
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2016, No. 2, pp. 1–29. DOI:10.13154/tosc.v2016.i2.1-29

Haraka v2 – Efficient Short-Input Hashing for
Post-Quantum Applications

Stefan Kölbl1, Martin M. Lauridsen2, Florian Mendel3 and Christian
Rechberger1,3

1 Department of Applied Mathematics and Computer Science (DTU Compute), Technical
University of Denmark, Kongens Lyngby, Denmark

stek@dtu.dk
2 InfoSec Global Ltd., Switzerland

martin.lauridsen@infosecglobal.com
3 Institute of Applied Information Processing and Communications (IAIK), Graz University of

Technology, Graz, Austria
florian.mendel@iaik.tugraz.at,christian.rechberger@iaik.tugraz.at

Abstract. Recently, many efficient cryptographic hash function design strategies
have been explored, not least because of the SHA-3 competition. These designs are,
almost exclusively, geared towards high performance on long inputs. However, various
applications exist where the performance on short (fixed length) inputs matters more.
Such hash functions are the bottleneck in hash-based signature schemes like SPHINCS
or XMSS, which is currently under standardization. Secure functions specifically
designed for such applications are scarce. We attend to this gap by proposing two
short-input hash functions (or rather simply compression functions). By utilizing
AES instructions on modern CPUs, our proposals are the fastest on such platforms,
reaching throughputs below one cycle per hashed byte even for short inputs, while
still having a very low latency of less than 60 cycles.
Under the hood, this results comes with several innovations. First, we study whether
the number of rounds for our hash functions can be reduced, if only second-preimage
resistance (and not collision resistance) is required. The conclusion is: only a little.
Second, since their inception, AES-like designs allow for supportive security arguments
by means of counting and bounding the number of active S-boxes. However, this
ignores powerful attack vectors using truncated differentials, including the powerful
rebound attacks. We develop a general tool-based method to include arguments
against attack vectors using truncated differentials.
Keywords: Cryptographic hash functions · second-preimage resistance · AES-NI ·
hash-based signatures · post-quantum

1 Introduction
Cryptographic hash functions are commonly constructed with collision resistance in mind.
Consider e.g. the SHA-3 competition, which involved a large part of the research community,
where collision resistance was one of the main requirements. Sometimes, cryptographic
functions are designed with collision resistance as the main or only requirement, see e.g.
VSH [CLS06]. This is in contrast to a sizable and growing set of applications, that utilize
cryptographic hashing, but explicitly do not require collision resistance. Consider as an
example the proof for the HMAC construction, which initially required collision resistance
from its hash function [BCK96], but in later versions the collision resistance requirement
was dropped in favor of milder requirements [Bel15]. Universal one-way hash functions

Licensed under Creative Commons License CC-BY 4.0.
Received: 2016-06-01, Revised: 2016-09-01, Accepted: 2016-11-01, Published: 2017-02-03

https://doi.org/10.13154/tosc.v2016.i2.1-29
mailto:stek@dtu.dk
mailto: martin.lauridsen@infosecglobal.com
mailto:florian.mendel@iaik.tugraz.at, christian.rechberger@iaik.tugraz.at
http://creativecommons.org/licenses/by/4.0/

2 Haraka v2

(UOWHF) [BR97] are, in principle, candidate functions, but they will not suffice for many
applications.

Another example, which brings us to the main use-case of this paper, are hash-based
signature schemes originally introduced by Lamport [Lam79]. Recent schemes include
XMSS [BDH11], which is currently submitted as a draft standard to the IETF and which
features short signatures sizes, and the state-less scheme SPHINCS [BHH+15]. A recent
version of the former, XMSS-T [HRS16], attains additional security against multi-target
preimage attacks on the underlying hash function. Arguably, such designs are the most
mature candidates for signature schemes offering post-quantum security, i.e. they are
believed to be secure in the presence of hypothetical quantum computers, as their security
reduces solely to the security properties of the hash function(s) used, thus relying on
minimal assumptions.

The hash-based signature schemes mentioned require many calls to a hash function,
but only process short inputs. For instance in SPHINCS-256, about 500000 calls to two
hash functions are needed to reach a post-quantum security level of 128 bits. One of those
functions (denoted H) compresses a 512-bit string to a 256-bit string and is used in a
Merkle-tree construction, while the other (denoted F) maps a 256-bit string to a 256-bit
string.

The applications share the absence of collision resistance from the requirements imposed
on the underlying hash function(s), and further they process only short inputs1. However,
nearly all cryptographic hash functions are geared towards high performance on long
messages and, as we will show, perform rather poorly on short inputs.

1.1 Contributions
Motivated by the applications described above, we explicitly consider preimage- and
second-preimage resistance as the sole security goals for cryptographic hash functions,
particularly dropping collision resistance, and furthermore target high performance on
short (fixed length) inputs. We limit ourselves to one particular design strategy, which is
fairly well understood and scalable: AES-like designs. This enables both strong security
arguments, while also allowing excellent performance on widespread platforms offering
AES-specific instructions, such as modern Intel and AMD CPUs, as well as the ARMv8
architecture.

Concretely we propose Haraka v2, two secure (in the above sense) short-input hash
functions achieving a performance better than 1 cycle per byte (cpb) and a latency of
only 60 cycles, on various Intel architectures. As we show in Section 5.3, competitive
designs are somewhat slower than that. Our proposals share strong similarities with the
permutation AESQ that is used in the CAESAR candidate PAEQ [BK14]. We perform
benchmarks of the SPHINCS-256 hash-based signature, using Haraka v2 as the underlying
hash functions, and show performance speed-ups of ×1.50 to ×2.86. As hash-based
signature schemes such as SPHINCS are already practical, and in the case of XMSS in
the process of standardization, this shows that Haraka v2 can significantly contribute to
speeding up such schemes.

On the theoretical side, our proposal also carries with it several contributions. Firstly,
we study if the number of rounds for Haraka v2 can be reduced if only second-preimage
resistance, and not collision resistance, is required. The conclusion is that only one round
(5 rounds instead of 6) can be dropped. Secondly, and as a point we would like to elaborate
on at this stage already, we describe new ways to bound the applicability of attacks.
Traditionally, resistance against differential attacks (which are important for collision- and
second-preimage attacks) of key-less constructions, such as cryptographic hash functions,
is almost solely based on arguments that are also found for keyed constructions such as

1For HMAC, one of the two calls to the hash function used is always for a short input.

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 3

block ciphers. Common approaches include (1) using a bound on the best differential
trail and comparing it with the available degrees of freedom, or (2) assuming a number
of rounds controlled by the attacker, and use a bound on the best differential trail for
the uncontrolled rounds as a security margin. Such arguments have been used for various
SHA-3 candidates like Grøstl [GKM+11], ECHO [BBG+09], Luffa [DSW08], and the more
recent hash function PHOTON [GPP11]. One problem of these approaches is that they do
not consider truncated differentials, and as such do not cover rebound attacks.

Arguments against rebound attacks are of course still possible and can be found in
the literature, also for the aforementioned designs. Often this involves designing concrete
rebound attacks along with arguments for why improving them is unlikely. Alternatively,
designers make assumptions akin to (2) about the controlled rounds that are simply “for
free”, and then focus on bounding the effect of the uncontrolled rounds. Perhaps the most
notable arguments in that direction are for the design of SPN-Hash [CYK+12], which uses
approach (2), but provides bounds for the uncontrolled rounds using differentials and not
solely single trails. However, the controlled rounds are still treated as a black box.

To improve the situation, we propose a way to model an idealized attacker who has
capabilities which resemble cryptanalytic techniques such as the rebound attack. We take
into account how the complexity of an attack can be reduced in the controlled rounds, like
in the inbound phase of the rebound attack, by using the available degrees of freedom
to fulfill conditions in a truncated differential. This allows us better security arguments
by not having to treat parts of the hash function as a black box, and we can take into
account also the fact that there are less degrees of freedom available in a second-preimage
attack. Overall, this gives us a better understanding of the required number of rounds for
Haraka v2 to resist these types of attacks.

Finally, we remark at this point that both implementations of our proposals, including
test vectors, the SPHINCS code for benchmarking and the code used to generate the MILP
models for the security analysis of Haraka v2, are publicly available [KLMR16].

1.2 Related Work
Several proposals have been submitted to the SHA-3 competition that aim to take ad-
vantage of AES instructions in modern CPUs. Among them are Grøstl [GKM+11],
ECHO [BBG+09], Fugue [HHJ09], LANE [Ind08]. Many of them are geared towards
performance on long messages, and often show severe performance degradation for short
messages. The CAESAR competition for authenticated encryption schemes saw many
proposals, including AEGIS [WP14], PAEQ [BK14] and Tiaoxin [Nik14], based on utiliz-
ing AES instructions. Recently, two designs for permutations based on the AES round
function have been proposed. Jean and Nikolic [JN16] studied AES-based designs for
MACs and authenticated encryption, however not for hashing applications. Gueron and
Mouha [GM16] propose Simpira v2, a family of permutations based on Feistel networks.

1.3 Recent Developments in Short-Input Hashing
Haraka v1 was originally presented to a larger group of cryptographers in November
2015 [Pro], with the explicit goal of providing fast hashing on short inputs, the main
application being speeding up hash-based signature schemes. Simpira, mentioned above,
started circulating a few months thereafter, with one of the three main applications
mentioned also being hash-based signature schemes [GM16, Section 7]. Haraka v1 was
broken by Jean [Jea17] (see also Section 4.2.4), and in this paper Haraka v2 is presented,
which differs from Haraka v1 in the choice of round constants. Simpira (the former version)
was broken in two different ways [DEM16,Røn16] and Simpira v2 addresses the identified
problems. Concrete performance numbers for Simpira v2 in modern hash-based signature

4 Haraka v2

schemes are not available yet, but our benchmarks in Section 5.3 suggest that Simpira v2
is slower.

Recently, KangarooTwelve, a variant of Keccak with a reduced number of rounds,
was proposed, aimed at improved hashing speed. However, its performance is still geared
towards long inputs. Furthermore, improvements on SHA-256 implementations are being
discussed in the community. In Section 5.3 we discuss briefly recent performance figures
on Skylake for SHA-256 as well as comparison with KangarooTwelve.

