient cohort due to uncomfortable scanning positioning, while
the volunteers could be imaged without noticeable movement
artifacts. More frequently present in the patient cohort were
also signal distortion artifacts, stemming from an off-center
positioning of the extremities during the MR acquisition. Due to
the retrospective type of study performed, healthy volunteers and
patient cohorts differed regarding mean age, and detailed clinical
data on the patient cohort was not available. Hence, we can
neither rule out an effect of age, nor of severity of the neuropathy
on segmentation performance.

We see our contribution as a proof of concept for
segmentation of peripheral nerves for a wider clinical usage
of quantitative MRN as an adjunct to clinical assessment
and EDX, especially in more proximal body regions not well

FIGURE 5 | Potential of computer-assisted segmentation of peripheral nerves

for imaging biomarkers. (Left column) 3-dimensional renderings of the sciatic

nerve with lesions colored red: (Top row) a healthy volunteer, (Middle row) a

patient with a focal lesion, (Bottom row) and a patient with an extended

lesion. (Middle column) Cross-sectional area evolution and (Right column)

lesion burden evolution obtained from the segmentation could be used as

biomarkers to assess disease severity and progression, or to categorize the

lesion type. Note that not all peripheral nerve lesion types show morphometric

abnormalities, hence a combination with signal intensity (or other quantifiable

MR parameters) is necessary to assess the lesion burden. The quantified

signal intensity evolution was assessed by segmenting hyperintense nerve

fascicle bundles on a co-registered T2-weighted sequence with fat

suppression using inversion recovery.
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accessible using aforementioned standard work-up. Despite
the discussed limitations, the partially achieved human-level
performance in this retrospective analysis of MRN images
demonstrates the promising usefulness and strength of fully-
automatic segmentation. This is additionally emphasized by the
fact that achieving a high agreement of a manual segmentation
to a consensus ground truth requires experienced personnel
with a long training history (see better results of rater OS in
Table 1), while partially achieved human-level performance of
the fCNN required just 5 h of unassisted training. We think
that such peripheral nerve segmentation is essential toward
obtaining quantitative imaging outcome measures, which could
be an integral part of MRN-based examinations of PNS and PNS
disorders, both for diagnostic and monitoring purposes. Our
method could assist clinicians by providing a quantification of
nerve volume, CSA, and lesion burden through a combination of
morphometry and signal intensity analysis as shown in Figure 5.
Such analyses might allow distinguishing between healthy nerve
and diseased nerve, and peripheral neuropathy type as it has been
shown by others (5, 7, 9–11). Additionally, our segmentation
could serve as a volume of interest for other quantitative MR
methods like diffusion-weighted imaging, magnetization transfer
imaging, and relaxometry (3–8, 10), which might further be
applied to assess total lesion burden, distribution pattern of
lesions, and multi-model characterization of lesions. However,
such potential outcome measures will only find acceptance in a
clinical setting, if they can be obtained in an accurate and time-
efficient manner without tedious and labor-intensive manual
segmentation.

Further refinements of the method could include algorithmic
as well as MRN related changes. Algorithmic changes could
include three-dimensional convolutions to enrich the contextual
information during the segmentation. Other than that, a
dedicated post-processing of the segmentation could reduce false
positive segmentation by reconstructing the peripheral nerves
under physiological constraints similar to Rempfler et al. (29).
Regarding changes in MRN, additional MRN images could be
used to enrich the information about the peripheral nerves,
especially for regions showing problems with fully-automated
segmentation. Also, combining the complementary information
from MRN images with diffusion-weighted images (e.g., from
tractography of peripheral nerves) may add additional imaging

information for better discrimination of peripheral nerves from
surrounding tissue [e.g., (4, 30)]. In general, the segmentation
could be extended to peripheral nerves of other body regions,
to peripheral nerve lesions, and to muscles (31) with the aim
of a holistic computer-assisted quantification of neuromuscular
diseases.

In conclusion, we proposed, to the best of our knowledge,
the first fully-automatic, deep learning-based segmentation
of peripheral nerves from the thigh in a clinical setting.
Our method segments healthy and diseased peripheral
nerves from MRN images with good accuracy and in
clinically feasible time, and is a promising approach toward
quantitative outcome measures for the diagnosis of peripheral
neuropathies.
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