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The bacterial nucleoid is highly condensed and forms compartment-like structures
within the cell. Much attention has been devoted to investigating the dynamic topology
and organization of the nucleoid. In contrast, the specific nucleoid organization, and
the relationship between nucleoid structure and function is often neglected with regard
to importance for adaption to changing environments and horizontal gene acquisition.
In this review, we focus on the structure-function relationship in the bacterial nucleoid.
We provide an overview of the fundamental properties that shape the chromosome
as a structured yet dynamic macromolecule. These fundamental properties are then
considered in the context of the living cell, with focus on how the informational
flow affects the nucleoid structure, which in turn impacts on the genetic output.
Subsequently, the dynamic living nucleoid will be discussed in the context of evolution.
We will address how the acquisition of foreign DNA impacts nucleoid structure,
and conversely, how nucleoid structure constrains the successful and sustainable
chromosomal integration of novel DNA. Finally, we will discuss current challenges and
directions of research in understanding the role of chromosomal architecture in bacterial
survival and adaptation.

Keywords: bacterial nucleoid structure, gene expression, nucleoid associated proteins, genome evolution,
chromosomal architecture

INTRODUCTION

The bacterial chromosome has a free coiling linear length much longer than the average cell
and hence requires extensive compaction to fit flexibly inside the cytoplasm (Reyes-Lamothe
et al., 2008; De Vries, 2010). For instance, a typical Escherichia coli cell 2 µm in length hosts a
chromosome composed of 4.6 megabase pairs. Assuming that each base pair occupies 3.4 Å in
length, this makes the linear length of the genome 1.7 mm, about 850 times the cell length. It does,
however, fit inside the confinements of the cell where it occupies ∼15% of the volume (Reyes-
Lamothe et al., 2008). The bacterial chromosome and the structuring proteins are collectively
referred to as the nucleoid, which is highly condensed and form compartment-like structures
within the cell (Thanbichler et al., 2005a). The specific nucleoid organization is often highly
underestimated when considering the fact that bacterial species often excels in quickly adapting
to significant changes in the environment (Thanbichler et al., 2005a,b; Thanbichler and Shapiro,
2006; Wiggins et al., 2010).
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Excellent reviews have been written on the properties of
the bacterial nucleoid, and the forces involved in shaping the
nucleoid (Dillon and Dorman, 2010; Dorman, 2013b). In this
review, we expand on this topic, with focus on the structure-
function relationship of the bacterial nucleoid and how it
relates to evolution. A general overview of the fundamental
physical and chemical properties that shape the chromosome
will be considered in the context of the living cell. Finally,
the dynamic living nucleoid will be discussed in the context
of evolution. How does acquisition of foreign DNA affect
the nucleoid structure, and conversely, how does the nucleoid
structure constrain the successful and sustainable chromosomal
integration of novel DNA? In the end, we will look at current
research gaps and discuss fundamental concepts that emanate
from these.

THE LIVING NUCLEOID

The chromosome is composed of DNA and exists in vivo in
complex with a multitude of proteins that shape the DNA
and control its genetic output according to the physiological
and environmental conditions of the cell. In this review, we
divide the forces that shape the nucleoid into intrinsic and
extrinsic forces. Intrinsic forces are physical and chemical
properties universal to DNA polymers, whereas extrinsic
forces are imposed on the nucleoid by interactions with
other macromolecules, such as nucleoid associated proteins
(NAPs).

Intrinsic Forces of DNA
Chemical Properties
Besides being a carrier of genetic information, the DNA
sequence ultimately dictates the structural conformation of
the nucleoid, directly or indirectly via binding of extrinsic
factors (Japaridze et al., 2017). Some of the earliest studies
of DNA structure reported that the X-ray diffraction pattern
of DNA crystals depended on the hydration level, and the
two observed forms were termed Alpha (A-form) and Beta
(B-form) (Figure 1C; Franklin and Gosling, 1953a,b). The
A-form was shown to be 20% shorter than the B-form per
base pair, at the expense of a larger diameter (Franklin and
Gosling, 1953a,b; Watson and Crick, 1953; Waters et al., 2016).
Although the B-form is highly favored in vivo due to high
water activity, a dynamic equilibrium likely exists between the
two DNA structures in vivo. GC rich sequences tend to adopt
A-form, and the same is true for RNA-DNA and RNA-RNA
complexes (Shakked et al., 1989; Waters et al., 2016). Binding of
extrinsic factors may also shift the conformation of DNA from
B- to A-form due to solvent access inhibition (DiMaio et al.,
2015).