Secure short-input keyed hash functions also found applications in protecting against
hash flooding denial of service attacks. This has been addressed with the SipHash [AB12]
family, but the security requirements are much lower for this setting.

2 Specification of Haraka v2
Haraka v2 exists in two variants denoted Haraka-512 v2 and Haraka-256 v2 with signatures

Haraka-512 v2 : F512
2 → F256

2 and
Haraka-256 v2 : F256

2 → F256
2 .

(1)

For both variants, we claim 256 bits of security (respectively 128 bits in the presence of
quantum computers) against (second)-preimage resistance, but we make no further claims
about other non-random properties.

The main components are two permutations denoted π512 and π256 on 512 bits and
256 bits, respectively. Both Haraka-512 v2 and Haraka-256 v2 employ the well-known
Davies-Meyer (DM) construction using a permutation with a feed-forward (applying the
XOR operation) of the input. As such, they are defined as

Haraka-512 v2(x) = trunc(π512(x)⊕ x) and
Haraka-256 v2(x) = π256(x)⊕ x,

(2)

where trunc : F512
2 → F256

2 is a particular truncation function (described below).

2.1 Specification of π512 and π256

In the following, we give our specification of the permutations used in Haraka v2. In
Section 3, we give our security analysis of the constructions and, based on this, motivate
our design choices in Section 4.4.

The constructions of π512 and π256 are iterated, thus applying a round function several
times to obtain the full permutation. The permutations π512 and π256 operate on states
which have the same size as respective inputs. Due to the similarity of the permutations,
much of their description is common to both. When we talk about a block, we refer to a
16-byte string consisting of four columns denoted x4i‖ · · · ‖x4i+3 for i = 0, . . . , b − 1. In
general, we let b denote the number of 128-bit blocks of the state, so for π512 we have
b = 4 while for π256 we have b = 2. The state arrangement is given in Figure 1.

Denote the total number of rounds by T and denote by Rt the round with index
t = 0, . . . , T − 1. The state before applying Rt is denoted St, and thus S0 is the initial
state. As both π512 and π256 use the AES round function, states are arranged in matrices
of bytes, and we use subscripts to denote the column index, starting from column zero
being the leftmost one. The state size is 4× 4b bytes, so 4× 16 for π512 and 4× 8 for π256.
When a stream of bytes is loaded into the state, the order is column first, such that the
first byte of the input stream is in the first row of the first column, while the last byte of
the stream is in the last row of the last column.

Let aes denote the parallel application of m AES rounds to each of the b blocks of the
state. As such, for t = 0, . . . , T − 1, the round function for π512 is Rt = mix512 ◦ aes while

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 5

x0,0 x0,1 x0,2 x0,3 x0,4 x0,5 x0,6 x0,7 x0,8 x0,9 x0,10 x0,11 x0,12 x0,13 x0,14 x0,15

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10 x1,11 x1,12 x1,13 x1,14 x1,15

x2,0 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 x2,10 x2,11 x2,12 x2,13 x2,14 x2,15

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9 x3,10 x3,11 x3,12 x3,13 x3,14 x3,15

Haraka-256 v2 state

Haraka-512 v2 state

Figure 1: State for Haraka-512 v2 and Haraka-256 v2 (not including the shaded area).
The box xi,j denotes the ith byte in the jth column of the state.

for π256 it is Rt = mix256 ◦ aes. Thus, in both cases, a single round consists of m rounds
of the AES applied to each block of the state, followed by a linear mixing function. Round
constants are injected via the aes operations (see below). The number of rounds is T = 5
while using m = 2 AES rounds for both Haraka-512 v2 and Haraka-256 v2 (totaling 10
AES rounds).

The main difference between π512 and π256 is the linear mixing used. In both cases,
the mixing itself is comprised of simply permuting the state columns. For π512, the sixteen
columns of the state are permuted such that each output block contains precisely one
column from each of the b = 4 input blocks. For π256 on the other hand we have b = 2 so
we obtain the most even distribution of the columns by mapping two columns from each
of the b = 2 input blocks to each of the b = 2 output blocks. Letting x0‖ · · · ‖x15 denote
the columns for a state of π512, the columns are permuted by mix512 as

x0‖ · · · ‖x15 7→ x3‖x11‖x7‖x15‖x8‖x0‖x12‖x4‖x9‖x1‖x13‖x5‖x2‖x10‖x6‖x14. (3)

Likewise for π256 the eight columns denoted x0‖ · · · ‖x7 are permuted by mix256 as

x0‖ · · · ‖x7 7→ x0‖x4‖x1‖x5‖x2‖x6‖x3‖x7. (4)

The round functions for both permutations are depicted in Figure 2.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

aes
aes

aes
aes

aes
aes

aes
aes

(a) For π512

x0 x1 x2 x3 x4 x5 x6 x7

aes
aes

aes
aes

(b) For π256

Figure 2: Depictions of round functions Rt for π512 (a) and for π256 (b). Each xi denotes
a column of 4 bytes of the state.

Round Constants

For each AES call, we use different round constants via the round key addition in order to
destroy the symmetries between the individual states (see Section 4.2.4). The constants
are derived using a similar approach as in the CAESAR candidate Prøst [KLL+14]. Let pi

be the least significant bit of the ith digit after the decimal point of π, then the round
constants are defined as

RCj = p128j+128|| . . . ||p128j+2||p128j+1 ∀j = 0 . . . 39. (5)

6 Haraka v2

The AES layer aesi uses round constants (RC4i, RC4i+1, RC4i+2, RC4i+3) in the case of
π512, respectively (RC2i, RC2i+1) for π256. The constants are also given in Appendix A.
We chose π as a nothing-up-my-sleeve number, but other choices of known constants would
equally qualify if they do not contain strong symmetries.

Truncation Function

Let x ∈ F512
2 . Then trunc(x), which is used in Haraka v2, is obtained as concatenating

two columns from each block: The least significant two from the first two blocks, and the
two most significant columns from the last two blocks. As such

trunc(x0‖ · · · ‖x15) = x2‖x3‖x6‖x7‖x8‖x9‖x12‖x13. (6)

3 Security Requirements
The three most commonly defined security requirements for a cryptographic hash function
H are

• Preimage resistance: Given an output y it should be computationally infeasible
to find any input x such that y = H(x),

• Second-preimage resistance: Given x, y = H(x) it should be computationally
infeasible to find any x′ 6= x such that y = H(x′), and

• Collision resistance: Finding two distinct inputs x, x′ such that H(x) = H(x′)
should be computationally infeasible.

Generic attacks, which can find a (second-)preimage with a complexity of 2n and collisions
with a complexity of 2n/2, exist for any hash function, where n is the digest size in bits.
Quantum computers can improve upon this by using Grover’s algorithm [Gro96] to further
reduce the complexity of finding a (second-)preimage to 2n/2. It is also known that this is
the optimal bound for quantum computing. Brassard, Høyer and Tapp’s method [BHT98]
suggests an algorithm finding collisions in 2n/3 steps, however the costs in practice are not
lower compared to methods based on classical computers [Ber09].

In the following sections, we discuss common attack vectors which will aid in choosing
appropriate parameters for Haraka v2 to achieve the desired security properties. As
described, we focus on second-preimage resistance, as the main applications of Haraka v2
do not require collision resistance.

3.1 Preliminaries
Differential cryptanalysis is a powerful tools for evaluating the security of cryptographic
hash functions. It is also a very natural attack vector, as both collision and second-preimage
resistance require the attacker to efficiently find two distinct inputs yielding the same
output.

Definition 1. A differential trail Q is a sequence of differences

α0
R0−−→ α1

R1−−→ · · · RT −1−−−−→ αT (7)

in the states St, for the application of the function on two distinct inputs.

Definition 2. The differential probability of a differential trail Q is defined as

DP(Q) = Pr(α0 → α1 → . . .→ αT) =
T−1∏
t=0

Pr(αt → αt+1) (8)

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 7

and gives the probability, taken over random choices of the inputs, that the pair follows
the differential trail (i.e. the differences match). The last equality holds if we assume
independent rounds.

The AES round function uses the SubBytes, ShiftRows and MixColumns operations
(denoted SB, SR and MC for short). For our further analysis we will be interested in how
truncated differentials [Knu94] propagate through MixColumns. The branch number of
MixColumns is 5, so if an input column to MixColumns contains a active bytes, then the
probability of having b active bytes in the corresponding output column, where a+ b ≥ 5
and 1 ≤ a, b ≤ 4, can be approximated by 2(b−4)8.

3.1.1 Differential Trails

One way to estimate DP(Q) for the best trail is to count the minimum number of active
S-boxes. As the maximum differential probability for the AES S-box is 2−6 this allows
to give an upper bound on DP(Q). While the number of active S-boxes gives a good
estimate for the costs of an attack in the block cipher setting, this is only partially true
for cryptographic hash functions.

Consider a pair of inputs (x, x ⊕ α) as input to a non-linear function, like the AES
S-box, then S(x⊕K)⊕ S(x⊕ α⊕K) = β holds only with a certain probability if the key
K is unknown. This can be very useful in the block cipher settings, where it gives a bound
on the probability of the best differential trail. In the case of hash functions there is no
secret key and an attacker has full control over the input. This allows him to choose the
pair (x, x⊕ α) such that S(x)⊕ S(x⊕ α) = β holds with probability 1. The limit of this
approach is only restricted by the number of free and independent values, referred to as
degrees of freedom. This means that the probability of a differential trail can be very low
and contain many active S-boxes, but if the conditions are easy to fulfill, and the attacker
has enough degrees of freedom, an attack can be very efficient.

A popular technique to count the number of active S-boxes for AES-based designs
is based on mixed integer linear programming (MILP) [MWGP11,SHW+14]. The basic
idea is to express the restrictions on the trail, given by the round transformations, as
linear equations, and generate a optimization problem which can be solved with any MILP
optimizer, e.g. Gurobi [Inc16] or CPLEX [IBM16]. We use this technique later to find the
minimum number of active S-boxes for Haraka v2, which aids us in an informed choice of
parameters.

3.2 Capabilities of an Attacker
One of the main difficulties in the design of hash functions is to estimate the security
margin one expects against a powerful attacker. As described, bounding the probability of
trails can be useful for block ciphers but are of limited use for hash functions, as there is
no secret input. Degrees of freedom can be used, to some extent, to solve many conditions
on the trail and lead to surprisingly efficient attacks. This was partially addressed in the
design of Fugue [HHJ09] and SPN-hash [CYK+12]. The former assumes that an attacker
can improve the probability of a differential trail by using the degrees of freedom directly,
i.e. if one has f degrees of freedom the probability can be improved by 2f . SPN-hash
assumes the attacker can bypass r2 rounds, estimated based on existing attacks, and the
total number of rounds is given by r = r1 + r2, where r1 is chosen such that the probability
of the best differential is low enough for the required security level. A major drawback
of this approach is that they do not resemble the capabilities of an attacker in practice,
which can lead to too conservative estimates while also ignoring important attack vectors.

The most powerful collision attacks on AES-based hash functions, such as the rebound
attack [MRST09], use truncated differentials combined with a clever use of the degrees of

8 Haraka v2

freedom to reduce the attack complexity. Arguing security against this type of attacks is a
difficult task, as one has to estimate the limits of an attacker to use the available degrees
of freedom in a smart way. In the second-preimage scenario, the attacker has much less
control as the actual values of the state are fixed, and the conditions are instead solved by
carefully choosing the trails. In the following, we propose a new method to better bound
the capabilities of an attacker in practice under reasonable assumptions.

3.2.1 Truncated Differentials

A MILP model to count the number of active S-boxes inherently uses truncated differentials
(at the byte level), as it considers active bytes but not the difference values, but it does
not cover the costs of their propagation. When an attacker tries to utilize a truncated
differential, the transitions through MixColumns are probabilistic and, if not controlled by
the attacker, will determine the attack complexity similar to the outbound phase in the
rebound attack.

An attacker can always use a (fully active) truncated differential with probability ≈ 1
(as a fully active state will very likely remain fully active after MixColumns), which gives
a valid second-preimage if the input difference is equal to the output difference. This
happens with a probability of 2−256, hence the security can be at most 256 bits for this
attack vector.

3.2.2 Utilizing Degrees of Freedom

The previous approaches still ignore the fact that a powerful attacker can utilize the
available degrees of freedom to reduce the attack complexity. To take this into account
we assume the attacker is able to use all degrees of freedom in an optimal way, i.e. the
attacker has an algorithm to solve any condition in constant time, as long as there are
enough independent degrees of freedom left.

Without any further restrictions we can not achieve any level of security in this
model, as the attacker can always use a truncated differential which is active in all bytes
having a probability of 1 and then use the degrees of freedom to guarantee the condition
f(x)⊕ f(x⊕ α) = 0. In general the state size is at least as big as the output size, hence
the attacker will have enough degrees of freedom to solve these conditions.

However, it is very unlikely that an attacker can utilize the degrees of freedom in this
way without further restrictions. In the case of AES, already after two rounds we get full
diffusion, i.e. every byte of the output depends on all bytes of the input. In general solving
a condition like f(x)⊕ f(x⊕ α) = 0 then corresponds to solving a system of non-linear
equations over F28 which is an NP-hard problem.

The model we propose is more restrictive and reflects the capabilities of an attacker
in practice. The attacker is still allowed to solve conditions for free using the degrees
of freedom, but can only do so for q consecutive rounds of the primitive. This means,
the attacker chooses a state Sk and then is allowed to solve any conditions for states
Sk−q, . . . , Sk+q in constant time, as long as there are still degrees of freedom available. The
remaining conditions which can not be solved make up the security level. We can formulate
this as a MILP problem with the goal of finding the lowest attack complexity over all
possible states Sk (for more details and the application to Haraka v2 see Section 4.2.2).

This model for truncated differential attacks resembles how collision attacks on cryp-
tographic hash functions actually work in practice. The attacker can control how the
differences propagate over a part of the state and tries to minimize the conditions in the
remaining rounds [MRST09,WYY05]. The currently best known attacks on AES-based
hash functions utilize the degrees of freedom for up to three AES rounds to reduce the
complexity of an attack [SLW+10,JNP14]. These results can not be carried over directly
to our construction, as we compose our state of four individual (respectively two) AES

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 9

states. Very recent work on AESQ [BMS16] found that 4 AES rounds can be covered in
an inbound phase, albeit at a high cost.

Therefore, we use both q = 2 for the collision and second-preimage case, allowing our
idealized attacker to cover 4 rounds with the degrees of freedom to have a comfortable
security margin against attacks in this model.

4 Analysis of Haraka v2
In the following we give the security claims for Haraka v2 and the security analysis which
lead to the proposed parameters.

4.1 Security Claims
We claim second-preimage resistance of 256 bits for Haraka v2 against classical computers.
As will been seen later in the paper, for only one additional round (a performance penalty
of around 20%) we claim 128 bits of collision resistance. We make no claims against
near-collisions or other generalizations of this property, nor against distinguishers of the
underlying permutation, because such properties do not seem to be needed in applications
like hash-based signature schemes [BDH11,BHH+15]. Overall, this leads to a conjectured
post-quantum security level of 128 bits against both collision and second-preimage attacks.

Non-randomness that might slightly speed-up second-preimage attacks is not excluded
by our models and bounds, but we conjecture this to be negligible. To support our conjec-
ture, consider as an example the slight speed-up of second-preimage attacks [DS11,Fuh10]
on the SHA-3 candidate Hamsi [Kü09] which uses a very strong non-random property of
the compression function. No such strong property seems likely to exist for our proposals.

4.2 Second-Preimage Resistance
For an output size of n = 256 the best generic attacks have a complexity of 2256 respectively
2128 on a classical- respectively quantum computer. For iterative hash functions, a generic
attack exists which improves upon the naïve brute force approach for finding second
preimages [KS05]. However, this attack requires long messages and is therefore not
applicable to our construction.

4.2.1 Differential Second-Preimage Attack for Weak Messages

For finding a second-preimage the attacker can use a differential trail Q leading to a
collision, that means f(x⊕ α) = y. However, as the values of the state are fixed by the
output y, all differential trails hold with probability 1 or 0. For a random message, the
probability that an attacker succeeds is bounded by DP(Q), and if Q does not yield a
second-preimage for y, then the attacker must try another trail Q′ 6= Q or another message.

Table 1: Lower bound on the number of active S-boxes in a differential trail for the
permutations used in Haraka v2, for the permutation when used in DM mode and for
trails leading to a collision when used in DM mode. Appendix C gives the numbers for a
wider choice of parameters.

Permutation DM-mode DM-mode (coll.)

Haraka-256 v2 80 80 105
Haraka-512 v2 130 128 134

Counting the number of active S-boxes gives a bound on the maximum value of DP(Q)
and can give some insights on the security. We consider both the number of active S-boxes

10 Haraka v2

for the permutation itself, as well as when the permutation is used in the DM mode. As
some of the output is truncated for Haraka-512 v2, this can potentially reduce the number
of active S-boxes and has to be taken into account. For Haraka-512 v2 the best differential
trail has a probability of DP(Q) = 2−780, while the best trail leading to a collision has
probability DP(Q) = 2−804 when used in DM mode. Similarly, for Haraka-256 v2, those
probabilities are 2−480 and 2−630, respectively. For the number of active S-boxes for
Haraka-512 v2 and Haraka-256 v2 see Table 1. Note that this corresponds to previous
work that studied second-preimage attacks for MD4 [YWZW05] and SHA-1 [Rec10].

4.2.2 Truncated Differentials

We can use the approach from Section 3.2 to bound the costs of finding a second-preimage
for an idealized attacker in order to determine the number of rounds for Haraka v2. To
find a second-preimage the attacker needs to first find a truncated differential leading to a
collision and then determine the trail with the available degrees of freedom. However, as
the state is fixed by the initial message the degrees of freedom are limited to the choice of
differences for each active byte in the truncated trail.

We denote the input column j to MixColumns (resp. SubBytes) in round t as MCt
j (resp.

SBt
j) and consider the number of rounds T and the number of AES steps per round m,

as variables. We define the cost for an attacker to fulfill the conditions of a truncated
differential, starting at state Sk, as

Ctrunc =
T ·m−1∑

t=0

4b−1∑
j=0

Ct
MCj

(9)

where the costs in the forward direction are given by decision variables Ct
MCj

satisfying

∀t : k ≤ t ≤ T ·m,∀j : 0 ≤ j < 4b : Ct
MCj
≥
(

4−
3∑

i=0
SBt

i,j

)
· 8 (10)

and in the backwards direction by

∀t : 0 ≤ t < k,∀j : 0 ≤ j < 4b : Ct
MCj
≥
(

4−
3∑

i=0
MCt

i,j

)
· 8 (11)

where SBt
i,j resp. MCt

i,j is 1 if the byte is active and 0 otherwise. Note that here Ct
MCj

corresponds to the log2 complexity for the transitions through MixColumns (resp. the
inverse MixColumns) to satisfy the truncated differential trail.

An additional requirement is, that the input and output difference are equal, in order
to get a valid second-preimage, that means trunc(x ⊕ α) = trunc(∆π512(x ⊕ α)). The
complexity depends on the number of active bytes at the input which are not truncated

Ccollision =
∑
j∈Ic

3∑
i=0

SB0
i,j · 8 (12)

where Ic is the set of column indices which are not truncated at the output. The
optimization goal for the MILP problem is then given by

minimize: Ccollision + Ctrunc. (13)

The requirements for Haraka v2 are that each attack in this model costs at least 2256

to have a good security margin. We applied this model to explore how the security level

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 11

evolves for different choices of T and m. For every parameter set, we use the MILP model
to find the lowest attack costs by searching over all possible starting states Sk. The results
are given in Table 2. The time to solve the MILP problem increases quickly with the
number of rounds and for the standard parameters (T = 5, m = 2, q = 2) it takes around
17 minutes2 to find the lower bound for an attack for all possible starting points Sk.