Both A and B-form DNA double helices contain minor
and major grooves, with the major groove being superior in
distinguishing between bases and dominant site for binding
of macromolecules that recognize DNA sequences (Franklin
and Gosling, 1953a,b; Watson and Crick, 1953; Travers and
Muskhelishvili, 2015). However, the grooves of the B-form DNA

are more accessible compared to those of the more compact
Alpha form (Franklin and Gosling, 1953a,b).

Physical Properties
The dynamic helical nature and closed-circular form of
prokaryotic chromosomes naturally results in the formation
of DNA coiling whereby winding of the polymer around its
longitudinal axis and twirling introduces changes in the DNA
conformation (Figure 1A; Thanbichler et al., 2005a; Gilbert and
Allan, 2014). In this review coiling describes local changes to
DNA coil (<1.000 bp), whereas supercoiling is used to describe
coiling on a major scale (>1.000 bp). Winding in the same
direction as the helix will tighten the structure and introduce
positive coiling, whereas winding in the opposite direction will
loosen the helix and produce negative coiling (Gilbert and Allan,
2014; Corless and Gilbert, 2016). Local introduction of coils
in the nucleoid can cause global coils termed supercoils that
structure and compartmentalize large parts of the molecule in a
sequence-dependent manner (Muskhelishvili and Travers, 2016).
Extensive supercoiling will reduce the accessibility of DNA base
pairs; however, relatively low levels of negative supercoiling
increases the accessibility of the DNA (Gilbert and Allan, 2014).
Interestingly, regardless of biological origin, purified closed-
circular DNA molecules are almost always negatively supercoiled,
and rarely relaxed, indicating that active DNA underwinding
occurs in vivo (Bauer, 1978).

Two distinct types of DNA supercoiling structures have been
described (Figure 1B). Plectonemic-type is a broad term applied
to any higher-order supercoiling where strands are intertwined in
a simple and regular manner. Although plectonemic supercoiling
is the most stable and common higher-order DNA structure
in vitro and in vivo, it is not compacting the DNA sufficiently
well to solely account for the nucleoid fitting inside the confines
of a cell (Thanbichler et al., 2005a,b). Solenoidal type supercoils
differ from plectonemic in that they are less stable, but much
more compact, due to a tight left-handed turn as opposed to the
right-handedness of plectonemic supercoils (Thanbichler et al.,
2005a,b). Both types are readily interchangeable and exist in
a dynamic equilibrium determined by interaction with DNA
binding proteins in vivo (Thanbichler et al., 2005b; Corless and
Gilbert, 2016). In addition, alternative local DNA structures
such as cruciform structures of palindromic sequences, Z-DNA,
G-quadruplexes, and opening of the double helix into single-
stranded DNA have been reported. These specialized structures
are induced by negative supercoiling, thus underlining the ability
of DNA supercoiling to regulate the nucleoid structure on a local
and global scale (Mizuuchi et al., 1982; Gilbert and Allan, 2014;
Corless and Gilbert, 2016).

DNA is not an inert macromolecule, but rather a highly
flexible macromolecule that changes shape and conformation
depending on physiological conditions in a somewhat sequence
dependent manner. The shape is however just the first tier
of complexity; both the specific sequence, structure, and
strandedness of the DNA can facilitate interactions with extrinsic
factors that in turn may induce conformational changes, which
may further regulate the binding of other extrinsic factors
(Shakked et al., 1989; Travers and Muskhelishvili, 2015).
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FIGURE 1 | Intrinsic properties of DNA. (A) Basic coiled conformational states of DNA. In its relaxed state and under physiological conditions, DNA forms a double
helix with 10.5 base pairs per turn. Introducing or removing turns causes the DNA to form local coiled elements either as twists in the linear dimension or by the
formation of higher-order writhes (Corless and Gilbert, 2016). (B) Coiled conformational states of large DNA fragments. Two major higher-order supercoiled states of
DNA, the stable plectonemic state and the less stable but more compact solenoidal state, emerge through extensive over- or under-winding of the DNA helix
(Corless and Gilbert, 2016). (C) Rough sketch of the two basic molecular forms of DNA. At low hydration levels, DNA will take the A-form, the compact and wider
helix form. At physiological conditions, DNA will adopt the more accessible B-form.