Degrees of Freedom. The previous scenario does not yet take into account the capabilities
of an attacker utilizing the available degrees of freedom. For the second-preimage scenario
the attacker can freely choose the differences in one of the states Sk to reduce the costs of
the attack for q rounds in both directions

D =
4b−1∑
j=0

3∑
i=0

Sk · 8. (14)

The costs for an attack are then given by the number of conditions which can be reduced
in the controlled rounds R = {r | k − q ≤ r < k + q ∧ 0 ≤ r < T ·m} by using degrees of
freedom

Creducible ≥
∑
t∈R

4b−1∑
j=0

Ct
MCj
−D and Creducible ≥ 0, (15)

and the number of conditions which can not be controlled by the attacker

Ctrunc =
∑

t∈ZT ·m\R

4b−1∑
j=0

Ct
MCj

. (16)

The goal is now to find the minimal attack costs by solving this MILP model

minimize: Ccollision + Ctrunc + Creducible. (17)

Table 2: Complexity bounds (log2) of the best attack in our truncated setting, over multiple
rounds, without utilizing degrees of freedom

(a) Security for π512

m

T 1 2 3 4 5

1 0 32 48 64 64
2 32 128 96 96 96
3 48 192 176 192 192
4 112 256 256 256 256
5 128 256 256 256 256
6 208 256 256 256 256
7 224 256 256 256 256

(b) Security for π256

m

T 1 2 3 4 5

1 0 0 0 0 128
2 0 256 176 192 192
3 184 256 240 256 256
4 176 256 256 256 256
5 256 256 256 256 256
6 240 256 256 256 256
7 256 256 256 256 256

If we do not allow the attacker to utilize any degrees of freedom, the parameters T = 4
and m = 2 would be sufficient for Haraka-512 v2, and parameters T = 2 and m = 2
would suffice for Haraka-256 v2 (see Table 2). However, as discussed in Section 3.2.2,
this approach would be too optimistic (from our perspective). Taking into account the
assumptions we make on the capabilities of an attacker utilizing the degrees of freedom, at
least T = 5 rounds are required (see Table 3) for the best attack to require at least 2256

steps.
2Using Gurobi 6.5.0 (linux64), Intel(R) Core(TM) i7-4770S CPU @ 3.10GHz, 16GB RAM

12 Haraka v2

Table 3: Complexity bounds (log2) of the the best attack in our truncated setting, utilizing
additional degrees of freedom over 2q rounds for π512 and π256, with m = 2 fixed. Entries
which are bold are not better then the generic attacks.

(a) Second-preimage for π512

T 1 2 3 4 5 6

q = 1 0 96 144 256 256 256
q = 2 0 0 96 128 256 256
q = 3 0 0 0 96 128 256

(b) Collision for π512

T 1 2 3 4 5 6

q = 1 0 48 136 176 256 256
q = 2 0 0 40 96 168 256
q = 3 0 0 0 32 96 160

(c) Second-preimage for π256

T 1 2 3 4 5 6

q = 1 0 176 192 256 256 256
q = 2 0 128 128 192 256 256
q = 3 0 0 128 128 192 256

(d) Collision for π256

T 1 2 3 4 5 6

q = 1 0 168 176 240 256 256
q = 2 0 64 112 160 256 256
q = 3 0 0 64 112 176 256

In Figure 3, we give an example to illustrate how this attack model works for a collision
attack. The attacker starts in this case at S4 and can control q = 2 rounds in both
directions. When searching for a collision, the attacker has control over the full state,
therefore he has enough degrees of freedom available to fulfill the conditions for the
transitions through MixColumns in the controlled rounds. The only remaining part is the
transition in the first round which happens with a probability of 2−16.

S0

S1

aes2−16

S2

aes2−72

S3

mix1

Sk = S4

aes2−288

aes
1

S5

mix 1

S6

aes 2−64

S7

aes 1

S8

mix 1

S9

Figure 3: Truncated model utilizing degrees of freedom for T = 3,m = 2 and q = 2. An
active byte is marked as ; a byte which is removed due to trunc is marked with ; boxes
f denotes a function f mapping one state to the next, and the number next to it gives
the transition probability. For finding a collision, the attacker would have full control over
the middle rounds, marked in the highlighted area. As there are only 53 conditions on
bytes which all can be fulfilled with the available degrees of freedom the attack costs for
an idealized attacker would be 216.

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 13

4.2.3 Meet-in-the-middle Attacks

A powerful technique for finding preimages are meet-in-the-middle techniques and they
have been applied to various AES-based hash functions, for instance Whirlpool [Sas11] and
Grøstl [WFW+12]. The basic attack principle is to split the function into two sub-functions,
such that a part of the message only affects the first function and another part of the
message the second function. These sub-functions are referred to as chunks (of rounds)
and bytes which have influence on only one of these functions are called neutral bytes. The
limiting constraint of this attack is the number of rounds we can independently propagate
our message through these chunks.

We are interested in finding out the highest number of rounds of Haraka-256 v2 and
Haraka-512 v2 that can be attacked. In this case, the strategy is to have a single neutral
byte in the forward and backward chunk. We can check for all possible positions of two
unknown bytes after how many rounds we still are able to find a match, meaning that the
state is not unknown in all bytes. Starting at the beginning of a Haraka v2 round in the
forward direction we can still compute the value of 16 bytes after SR◦mix◦MC◦SR◦MC◦SR.
In the backwards direction we can also compute 16 bytes after SR−1 ◦MC−1 ◦mix−1 ◦
SR−1 ◦MC−1 ◦ SR−1 ◦MC−1 ◦mix−1. In total this covers 3 rounds of Haraka v2. In an
attack we can choose a different starting point, but the total number of rounds which can
be covered stays the same. The initial structure technique [SA09] allows us to further
extend the separation of the two chunks by 1 round.

We can use this now to mount an attack on 3.5 rounds of Haraka-256 v2, following the
procedure given in [Sas11] (see Figure 4):

1. Randomly select values for the constant bytes in AC4.

2. For all 28 possible choices for AC4
∗,0 which keep MC4

0,0,MC4
1,0,MC4

2,0 constant,
compute forward to obtain the state in MC0 and store the result in a table T .

3. For all 28 possible choices for MC5
∗,4 which keep AC5

0,4,AC5
1,4,AC5

2,4 constant,
compute backward to obtain the state in AC0.

4. Check if there is an entry in T that matches with AC0 through MixColumns. If so
check whether the remaining bytes also match, otherwise repeat from step 2 (or step
1 if necessary).

Matching. We can check whether the states MC0 and AC0 can be matched through
MixColumns in the following way. Lets consider the first column, which gives us the
following two equations

AC0
2,0 = MC0

3,0 ⊕ 2 ·MC0
2,0 ⊕ 3 ·MC0

1,0 ⊕MC0
0,0 (18)

AC0
0,0 = 3 ·MC0

3,0 ⊕MC0
2,0 ⊕MC0

1,0 ⊕ 2 ·MC0
0,0 (19)

As we know the values for MC0
3,0,MC0

1,0,MC0
0,0 we can simplify this to

AC0
2,0 ⊕ C0 = 2 ·MC0

2,0 and AC0
0,0 ⊕ C1 = MC0

2,0. (20)

We can use this now to check whether we can fulfill:

AC0
2,0 ⊕ C0 = 2 · (AC0

0,0 ⊕ C1) (21)
AC0

2,0 ⊕ 2 · AC0
0,0 = C0 ⊕ 2 · C1, (22)

where the right side can be computed in step (2) and the left side in step (3) of our attack.

14 Haraka v2

Target value

Match

Initial Structure

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB0 SR0 MC0 AC0

SB1 SR1 MC1 AC1

SB2 SR2 MC2 AC2

SB3 SR3 MC3 AC3

SB4 SR4 MC4 AC4

SB5 SR5 MC5 AC5

SB6 SR6 MC6 AC6

mix

mix

mix

Figure 4: Meet-in-the-middle attack on 3.5 rounds of Haraka-256 v2. All are unknown,
are constant, neutral bytes backward and neutral bytes forward.

Complexity. Computing the table T and 28 values for AC0 costs 28 3.5-round Haraka-
256 v2 evaluations and requires 28 · 8 bytes of memory, as we only need to store 1 byte of
information for each column. The success probability for the match is 2−32 for the left half
of the state and 2−64 for the right half. Hence, on average 28 · 28 · 2−96 = 2−80 candidates
will remain in Step 4. There are still 12 + 8 byte conditions which have to be satisfied,
therefore if we repeat step 1-4 2240 times we expect to find 2240 · 2−80 · 2−20·8 = 1 solution.
The overall complexity is 2240 · 28 = 2248 evaluations of Haraka v2 to find a preimage.

We were not able to extend the attack to 4 rounds, as we would have only two bytes in
each column of MC0 and AC0. In this case we can not filter out solutions in the matching
step. For Haraka-512 v2 we can attack 4 rounds in a very similar way (see Section D).

4.2.4 Attack on Haraka v1 by Jean

An attack by Jean [Jea17] on a previous version of Haraka v2, denoted Haraka v1, has
been published. In this section we explain how the attack was possible, and why it is
not applicable to Haraka v2 presented in this paper. In [LSWD04] it was shown that if
the two halves of an AES state are equal, then applying a keyless AES round function
preserves this property. In Haraka v1, round constants exhibited strong symmetries in
the sense that i) the same constant was used for each block, and ii) the same constant
was used for each column in each block. The observation by Jean is, that when using the
property of [LSWD04] together with the weak constants and the fact that the mixing layer
of Haraka v2 permute the columns, one can construct an efficient structural distinguisher
that allows for collisions and preimages.

In Haraka v2 presented in this paper, this structural property has been dealt with by
destroying properties (i) and (ii) above, particularly by using round constants based on
the digits of π. We refer to Section 2 for the details. We remark that the new choice of
constants do not affect the performance of Haraka v2. As the attack was structural, and
feasible purely due to the round constants, we believe the number of rounds for Haraka v2,
which is based on the truncated model (see Section 4.2.2), is still well-founded and provides

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 15

long-term security.

4.3 Collision Resistance
While we explicitly do not require collision resistance for Haraka v2, we still discuss the
security level with respect to this criteria in the following. Similar to our arguments for
second-preimage security, we can apply our truncated model for finding collisions. The
best collision attacks on AES-based hash functions are based on the rebound attack, and
these are covered by our model. However, for finding a collision, an attacker can freely
choose the complete internal state and not only the differences. This translates to more
degrees of freedom. Therefore, the expected security level is lower for the same number of
rounds (see Table 3).

The best generic attack has a lower complexity of 2128 compared to the second-preimage
case, which might suggest that one only requires 2128 in our truncated security model.
However, this would still indicate some non-ideal property, and it is likely that the
more relaxed collision setting allows to exploit this after using up all degrees of freedom.
Consequently, we opt to also aim for a security level of 2256 in our truncated security
model, which requires adding one round for Haraka-512 v2.

4.4 Design Choices
In the following, we interpret the security analysis of Section 4.2.2 which led to the proposed
parameters and design choices. We recall that T denotes the number of rounds of either
π512 or π256, and m denotes the number of AES rounds applied to each of the b blocks in
each round.

4.4.1 Mode

As described, we use the DM mode for our permutations to define Haraka v2. Other
modes were considered, including a sponge-based construction and a block cipher in DM
mode. The choice to use a permutation in DM mode is motivated both by performance
and security considerations. We refer to Appendix E for the details.

4.4.2 Round Parameters T and m

One of the first questions which arise is how the number of AES rounds and frequency
of mixing the individual states influences the security bounds. Our analysis of Table 2
gives a strong indication that m = 2 is an optimal choice, as it gives the best trade-off
between number of active S-boxes and the total number of required AES rounds Tmb.
The number of rounds is chosen as T = 5, as this gives the required security parameters in
the truncated model, even when assuming a powerful attacker controlling more rounds
than the best known attacks are capable of.

4.4.3 Mixing Layers

For the mixing layer, a variety of choices were considered. Our main criteria were that
the layer should be efficiently implementable (see Section 5.2) on our target platforms,
while still contributing to a highly secure permutation. Other potential candidates for the
mixing layer are discussed in Appendix E. With respect to our criteria, for most choices
of T and m, using the proposed mix512 and mix256 give a significantly higher number of
active S-boxes, compared to other approaches discussed in Appendix E.

16 Haraka v2

Table 4: Latency and inverse throughput for one-round AES instructions on target
platforms

Architecture Laes [cycles] T−1
aes [instructions/cycle]

Haswell 7 1
Skylake 4 1

Cycles

aes (v1, 1)
aes (v2, 1)

aes (vb, 1)

Laes

T −1
aes

aes (v1, 2)
aes (v2, 2)

aes (vb, 2)

. . .

aes (v1, m)
aes (v2, m)

aes (vb, m)

. . .· · ·

Figure 5: Pipelined AES instructions. A box aes (v, i) denotes the application of the ith
AES round to a block v.

4.4.4 Truncation Pattern for Haraka-512 v2

There are many possible choices for the truncation pattern for Haraka-512 v2. In our
analysis, we consider truncation patterns which truncate row-wise or column-wise, as these
are most efficient to implement, due to the way words are stored in memory. The pattern
we chose is taking the two least significant columns of the first two blocks and the two
most significant columns of the last two states. We found that this approach compared
favorably, with respect to the number of active S-boxes, to row-wise patterns or patterns
choosing the same two columns from each state.

5 Implementation Aspects and Performance
As mentioned, Haraka v2 is designed solely for use on platforms with AES hardware
support. To that end, we assume the existence of a hardware instruction pipeline, which
can execute a single round of the AES with an instruction denoted aes, with a latency of
Laes cycles and an inverse throughput of T−1

aes instructions per cycle (given for our target
architectures in Table 4). We remark that our Haswell test machine has an i7-4600M
CPU at 2.90GHz; the Skylake machine has an i7-6700 CPU at 3.40GHz. We furthermore
expect Haraka v2 to be efficiently implementable on ARMv8 due to its support of AES
instructions. We remark that the Turbo Boost technology has been switched off for all our
performance measurements.

When encrypting a single block with the AES, one must wait Laes cycles each time the
block is encrypted for one round. However, if the inverse throughput T−1

aes is low compared
to Laes, and if additional independent data blocks are available for processing, one can
use this data independency to better utilize the AES pipeline. Thus, in theory, if using
k = Laes · T−1

aes independent blocks for the AES, one can encrypt each of those blocks
for a single round in just (k − 1) · T−1

aes + Laes cycles, while m rounds of the AES can be
completed for all k blocks in just (k − 1) · T−1

aes + Laes ·m cycles, as illustrated in Figure 5.
As such, with Haraka v2 using several AES blocks, the pipeline is better utilized.

5.1 Multiple Inputs
As described above, the theoretically optimal choice of state blocks, performance wise,
would be b = Laes · T−1

aes . However, Haraka v2 uses a varying number of blocks. To that
end, we consider for both Haraka-512 v2 and Haraka-256 v2 the parallel application of the

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 17

corresponding function to multiple inputs, assuming that such are available for processing.
For example, if k = Laes · T−1

aes = 7, with a state size of b = 4 blocks, one could process two
independent inputs x and x′ in parallel, thus artificially extending the state to b = 8 blocks,
allowing better pipeline utilization. We denote the number of parallel inputs processed in
this manner by P . For each of our constructions and target platforms, there will be an
optimal choice of P which allows good AES pipeline utilization while, at the same time,
keeping the full context in low-level cache.

5.2 Implementation of Linear Mixing
Consider the case where P = 1, i.e. when using a single input. Even if the number of
blocks in the state is less than Laes · T−1

aes , a number of the instructions used for the linear
mixing can be hidden after the aes operation. For example, while the instruction to
encrypt the second AES round of a Haraka v2 round is still being executed for one or more
blocks, while other blocks have already finished, instructions pertaining to the mixing of
the finished blocks can be executed while the AES instructions for the remaining blocks
are allowed to finish. To that end, more so than otherwise, choosing instructions for the
linear mixing layer with low latency and high throughput is important.

For the implementation of mix512 and mix256, we make use of the punpckhdq and
punpckldq instructions. On both Haswell and Skylake, those instructions have a latency of
1 clock cycle and an inverse throughput of 1 instruction/cycle. In the case of Haraka-512 v2,
where the state has b = 4 blocks, mix512 uses eight instructions in the mixing layer, while
for Haraka-256 v2 we require just one call to each of the instructions.

5.3 Haraka v2 Performance and Discussion
In the following, we present the performance of Haraka v2 when implemented on the
Haswell and Skylake platforms, and discuss their performance in relation to other primitives
which would be other potential candidates for our target applications.

First of all, it is interesting to compare Haraka v2 to SPHINCS-256-H and SPHINCS-
256-F from the SPHINCS-256 construction [BHH+15], which have identical functional
signatures and similar design criteria to Haraka-512 v2 and Haraka-256 v2 respectively. If
we first consider the performance using 8-way parallelization (i.e. using P = 8), we see from
Table 5 that the SPHINCS functions have a performance of 1.62 cpb on Skylake for the H
function and 1.71 cpb for the F function. These implementations do not utilize AVX-512
(employing 512-bit registers), so it is reasonable to assume their performance could be
doubled under such circumstance. However, we note that even under this assumption, in
both the cases of Haswell and Skylake, Haraka v2 performs favorably in comparison to
those of SPHINCS-256.

In some applications, including some of the function calls in hash-based signatures,
several calls to the short-input hash function can not be parallelized. To that end, it is of
interest to compare the performance for Haraka v2, using P = 1, to the corresponding
functions from SPHINCS-256. In this case, from the first part of Table 5, we see that
Haraka-256 v2 performs very well with 1.25 cpb and 0.72 cpb on Haswell and Skylake,
respectively, while the numbers for Haraka-512 v2 are 1.75 cpb on Haswell and 0.97 cpb
on Skylake. From benchmarking the corresponding SPHINCS-256 functions on the same
machines using P = 1, we obtain a performance of 11.16 cpb on Haswell and 10.92 cpb on
Skylake for their H function, and respectively 11.31 and 11.12 cpb for their F function
on Haswell and Skylake respectively. Thus, when the hash function calls in hash-based
signatures can not be parallelized, Haraka v2 performs between 6.5 times and 15 times
better on our tested platforms.

In Table 5, we compare the performance of Haraka v2 not only with the SPHINCS-256
functions, but also other designs which exhibit similar block-, input- and output sizes as

18 Haraka v2

Table 5: Benchmarks for various primitives on the Haswell and Skylake platforms. We give
the implementation type as well as state size, block size and output size. Implementations
marked † are taken from SUPERCOP (see eBACS [Be]); the rest are written by us. For
selected primitives, we give the performance using a varying number of independent inputs
processed in parallel, P ∈ {1, 4, 8}.

Sizes (bits)

Primitive Implementation State Block Output Haswell Skylake

P = 1 Haraka-256 v2 AES-NI 256 256 256 1.25 0.72
Haraka-512 v2 AES-NI 512 512 256 1.75 0.97
AESQ (from PAEQ) AES-NI† 512 512 512 3.75 2.19
Simpirav2[b = 2] AES-NI 256 256 256 1.91 1.09
Simpirav2[b = 4] AES-NI 512 512 512 4.5 2.12
SPHINCS-256-H AVX2† 512 256 256 11.16 10.92
SPHINCS-256-F AVX2† 512 256 256 11.31 11.12

P = 4 Haraka-256 v2 AES-NI 1024 256 1024 1.12 0.63
Haraka-512 v2 AES-NI 2048 512 1024 1.38 0.72
Simpirav2[b = 2] AES-NI 2048 512 1024 1.31 0.94
Simpirav2[b = 4] AES-NI 2048 512 1024 1.02 0.94

P = 8 Haraka-256 v2 AES-NI 2048 256 2048 1.14 0.66
Haraka-512 v2 AES-NI 4096 512 2048 1.43 0.92
Simpirav2[b = 2] AES-NI 2048 256 2048 0.96 0.94
Simpirav2[b = 4] AES-NI 4096 512 4096 0.94 0.94
SPHINCS-256-H AVX2† 4096 256 2048 1.99 1.62
SPHINCS-256-F AVX2† 4096 256 2048 2.11 1.71

Haraka v2. We comment on their benchmarks in the following.
With AESQ and Haraka v2 having very similar designs, the former having 20 AES

rounds per block compared to Haraka v2 with 10, it is reasonable that AESQ is about twice
as slow as Haraka-512 v2. The remaining margin can be explained by AESQ employing
an evolving round key update rather than tabularized constants like Haraka v2.