Theoretical and experimental research suggests that DNA in vivo
behaves as cross-linked DNA polymer gel rather than free coiling
DNA, indicating that the nucleoid interacts extensively with
extrinsic factors (De Vries, 2010; Cagliero and Jin, 2013). In vivo
supercoiling is further highly influenced by binding of extrinsic
protein factors to the DNA (Gilbert and Allan, 2014).

Extrinsic Forces
Having no specific compartment within the highly crowded
cytoplasm, the nucleoid is free to interact with a plethora of
enzymes, proteins, metabolites, and other molecules throughout
the cell cycle. All these extrinsic factors influence the nucleoid
structure and are influenced by the interaction themselves. Of
these factors topoisomerases that regulate DNA supercoiling
levels are of particular interest.

Topoisomerases and Supercoiling
Topoisomerases work by either nicking one strand in the DNA
and let it rotate around the non-cut DNA strand (Type 1),
or by cutting both strands of the DNA and passing another

part of the DNA through this gap (Type 2) (Bush et al.,
2015). Two topoisomerase enzymes are essential for DNA
replication progression and/or DNA decatenation: DNA gyrase
(Topoisomerase II) and Topoisomerase IV (Bush et al., 2015).
The DNA gyrase, or topoisomerase II, is an ATP-dependent
Type 2 topoisomerase that generates negative supercoils in
the nucleoid and is important for the removal of positive
supercoils in front of the replication forks. Thus, DNA gyrase
is heavily involved in maintaining chromosomal supercoiling
levels (Schvartzman et al., 2013). Topoisomerase IV is another
ATP-dependent Type 2 topoisomerase essential for decatenation
of newly replicated DNA before chromosomal segregation
(Schvartzman et al., 2013). It relaxes both negative and positive
supercoiling, the latter at a 20-fold faster rate, but is unable
to introduce supercoiling as DNA gyrase (Schvartzman et al.,
2013; Bush et al., 2015). Besides these enzymatic interactions,
which actively manipulate DNA supercoiling levels, a plethora of
nucleoid-structuring proteins bind to the nucleoid and modulate
its structure through DNA bending rather than active opening
and twisting of the DNA. These nucleoid-structuring proteins can
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generate- and to some extent restrict supercoiling through simple
DNA binding events.

Nucleoid Associated Proteins
Proteins that modulate the nucleoid structure are collectively
referred to as NAPs. They have different recognition capabilities
that identify binding sites by sequence specificity, through
recognition and interaction with specific bases, and/or structural
specificity, through interaction with the phosphate-backbone
structure (Duzdevich et al., 2014). In general, the NAPs are
highly conserved within specific bacterial families, but a few
are highly conserved among all prokaryotic species, suggesting
a fundamental advantage of nucleoid structuring that has been
further improved in the course of evolution. All bacterial species
encode at least one NAP (Dorman, 2014).

The binding properties of NAPs are fundamental to their
function. By binding to the nucleoid, the NAPs can bend the
DNA and thereby bring distant domains into proximity, or
disrupt existing structures (Macvanin and Adhya, 2012; Lioy
et al., 2018). NAPs can further connect two distinct parts
of the nucleoid through binding at two or more positions
followed by bridge formation (Song and Loparo, 2015). In general
NAPs have little to no sequence-specific DNA recognition,
structural recognition may, however, possibly result in sequence
composition specific recognition. Many of them do have a
preference for AT-rich regions (Lang et al., 2007; Gordon et al.,
2011), possibly due to a higher requirement for regulation
and structuring of these regions due to the intrinsic instability
of AT-rich DNA. NAP binding to AT-rich promoter regions
also facilitates transcriptional regulation of horizontally acquired
genes that are often AT-rich (Lucchini et al., 2006; Gordon et al.,
2011). One intriguing example of transcriptional regulation is
performed by the histone-like nucleoid structuring protein H-NS.
Polymers of H-NS often bind large AT-rich regions of DNA, such
as horizontally acquired DNA, and thus inhibit transcription
of these regions (Lucchini et al., 2006). Transcription from
neighboring DNA regions can, however, disrupt local H-NS
repression (Wade and Grainger, 2018). Interestingly, Salmonella
typhimurium H-NS knockouts exhibit severely reduced growth
rates, rescuable in combination with mutations to or inactivation
of the stress response sigma factor RpoS, suggesting a coordinated
response of H-NS and RpoS under stress (Lucchini et al., 2006,
2009). Another property of NAP binding is the containment
of supercoiling it may impose (Higgins, 2016). Intriguingly, in
E. coli, the specific NAP encoding genes are positioned on the
chromosome according to the abundance of the NAPs relative
to growth phase, with genes for NAPs highly expressed during
optimal growth, positioned closer to the origin, and genes for
NAPs highly expressed during late stage growth, positioned closer
to the terminus, suggesting a spatiotemporal gene expression
pattern for NAPs during the bacterial growth cycle (Sobetzko
et al., 2012; Japaridze et al., 2017).

Table 1 and Figure 2 contain general information about some
of the most abundant and well-known NAPs from E. coli. Certain
NAPs, such as HU, are conserved among almost all prokaryotes;
others, such as H-NS, Fis, and Dps, are found only in E. coli and
related enterobacteria (Dillon and Dorman, 2010). TA
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FIGURE 2 | Extrinsic forces influencing the chromosome structure. (A) Intracellular levels of the major NAPs during growth phases (Not to scale) (Talukder and
Ishihama, 1999, 2015). (B) Impact of different NAPs on the nucleoid superstructure (Badrinarayanan et al., 2015; Winardhi et al., 2015; Yamanaka et al., 2018). For
detailed description of structural impact see Table 1.

Elucidation of Global Nucleoid Structure
The most frequently used method for determining chromosomal
structure is variants of Chromosomal Conformation Capture
(3C). Using crosslinking coupled with ligation and subsequent
site detection, this method makes it possible to determine
which chromosomal positions that are bridged into proximity.
This way it is possible to determine a rough map of relative
spatial distance between specific nucleoid positions. For a
review on methods investigating chromosomal interactions, see
Davies et al. (2017). In addition, many studies have used
fluorescently tagged NAPs or DNA-binding fluorophores to
determine the physical structure of the nucleoid as well as
its subcellular localization and condensation level (Woldringh
et al., 1994; Talukder and Ishihama, 1999; Cabrera and Jin,
2003).

The nucleoid of E. coli has been investigated extensively
and has been shown to assume a defined structure and relative
position inside the cell (Valens et al., 2004; Espeli et al.,
2008; Dupaigne et al., 2012; Cagliero et al., 2013). Based
on 3C and DNA-DNA interaction studies, four structured
macrodomains of the nucleoid have been identified (Valens
et al., 2004; Lioy et al., 2018). These domains are the
Origin, Right, Terminus, and Left domains (Figure 3A). Two
additional non-structured domains, called the non-structured
(or mixed) right and left domains, exist between the origin
and flanking regions on both sides, respectively. In E. coli,
an investigation into the global supercoiling pattern revealed
that a gradient of negative supercoiling exists in stationary
phase cells with the terminus being the most negatively
supercoiled. This gradient is absent in exponential phase cells
(Figure 3E; Lal et al., 2016). Furthermore, the super-helical
density of the nucleoid, its compaction level, and the relative
positioning of specific domains is highly dynamic and highly

dependent on the growth phase (Figure 3E). These observations
indicate that the state of supercoiling could be affected by
the activity of informational flow, i.e., by DNA replication
and transcription processes (Hadizadeh Yazdi et al., 2012;
Dorman, 2013a,b; Kleckner et al., 2014; Talukder and Ishihama,
2015).