Another close competitor is Simpira v2, which we implemented and benchmarked using
b = 2 and b = 4, i.e. with two and four AES blocks respectively, thereby matching the
sizes of the Haraka-256 v2 and Haraka-512 v2. Simpira v2 uses 15 AES rounds per block.
Despite this being less than AESQ, it is slower when P = 1, because only one AES round
(for b = 2) or two AES rounds (for b = 4) can be computed in parallel due to the Feistel
structure. This is confirmed when we consider the performance of Simpira v2 with P = 4
and P = 8. For b = 2, parallelizing over P = 4 inputs brings the performance up to 2.37
cpb on Haswell and 1.62 cpb on Skylake. For b = 4, the performance is boosted up to 2.03
cpb and 1.17 cpb for P = 4 on Haswell and Skylake respectively. With P = 8, the effect of
parallelization brings its performance up to 1.56 cpb for Haswell and 1.35 cpb for Skylake.
We remark that in the Simpira v2 paper [GM16], the authors give their own benchmarks
using P = 4 independent inputs. They report performance slightly better than ours, at
0.95 cpb for b = 2 and 0.94 cpb for b = 4 measured on a Skylake machine. However, as no
source code was provided, we wrote our own optimized implementation.

From Table 5, we see that when multiple independent inputs are available for processing,
the gap between the performance of Haraka v2 and of the Simpira v2 and SPHINCS
functions diminishes. This makes sense as essentially processing multiple inputs gives a
source of independence to draw on, allowing to parallelize instruction calls which would
not otherwise be possible. As such, the throughput becomes more a question of the total
number of instructions needed to obtain the desired security level, and less about the
interplay of these instructions. With Haraka v2 still performing favorably, there are a

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 19

couple of interesting observations. First, Haraka v2 performs better with P = 4 than with
P = 8. This is simply due to the number of 128-bit registers available; with P = 8 more
overhead occurs due to otherwise unnecessary read/write operations. Simpira v2 with
its fewer parallel AES round applications in general need to process more independent
inputs to achieve its optimal performance, as is evident from Table 5. Second, the best
performance obtained overall is 0.63 cpb on Skylake with Haraka-256 v2 for P = 4. This
matches very well with the theoretical minimum of (20 · 4)/(32 · 4) = 0.625 cycles per
processed byte which can possibly achieved.

We considered also comparing against the recent KangarooTwelve extendable
output hash from the Keccak team [BDP+]. It uses 12 rounds of the Keccak permutation
in a sponge construction, employing tree hashing when possible. However, for a short input
of only 64 bytes, only one permutation call is needed and no parallelization can be made.
The authors state a latency of ≈ 530 cycles in this case, yielding 8.28 cpb for a 512-bit
input and half that performance for a 256-bit input, even when using Skylake-optimized
implementations. In the Simpira v2 paper, the authors compare against an optimized SHA-
256 implementation which is parallelized for P = 4 “long” inputs, claiming a performance
of 2.35 cpb. For short inputs, and also considering the P = 1 cases, the performance would
be reduced to a fraction of that, excluding also SHA-256 as a competitor. However, as no
source code was provided, we were not able to verify against our own benchmarks. With
this said, generic hash functions generally obtain their best performance for longer input,
and for most such functions their poor performance on short inputs come as no surprise.

5.4 Performance of SPHINCS using Haraka v2
While the previous performance figures provide a good comparison between the functions
themselves, the actual performance figures relevant for a hash-based signature scheme are
the costs for key generation, signing and verifying a signature. The total costs for these
operations are difficult to derive by only looking at the performance of the short-input hash
function. For that reason, we modified the optimized AVX implementation of SPHINCS
given in [BHH+15], by replacing all calls to SPHINCS-256-F and SPHINCS-256-H by
our implementations of Haraka-256 v2 and Haraka-512 v2 respectively. Parallel calls to
these functions are processed to the same extent, using P = 8 calls at the same time,
and no further optimizations have been applied. As can be seen in Table 6, the current
performance gains by using Haraka v2 are between a factor of 1.50 to 2.86, depending on
the platform and operation.

Table 6: Comparison of the AVX implementation of SPHINCS-256 with our implementation
using Haraka v2. All numbers are given as the total number of cycles required, and are
measured using SUPERCOP. The speed-up factor of operations are given in parentheses.

Haswell Skylake

SPHINCS-256 Haraka v2 SPHINCS-256 Haraka v2

Key generation 3,295,808 2,060,864 (×1.60) 2,839,018 1,426,138 (×1.99)
Signing 52,249,518 34,938,076 (×1.50) 43,517,538 23,312,354 (×1.87)
Verification 1,495,416 695,222 (×2.15) 1,291,980 452,066 (×2.86)

6 Conclusion and Remarks on Future Work
Together with in-depth implementation considerations on CPUs offering AES hardware
acceleration, we presented the seemingly fastest proposal for compression/short-input
hashing on our target platforms, with a performance of less than 1 cpb on a Skylake

20 Haraka v2

desktop CPU, both with and without parallelization across multiple inputs. As a concrete
application of Haraka v2, we show that by using it inside the SPHINCS-256 hash-based
signature, we can speed up the key generation, signing and verification operations by
factors ×1.99, ×1.87 and ×2.86, respectively, on Intel’s Skylake architecture.

Despite having explored a larger design-space, Haraka v2 ended up having strong
similarities with the AESQ permutation, used in the CAESAR candidate PAEQ [BK14].
All implementations for Haraka v2, including code for security analysis and for SPHINCS
using Haraka v2, are publicly available [KLMR16].

We cover the important differential- and meet-in-the-middle attack vectors in our
security analysis. We also give security arguments for Haraka v2 against various classes of
attacks, without having to treat a large part of the hash function as a black box, as is the
usual approach. This, of course, does not rule out attacks outside of the models that we
consider. Hence, as for all other cryptographic primitives, more cryptanalysis is useful to
establish more trust in the proposal.

Returning to the question: How much faster can a hash function become, if collision
resistance is dropped from the list of requirements? With Haraka v2, we drop from T = 6
rounds to T = 5 rounds and still retain security against second-preimage attacks. We
conclude that the performance gains are limited for the class of strategies considered,
namely AES-like designs. This particularly holds when aiming at pre-quantum security
levels higher than those for collision resistance, namely 256 bits rather than 128 bits.
Aiming at higher security levels make sense, as there is evidence (at least for generic
attacks), that the post-quantum security level will be 128 bits in both cases. Of course,
this argument does not consider non-generic attacks that use capabilities of hypothetical
quantum computers, and we leave investigations in this direction as future work.

Acknowledgments
The authors would like to thank Andreas Hülsing and Peter Schwabe for their discussions
on the XMSS and SPHINCS hash-based signature schemes, in particular in relation to
the applicability of Haraka v2 in those designs. We also want to thank Shay Gueron and
Daniel J. Bernstein for insightful discussions on efficient use of the AES-NI instructions.
Additionally, we want to thank Jérémy Jean for pointing out a problem with the choice
of constants in an earlier version of this paper. Lastly, we would also like to thank the
anonymous reviewers who helped improve the quality of this paper. The work in this paper
was in part supported by European Union’s H2020 Programme under grant agreement
number ICT-645622 (PQCRYPTO), and in part by the Austrian Science Fund (project
P26494-N15).

References
[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-

Input PRF. In Progress in Cryptology - INDOCRYPT 2012, pages 489–508,
2012.

[BBG+09] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas
Peyrin, Matt Robshaw, and Yannick Seurin. SHA-3 Proposal: ECHO. Sub-
mission to NIST (updated), 2009.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. In Advances in Cryptology - CRYPTO 1996, pages
1–15, 1996.

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 21

[BDH11] Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A
Practical Forward Secure Signature Scheme Based on Minimal Security As-
sumptions. In Post-Quantum Cryptography - PQCrypto 2011, pages 117–129,
2011.

[BDP+] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. KangarooTwelve: fast hashing based on Keccak-p.

[Be] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT Bench-
marking of Cryptographic Systems. http://bench.cr.yp.to, accessed 19
November 2015.

[Bel15] Mihir Bellare. New Proofs for NMAC and HMAC: Security without Collision
Resistance. J. Cryptology, 28(4):844–878, 2015.

[Ber09] Daniel J. Bernstein. Cost analysis of hash collisions: Will quan-
tum computers make SHARCS obsolete? https://cr.yp.to/hash/
collisioncost-20090823.pdf, 2009.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe,
and Zooko Wilcox-O’Hearn. SPHINCS: Practical Stateless Hash-Based Sig-
natures. In Advances in Cryptology - EUROCRYPT 2015, pages 368–397,
2015.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum Cryptanalysis of
Hash and Claw-Free Functions. In LATIN ’98: Theoretical Informatics, pages
163–169, 1998.

[BK14] Alex Biryukov and Dmitry Khovratovich. PAEQ. Submission to the CAESAR
competition, 2014. https://competitions.cr.yp.to/round1/paeqv1.pdf.

[BMS16] Nasour Bagheri, Florian Mendel, and Yu Sasaki. Improved Rebound Attacks
on AESQ: Core Permutation of CAESAR Candidate PAEQ. In Information
Security and Privacy, ACISP 2016, 2016.

[BR97] Mihir Bellare and Phillip Rogaway. Collision-Resistant Hashing: Towards
Making UOWHFs Practical. In Advances in Cryptology - CRYPTO 1997,
pages 470–484, 1997.

[CLS06] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an Efficient and
Provable Collision-Resistant Hash Function. In Advances in Cryptology -
EUROCRYPT 2006, pages 165–182, 2006.

[CYK+12] Jiali Choy, Huihui Yap, Khoongming Khoo, Jian Guo, Thomas Peyrin, Axel
Poschmann, and Chik How Tan. SPN-Hash: Improving the Provable Re-
sistance against Differential Collision Attacks. In Progress in Cryptology -
AFRICACRYPT 2012, pages 270–286, 2012.

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Cryptanalysis
of simpira v1. Cryptology ePrint Archive, Report 2016/244, 2016. http:
//eprint.iacr.org/2016/244.

[DS11] Itai Dinur and Adi Shamir. An Improved Algebraic Attack on Hamsi-256. In
Fast Software Encryption - FSE 2011, pages 88–106, 2011.

[DSW08] Christophe De Canniere, Hisayoshi Sato, and Dai Watanabe. Hash Function
Luffa: Supporting Document. Submission to NIST (Round 1), 2008.

http://bench.cr.yp.to
https://cr.yp.to/hash/collisioncost-20090823.pdf
https://cr.yp.to/hash/collisioncost-20090823.pdf
https://competitions.cr.yp.to/round1/paeqv1.pdf
http://eprint.iacr.org/2016/244
http://eprint.iacr.org/2016/244

22 Haraka v2

[Fuh10] Thomas Fuhr. Finding Second Preimages of Short Messages for Hamsi-256.
In Advances in Cryptology - ASIACRYPT 2010, pages 20–37, 2010.

[GKM+11] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a
SHA-3 candidate. Submission to NIST (Round 3), 2011.

[GM16] Shay Gueron and Nicky Mouha. Simpira v2: A Family of Efficient Permu-
tations Using the AES Round Function. Cryptology ePrint Archive, Report
2016/122, 2016.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of
Lightweight Hash Functions. In Advances in Cryptology - CRYPTO 2011,
pages 222–239, 2011.

[Gro96] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search.
In ACM Symposium on the Theory of Computing, pages 212–219, 1996.

[HHJ09] Shai Halevi, William E. Hall, and Charanjit S. Jutla. The Hash Function
Fugue. Submission to NIST (updated), 2009.

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating Multi-target
Attacks in Hash-Based Signatures. In Public-Key Cryptography - PKC 2016,
pages 387–416, 2016.

[IBM16] IBM. ILOG CPLEX Optimizer, 2016.

[Inc16] Gurobi Optimization Inc. Gurobi Optimizer Reference Manual, 2016.

[Ind08] Sebastiaan Indesteege. The LANE hash function. Submission to NIST, 2008.

[Jea17] Jérémy Jean. Cryptanalysis of Haraka. IACR Transactions on Symmetric
Cryptology, 1(1), 2017.

[JN16] Jérémy Jean and Ivica Nikolic. Efficient Design Strategies Based on the AES
Round Function. In Fast Software Encryption - FSE 2016, 2016.

[JNP14] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Improved Crypt-
analysis of AES-like Permutations. J. Cryptology, 27(4):772–798, 2014.

[KLL+14] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger,
Peter Schwabe, and Tolga Yalçın. Prøst. Submission to the CAESAR compe-
tition, 2014. https://competitions.cr.yp.to/round1/proestv1.pdf.

[KLMR16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka code repository. https://github.com/kste/haraka, 2016.

[Knu94] Lars R. Knudsen. Truncated and Higher Order Differentials. In Fast Software
Encryption - FSE 1994, pages 196–211, 1994.

[KS05] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions
for Much Less than 2n Work. In Advances in Cryptology - EUROCRYPT
2005, pages 474–490, 2005.

[Kü09] Özgül Küçük. The Hash Function Hamsi. Submission to NIST (updated),
2009.

[Lam79] Leslie Lamport. Constructing digital signatures from a one way function.
Technical Report SRI-CSL-98, SRI International Computer Science Laboratory,
1979.

https://competitions.cr.yp.to/round1/proestv1.pdf
https://github.com/kste/haraka

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 23

[LSWD04] Tri Van Le, Rüdiger Sparr, Ralph Wernsdorf, and Yvo Desmedt.
Complementation-Like and Cyclic Properties of AES Round Functions. In
Advanced Encryption Standard - AES, 4th International Conference, AES
2004, pages 128–141, 2004.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In
Fast Software Encryption - FSE 2009, pages 260–276, 2009.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
Linear Cryptanalysis Using Mixed-Integer Linear Programming. In Inscrypt
2011, pages 57–76, 2011.

[Nik14] Ivica Nikolić. Tiaoxin. Submission to the CAESAR competition, 2014.
https://competitions.cr.yp.to/round1/paeqv1.pdf.

[Pro] PQCRYPTO EU Project. Paris workshop, November 2015.

[Rec10] Christian Rechberger. Second-Preimage Analysis of Reduced SHA-1. In
ACISP 2010, pages 104–116, 2010.

[Røn16] Sondre Rønjom. Invariant subspaces in simpira. IACR Cryptology ePrint
Archive, 2016:248, 2016.

[SA09] Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster Than
Exhaustive Search. In Advances in Cryptology - EUROCRYPT 2009, pages
134–152, 2009.

[Sas11] Yu Sasaki. Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and
an Application to Whirlpool. In Fast Software Encryption - FSE 2011, pages
378–396, 2011.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic Security Evaluation and (Related-key) Differential Characteristic
Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-
Oriented Block Ciphers. In Advances in Cryptology - ASIACRYPT 2014,
pages 158–178, 2014.

[SLW+10] Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta. Non-full-
active Super-Sbox Analysis: Applications to ECHO and Grøstl. In Advances
in Cryptology - ASIACRYPT 2010, pages 38–55, 2010.

[WFW+12] Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and Jian Zou.
(Pseudo) Preimage Attack on Round-Reduced Grøstl Hash Function and
Others. In Fast Software Encryption - FSE 2012, pages 127–145, 2012.

[WP14] Hongjun Wu and Bart Preneel. AEGIS. Submission to the CAESAR compe-
tition, 2014. https://competitions.cr.yp.to/round1/aegisv1.pdf.

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the
Full SHA-1. In Advances in Cryptology - CRYPTO 2005, pages 17–36, 2005.

[YWZW05] Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The Second-
Preimage Attack on MD4. In CANS 2005, pages 1–12, 2005.

https://competitions.cr.yp.to/round1/paeqv1.pdf
https://competitions.cr.yp.to/round1/aegisv1.pdf

24 Haraka v2

A Round Constants

Table 7: Round constants used in π512 and π256.

RC0 0684704ce620c00ab2c5fef075817b9d RC20 d3bf9238225886eb6cbab958e51071b4
RC1 8b66b4e188f3a06b640f6ba42f08f717 RC21 db863ce5aef0c677933dfddd24e1128d
RC2 3402de2d53f28498cf029d609f029114 RC22 bb606268ffeba09c83e48de3cb2212b1
RC3 0ed6eae62e7b4f08bbf3bcaffd5b4f79 RC23 734bd3dce2e4d19c2db91a4ec72bf77d
RC4 cbcfb0cb4872448b79eecd1cbe397044 RC24 43bb47c361301b434b1415c42cb3924e
RC5 7eeacdee6e9032b78d5335ed2b8a057b RC25 dba775a8e707eff603b231dd16eb6899
RC6 67c28f435e2e7cd0e2412761da4fef1b RC26 6df3614b3c7559778e5e23027eca472c
RC7 2924d9b0afcacc07675ffde21fc70b3b RC27 cda75a17d6de7d776d1be5b9b88617f9
RC8 ab4d63f1e6867fe9ecdb8fcab9d465ee RC28 ec6b43f06ba8e9aa9d6c069da946ee5d
RC9 1c30bf84d4b7cd645b2a404fad037e33 RC29 cb1e6950f957332ba25311593bf327c1
RC10 b2cc0bb9941723bf69028b2e8df69800 RC30 2cee0c7500da619ce4ed0353600ed0d9
RC11 fa0478a6de6f55724aaa9ec85c9d2d8a RC31 f0b1a5a196e90cab80bbbabc63a4a350
RC12 dfb49f2b6b772a120efa4f2e29129fd4 RC32 ae3db1025e962988ab0dde30938dca39
RC13 1ea10344f449a23632d611aebb6a12ee RC33 17bb8f38d554a40b8814f3a82e75b442
RC14 af0449884b0500845f9600c99ca8eca6 RC34 34bb8a5b5f427fd7aeb6b779360a16f6
RC15 21025ed89d199c4f78a2c7e327e593ec RC35 26f65241cbe5543843ce5918ffbaafde
RC16 bf3aaaf8a759c9b7b9282ecd82d40173 RC36 4ce99a54b9f3026aa2ca9cf7839ec978
RC17 6260700d6186b01737f2efd910307d6b RC37 ae51a51a1bdff7be40c06e2822901235
RC18 5aca45c22130044381c29153f6fc9ac6 RC38 a0c1613cba7ed22bc173bc0f48a659cf
RC19 9223973c226b68bb2caf92e836d1943a RC39 756acc03022882884ad6bdfde9c59da1

B Test Vectors for Haraka v2
Haraka-512 v2
Input : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f

Output : be 7f 72 3b 4e 80 a9 98 13 b2 92 28 7f 30 6f 62
5a 6d 57 33 1c ae 5f 34 dd 92 77 b0 94 5b e2 aa

Haraka-256 v2
Input : 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
Output : 80 27 cc b8 79 49 77 4b 78 d0 54 5f b7 2b f7 0c

69 5c 2a 09 23 cb d4 7b ba 11 59 ef bf 2b 2c 1c

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 25

C Active S-boxes

Table 8: Lower bound on the number of active S-boxes in a differential trail for the
permutation and for the permutation when used in our mode for π512 ((a), (b), (c)) and
for π256 ((d), (e), (f)). The cell color indicates the number of active S-boxes per total
number of AES rounds (more transparent means fewer active).