Informational Relay and Its Relation to
the Nucleoid Structure
Replication and Supercoiling
Common for all processes related to the flow of genetic
information – whether it is the replication or gene expression –
is that they in some way affect nucleoid conformation
(Figures 3A,B; Crick, 1970). Genome replication is carried
out by the replisome consisting of several different enzymes
including DNA polymerase III (Kelman, 1995). During
this process, the DNA must be opened to allow Watson-
Crick base pairing between newly incorporated nucleotides
and their parental strand templates (Corless and Gilbert,
2016). Since the replication machinery is too big to rotate
along the DNA helix quickly enough to account for the
fast progression of DNA synthesis, it forces the upcoming
un-replicated DNA to be tightened, thus creating positive
supercoiling ahead of the replication fork. Conversely, negative
supercoiling builds up in the newly synthesized semiconserved
DNA tailing the replication fork (Keszthelyi et al., 2016).
This introduces two problems: on one hand accumulation
of positive supercoiling in front of the replication fork
eventually blocks the replisome progression and, on the
other hand, excess negative supercoiling trailing the fork
causes the newly synthesized dsDNA strands to catenate
and thereby hinders chromosome segregation (Joshi et al.,
2013). To prevent these lethal scenarios the bacterium utilizes
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FIGURE 3 | Informational relay and the nucleoid structure. (A) Simplified representation of the Escherichia coli chromosome and its interactions with the DNA
replication- and transcription machineries. (B) Sketch of how replication and transcription impact nucleoid structure through changes in supercoiling levels (Corless
and Gilbert, 2016). (C) Depiction of how translation and transertion affects nucleoid structure by pulling the nucleoid toward the membrane (Bakshi et al., 2015).
(D) Relative changes in the cellular level of individual sigma factors during distinct growth phases (Gruber and Gross, 2003). (E) Cellular levels of supercoiling and
emergence of superhelical gradient across the nucleoid during distinct growth phases (Lal et al., 2016).

topoisomerases to control supercoiling levels throughout the cell
cycle.

Chromosome replication initiates at one spot, the origin
of replication (oriC) (Wolanski et al., 2015). Initiation
of replication relies on the interaction of several NAPs
at the oriC sequence; HU, FIS, and IHF are known to
stimulate initiation, and DnaA is required to open the DNA
duplex (Wolanski et al., 2015). The replication machinery
progresses along the length of the nucleoid on both sides
in a bidirectional manner and terminates replication at the
terminus macrodomain, followed by segregation of the sister
nucleoids (Wang et al., 2013b). During rapid growth, the
nucleoid is highly condensed, and each cell can have several
overlapping replications cycles taking place simultaneously,
thus creating differences in gene copy number depending
on their genomic proximity to the origin of replications
(Wang and Rudner, 2014). Upon transition to stress or slower
growth the nucleoid relaxes and expands into the entire
cytoplasm, and the gene copy ratio between origin proximal-
and terminus proximal genes approaches one (Figure 4;
Wang and Rudner, 2014).

How nucleoid domains are positioned in the cell during
replication has been determined in multiple bacterial species
including E. coli (Wang and Rudner, 2014). During slow-
growth, the nucleoid adopts a transverse organization, where
the origin is positioned at mid-cell, with the structured left and
right regions flanking either side, respectively, and the terminus
connecting these flanks. Before cell division the two sister
nucleoids retain this organization but are segregated to either
side of the septal plane at mid-cell (Wang and Rudner, 2014). At

FIGURE 4 | Cellular space occupied by the nucleoid (yellow) and the
dispersion of RNA polymerase (blue) during shift from rapid growth to slow or
stressed growth.

fast growth, the nucleoid adapts another organization where the
newly replicated origins relocate to the cell poles, leaving the
replication machinery and non-replicated nucleoid positioned
between them. This creates a pattern where just before cell
division either cell half will contain a nucleoid copy arranged
with the origin of replication near or at the pole, and with
the right and left regions spanning next to each other to
the terminus region located at mid-cell (Wang and Rudner,
2014).
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Intriguingly, the structure of origin-proximal nucleoid
domains has been shown to depend on the position of replication
origin rather than the DNA sequence of the domains, suggesting
that replication impacts structured and non-structured regions
near the origin- and terminus irrespective of their nucleotide
sequence (Duigou and Boccard, 2017).

Transcription, Supercoiling and Stress
Transcription affects DNA topology in much the same way as
DNA replication, as the transcribing RNA polymerase (RNAP)
introduces positive supercoiling immediately downstream of
the transcription complex and negative supercoiling upstream
of it (Figures 3A,C; Ma et al., 2013). The link between
transcription and nucleoid compaction is further supported
by observations that negatively supercoiled genes are generally
more efficiently transcribed than compact positively supercoiled
genes, due to increased exposure of a looser promoter region
more prone to the opening (Sobetzko et al., 2013; Gilbert
and Allan, 2014). This two-way transmission might act as
a feedback loop, in which the transcribing RNAP induces
further transcription via generation of negative supercoiling
in its wake. Indeed supercoiling is generally considered a
transcriptional regulator (Dorman, 2013b). Genes that are
highly affected by supercoiling represent ∼7% of the gene
pool. They are generally AT rich and dispersed throughout
the entire genome with no apparent pattern (Peter et al.,
2004).

The transcription machinery is composed of the core RNA
polymerase and a variable Sigma Factor. The core RNAP
enzyme is composed of 5 subunits (α2ββ’ω) and is capable of
non-specific DNA binding (Saecker et al., 2011). To initiate
RNA synthesis, RNAP requires either DNA ends/nicks or
assembly of the RNAP core enzyme and a sigma factor
into a Holoenzyme (Saecker et al., 2011). However, before
the holoenzyme can initiate RNA synthesis, it searches the
nucleoid for promoters in a three dimensional and non-
sequence specific manner until it recognizes a promoter region,
specified by the sigma factor associated with the holoenzyme
(Svetlov and Nudler, 2013; Wang et al., 2013a; Duzdevich
et al., 2014). All bacteria have at least one housekeeping
sigma factor for recognition of promoters associated with
normal growth in a non-changing and optimal environment,
and in E. coli this sigma factor is called Sigma70 (RpoD
or SigmaD). Six other Sigma factors have been identified
in E. coli, each recognizing promoters of genes related to
some specific environmental condition, e.g., lack of iron
(Sigma19/FecI), heat stress (Sigma 32/RpoH), extracytoplasmic
stress (Sigma 24/RpoE), motility (Sigma 28/RpoF), nitrogen
metabolism (Sigma 54/RpoN), and the sigma factor related to
starvation/stationary phase or general stress (Sigma38/RpoS)
(Maeda et al., 2000).

Neither RNAP nor sigma factors can bind promoter DNA
selectively. Thus, the RNAP requires the sigma factor to bind
to a specific promoter, and sigma factors do not occupy
promoters without RNAP (Gruber and Gross, 2003). Sigma
factors compete for RNAP binding, and the binding affinity
and number of molecules present at a given time depends on