(a) π512 DM-permutation

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 45 50 55
3 9 45 66 75 84
4 25 80 90 100 125
5 41 130 114 125 154
6 60 150 138 150 195
7 64 170 162 175 224

(b) π512 permutation used in DM-mode

m

T 1 2 3 4 5

1 0 3 7 17 25
2 3 17 37 46 53
3 7 37 58 71 82
4 17 72 82 96 123
5 33 128 106 121 152
6 52 142 130 146 193
7 60 162 154 171 222

(c) π512 permutation used in DM-mode leading
to collision

m

T 1 2 3 4 5

1 0 9 13 17 25
2 12 34 37 46 58
3 18 76 60 71 91
4 32 93 84 96 128
5 39 134 108 121 161
6 52 159 132 146 198
7 60 198 156 171 231

(d) π256 permutation

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 40 50 55
3 9 35 59 75 84
4 25 60 80 100 125
5 34 80 101 125 153
6 45 100 122 150 190
7 52 110 143 175 221

(e) π256 permutation used in DM-mode

m

T 1 2 3 4 5

1 1 5 9 25 26
2 5 25 40 50 55
3 9 35 59 75 84
4 25 60 80 100 125
5 34 80 101 125 153
6 45 100 122 150 190
7 52 110 143 175 221

(f) π256 permutation used in DM-mode leading
to collision

m

T 1 2 3 4 5

1 13 30 21 25 34
2 20 50 42 50 65
3 38 65 63 75 99
4 35 75 84 100 130
5 56 105 105 125 164
6 55 125 126 150 195
7 73 140 147 175 229

D Meet-in-the-middle attack on Haraka-512 v2
For Haraka-512 v2 we can attack 4 rounds in the following way (see Figure 6):

1. Randomly select values for the constant bytes in AC4 .

26 Haraka v2

Target value

Match

Initial Structure

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB SR MC AC

SB0 SR0 MC0 AC0

SB1 SR1 MC1 AC1

SB2 SR2 MC2 AC2

SB3 SR3 MC3 AC3

SB4 SR4 MC4 AC4

SB5 SR5 MC5 AC5

SB6 SR6 MC6 AC6

SB7 SR7 MC7 AC7

mix

mix

mix

mix

Figure 6: Meet-in-the-middle attack on 4 rounds of Haraka-512 v2. All are unknown,
are constant, neutral bytes backward, neutral bytes forward and are the bytes

truncated at the output.

2. For all 28 possible choices for AC4
∗,0 which keep MC4

0,0,MC4
1,0,MC4

2,0 constant ,
compute forward to obtain the state in MC0 and store the result in a table T .

3. For all 28 possible choices for MC5
∗,4 which keep AC5

0,4,AC5
1,4,AC5

2,4 constant ,
compute backward to obtain the state in AC0.

4. Check if there is an entry in T that matches with AC0 through MixColumns. If so
check whether the remaining bytes also match, otherwise repeat from step 2 (or step
1 if necessary).

Complexity. Computing the table T and 28 values for AC0 costs 28 4-round Haraka-512 v2
evaluations and requires 28 · 16 bytes of memory. The success probability for the match is
2−32 for each state. Hence, on average 28 · 28 · 2−128 = 2−112 candidates will remain in
Step 4. There are still 12 byte conditions which have to be satisfied in each state, which
can be reduced to 4 byte conditions by using the fact that we can freely choose those
bytes which are truncated at the output. Therefore, if we repeat step 1-4 2240 times we
expect to find 2240 · 2−112 · 2−4·4·8 = 1 solution. The overall complexity is 2240 · 28 = 2248

evaluations of Haraka-512 v2 to find a preimage.

E Considerations Regarding Modes of Operation and Lin-
ear Mixing

When designing the general constructions for the compression functions, we initially had
three approaches in mind:

1. Davies-Meyer construction with a block cipher (referred to as dm),

2. Davies-Meyer construction with a permutation (referred to as dmperm), and

3. Sponge construction (referred to as sponge).

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 27

For the first construction, we used a state of two blocks initialized to zero. As part
of the round function Rt, we would apply two parallel calls the AES as part of the aes
operation. The actual bits of the message would be taken into the state over several
rounds via a simple message expansion procedure. While the block cipher approach led to
a small context size, the simplicity of the message expansion implied the possibility for the
attacker to control differences injected even after many rounds, thus obtaining collisions
by difference cancellation. While this can potentially be mitigated by a more complex
message expansion, this would in turn lead to harder analysis and slower implementations.

In order to avoid the negative consequences on security from a too simple message
expansion, and to performance from a too complex message expansion, we opted to
abandon the block cipher-based approach of (1) in favor of a permutation-based approach.
In particular, we load the full message into the state of the permutation from the beginning.
As such, the state size for Haraka-512 v2 must be at least 64 bytes, while that of Haraka-
256 v2 must be at least 32 bytes, or, equivalently b = 4 and b = 2 blocks, respectively.
With this, we considered two general approaches, namely (2) and (3) above. Firstly, one
approach is to use a Davies-Meyer construction where the message is loaded into the state
which has the size of the domain in bits. This is the approach we landed on, and that
described in Section 2 above. Finally, with a Sponge-based approach, one would choose
the state size to be larger than the size of the domain. The state is initialized to some
constant, e.g. all zeroes. The message is XORed into the most significant |M | bits of the
state, and a permutation is applied. The output is now taken as e.g. the most significant
256 bits in the case of both Haraka-512 v2 and Haraka-256 v2.

While the dm approach above was found to lead to significantly poorer security margins,
in comparison to the dmperm and sponge approaches, we nevertheless implemented all
three approaches in C.

For the sponge approach, we used a state consisting of 6 blocks, or, equivalently, 96
bytes. For dm, we used a state of 2 blocks, initialized to zero. The message expansion
consisted of shuffling message bits and XORing them to other message bits, so, in other
words, a simple linear expansion. In all cases, the permutation applied in each round had
the form of aes (consisting of m rounds of the AES applied in parallel to each block of the
state) followed by a linear mixing. Here, we focus on a fixed mixing layer (in particular
using the blend mixing detailed below) while, in Section 5.2, we describe considerations
regarding different approaches to the linear mixing.

In our consideration here, the mixing layer is implemented by using the blend (or
pblendw) instruction which is available in Intel CPUs supporting SSE 4.1. The blend
instruction itself takes in two block operands and an 8-bit mask w. Let y = blendw(a, b)
be the blend operation on operands a and b using mask w. Then the ith least significant
16-bit word of y is determined as the corresponding word of either a or b, depending on
the value of the ith bit of w. As such, blend gives us essentially a way to mix two blocks
without permuting the byte positions. The mixing using blend is now defined as using
blendw on block i with block i+ 1 modulo the number of blocks of the state. Fixing m = 2,
i.e. using two AES rounds per round, Figure 7 details the performance using the three
general construction approaches dm, dmperm and sponge, described above. The numbers
are taken as the minimum over choices of P in the range P = 1, . . . , 16. Note, that the
optimal choice for a particular value of P may not be constant across choices of the number
of rounds T . Evidently, the dm approach has the best overall performance. The sponge
approach is significantly slower than the dmperm approach when T > 3. To that end, and
combined with the observation regarding the security properties of the dm approach, this
led to the overall choice of the dmperm construction used for both Haraka-512 v2 and
Haraka-256 v2.

For the linear mixing layer, we considered several possible approaches:

1. The mix512 and mix256 approaches described in Section 2, using the punpckhdq and

28 Haraka v2

2 4 6 8 10
0

1

2

3

Rounds T

Pe
rf
or
m
an

ce
(c
pb

) dm
dmperm
sponge

(a) Haswell

2 4 6 8 10
0

1

2

Rounds T

Pe
rf
or
m
an

ce
(c
pb

) dm
dmperm
sponge

(b) Skylake

Figure 7: Performance using m = 2 for each of the three general Haraka-512 v2 construc-
tions considered

blendaa mix512 shuffle-xor

Figure 8: Effect of applying one round of the mixing layers on the state of π512.

punpckldq instructions;

2. The blend approach, as described above, using the pblendw instruction; and

3. Using a combination of a block-wise byte shuffle and XOR (denoted shuffle-xor)
with the following state block, i.e. where block i updated with a byte shuffle and
XORed with block i+ 1 modulo the number of blocks, to obtain the updated block.
This approach uses the pshufb and pxor instructions.

2 4 6 8 10

1

2

3

Rounds T

Pe
rf
or
m
an

ce
(c
pb

) mix512
blend

shuffle-xor

(a) Haswell

2 4 6 8 10

0.5

1

1.5

Rounds T

Pe
rf
or
m
an

ce
(c
pb

) mix512
blend

shuffle-xor

(b) Skylake

Figure 9: Performance of Haraka-512 v2 using m = 2 for each of the three approaches to
linear mixing considered

The effect of each of this operations applied to the state of π512 can be seen in Figure 8.
On both the Haswell and Skylake microarchitectures, the instructions used for those three
approaches all have a latency of one clock cycle, while the inverse throughput varies from

Stefan Kölbl, Martin M. Lauridsen, Florian Mendel and Christian Rechberger 29

e.g. 0.33 instructions/cycle for the XOR operation to 1 instruction/cycle for the punpckhdq
and punpckldq instructions.

Figure 9 gives a performance comparison of the three approaches to the linear mixing
layer. As shown, with the exception of themix512 operation on Haswell, all other approaches
have comparable performance for both Haswell and Skylake. Concludingly, it makes sense
to choose the approach yielding the best security properties, namely the mix512 and mix256
operations.

	Introduction
	Contributions
	Related Work
	Recent Developments in Short-Input Hashing

	Specification of Haraka v2
	Specification of Pi512 and Pi256

	Security Requirements
	Preliminaries
	Capabilities of an Attacker

	Analysis of Haraka v2
	Security Claims
	Second-Preimage Resistance
	Collision Resistance
	Design Choices

	Implementation Aspects and Performance
	Multiple Inputs
	Implementation of Linear Mixing
	Haraka v2 Performance and Discussion
	Performance of SPHINCS using Haraka v2

	Conclusion and Remarks on Future Work
	Round Constants
	Test Vectors for Haraka v2
	Active S-boxes
	Meet-in-the-middle attack on Haraka-512 v2
	Considerations Regarding Modes of Operation and Linear Mixing