the environment and status of cell growth (Figure 3D; Sharma
and Chatterji, 2010; Peano et al., 2015). E. coli cells contain
approximately 2.000 RNAP core enzymes during normal growth
(Maeda et al., 2000), and the amount of RNAP decreases to
approximately 65% in stationary phase thereby increasing the
competition among the sigma factors for RNAP (Nyström,
2004). The transcriptional speed of a gene correlates with its
functional importance in response to changing environments.
Genes encoding central regulators have high transcriptional
speeds, and are highly influenced by DNA topology and
codon composition (Großmann et al., 2017). The nucleoid
distribution of RNAP is highly dependent on the growth
condition. In rapidly growing cells, the polymerase is localized
to distinct transcriptional foci, whereas the distribution is
equalized over the entire nucleoid at slow growth (Cabrera
and Jin, 2003; Cagliero and Jin, 2013; Gaal et al., 2016).
This suggests active clustering of highly expressed genes.
Consistent herewith, recent 3C studies showed a proportional
relation between transcriptional level of genes and their
contact frequencies (Lioy et al., 2018). The ability of RNAP
to diffuse through- and attach to the nucleoid is highly
affected by its condensation level, and active transcription
in turn condenses the nucleoid through supercoiling, thus
creating a negative feed-back loop which can be alleviated
by the topoisomerases (Cabrera et al., 2009; Corless and
Gilbert, 2016). Intriguingly, in a ChIP-seq experiment it was
observed that 23% of all promoter-bound RNAP-Sigma 70
holoenzymes during exponential growth at optimal growth
conditions were transcriptionally inactive (Reppas et al., 2006).
These non-active RNAPs were positioned at promoters with
large differences in DNA melting temperature (Tm) between the
promoter and the corresponding coding sequences, suggesting
that an energetic barrier blocks promoter escape. However,
the data suggest that other factors are needed to account
for the poising of RNA polymerase at these particular sites
(Reppas et al., 2006). Similar observations have been made
regarding Sigma 38-associated holoenzymes (Peano et al., 2015).
Perhaps these poised RNAP function as quick response to
environmental changes, both for transcription of important
genes and for inducing changes to the nucleoid structure at
strategic positions.

Translation/Transertion and Nucleoid Structure
The last step in the informational flow involves the translation
of the RNA blueprints into amino acid polymers, proteins,
by the ribosome. Translation is not physically related to the
nucleoid, and thus has a relatively little direct impact on
the nucleoid structure. However, in prokaryotes, initiation of
translation is possible as soon as the ribosomal binding site
has been transcribed, with multiple ribosomes attaching and
initiating translation whenever the ribosome binding site is
free (Cabrera et al., 2009). Furthermore, membrane protein
transertion creates a pull on the nucleoid forcing any actively
transcribed region with membrane-associated proteins to be
located near the inner membrane, thereby de-condensing the
nucleoid (Figures 3A,C; Cabrera et al., 2009). This force
is considered the major expansion force of the nucleoid,
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and accordingly, the addition of chloramphenicol to rapidly
growing cells will cause the nucleoid to quickly contract
due to the halting of translation (van Helvoort et al., 1996;
Zimmerman, 2002; Bakshi et al., 2015). Translation also works
as a compaction force during normal growth. The ribosomal
subunits 30S and 50S mix freely with the nucleoid whereas
assembled 70S ribosomes tend to segregate away from the
nucleoid (Bakshi et al., 2015). Newly transcribed mRNA
inside the dense nucleoid will attract ribosomal subunits,
which diffuse into the nucleoid where they assemble into
70S-polysomes that slowly diffuse out of the condensed
nucleoid due the osmotic forces (De Vries, 2010; Bakshi
et al., 2015). Outside the nucleoid, the existence of ribosome-
rich regions suggests that assembled ribosomes compacts the
nucleoid by macromolecular crowding (Marenduzzo et al.,
2006; Bratton et al., 2011; Bakshi et al., 2015; Pereira et al.,
2017).

It appears that there is interdependency between processes
mediating the flow of genetic information and the nucleoid
topology-status mediated via supercoiling on a local and global
scale. NAPs influence this dynamic relation by retaining
or obstructing the introduction of supercoils and thus
indirectly influence the nucleoid accessibility to DNA- and
RNA polymerases. Indeed, NAPs confer structure to the nucleoid
and can induce informational flow by bending and opening
the nucleoid, or hinder informational flow by simply engulfing
the nucleoid (Dillon and Dorman, 2010; Badrinarayanan et al.,
2015).

Bacterial Stress Response – At a Glance
A key mediator of cellular stress is (p)ppGpp, a signal molecule
that binds to RNAP and inhibits transcription of promoters
with intrinsically unstable open complexes, induces production
of the stress sigma factor Sigma 38 by association to the RpoS
mRNA, and induces RNAP association with the alternative
sigma factors. (p)ppGpp further modulates Sigma 70-associated
holoenzymes to target maintenance and stress defense related
genes and neglect household genes (Nyström, 2004; Wade and
Struhl, 2008; Sharma and Chatterji, 2010). During exponential
growth, most of the RNA polymerases are distributed at distinct
loci where the genes relevant to fast growth, such as rRNA genes,
meet in the 3rd-dimensional space (Cagliero and Jin, 2013).
But when cells are exposed to stress the RNAP distribution
shifts to cover the entire nucleoid (Figure 4; Cabrera and Jin,
2003). Upon entry into nutrient stress the cellular levels of
the different NAPs also change (Talukder and Ishihama, 1999).
HU and H-NS decrease two to three-fold (compared to rapid
growth), IHF increases three-fold in transition but decreases two-
fold in late stationary, Fis levels drop drastically, whereas Dps
is vastly induced (110×) (Figure 2A; Talukder and Ishihama,
1999). The changes in NAP levels are consistent with the observed
nucleoid decondensation during the transition into stress and
enable the RNAP to redistribute to other available DNA regions
(Figure 4; Talukder and Ishihama, 1999; Hadizadeh Yazdi et al.,
2012). At late stationary phase the nucleoid condenses into a
crystal-like complex induced by Dps (Badrinarayanan et al.,
2015).

An intriguing correlation appears to exits between the
position of genes on the chromosome relative to the origin, and
their involvement in stress responses. Whereas major house-
keeping genes such as rRNA operons are located in the origin
proximal part of the chromosome, genes involved in stress are
predominantly located near the terminus (Figure 5; Sobetzko
et al., 2012). This organization might be due to the high ori/ter
ratio that exists between gene-number in exponential growth
but not under stressed non-growth conditions. The organization
may further be related to the gradient of negative supercoiling
that exists in stationary growth but not in exponential growth
(Lal et al., 2016). These examples show the tight connection
between the dynamics of the nucleoid structure adaptation to
stress.

THE EVOLVING NUCLEOID

Chromosomal Sequence Variation
Due to the natural force of evolution, life is in a never-
ending arms race where organisms that are fitter in an
environment will prevail in comparison to those less
fit. To survive new environments and types of stress, a
prokaryote must evolve, and this generally involves changes
to the existing genomic sequence or the acquisition and
integration of new DNA. Given the relationship between
structure and sequence described above, changes to the
chromosome sequence may potentially alter the nucleoid
structure, and hence the genetic output, which ultimately
determines the fitness-cost associated with the DNA sequence
perturbation.

The most basic form of genome alteration is the random
introduction of errors during replication, which often has no
effect on the genetic output and little or no impact on nucleoid
structure. During DNA repair, large changes to the genome
may occur through recombination and potentially impose major
changes on the nucleoid structure. Double-stranded breaks in
the DNA often occurs during a bacterial lifecycle, and errors
during the natural recombination may enable chromosomal
regions rearrange, i.e., to switch position or become inverted,
deleted, or duplicated (Periwal and Scaria, 2015). These changes
may severely alter the genomic structure, which in most cases
will be detrimental to the cell as only specific regions tolerate
inversions and/or change of location (Periwal and Scaria,
2015).

Acquisition of Foreign DNA
The ability of bacteria to acquire DNA from the environment
through horizontal (or lateral) gene transfer (HGT), is an
important means of generating natural variation in prokaryotes
(Ochman et al., 2000; Popa and Dagan, 2011). Genes that
are not part of the house-keeping or essential gene pool are
often referred to as the mobilome, which is accessory genes,
since they often originate from a horizontal host rather than
a vertical ancestor (Siguier et al., 2014). The impact of HGT
on the genomic composition is high. A study estimated 18%
of genes in E. coli MG1655 have been horizontally acquired
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FIGURE 5 | Global patterns of nucleoid organization. Positional gradients of rRNA operons and stress related genes on the genome of Escherichia coli (Yellow/Green
triangles). Each half of the nucleoid is approximately of equal lengths, and the relative position of the DARS1/2 and datA elements to oriC is conserved among 59
highly different E. coli strains (orange boxes) (Frimodt-Møller et al., 2015, 2016; Riber et al., 2016). Furthermore, the number of genes transcribed against the
replication fork is lower than the number of genes along the direction of the replication fork (blue arrows).

since the divergence from Salmonella even though E. coli is not
naturally competent (Ochman et al., 2000; Popa and Dagan,
2011).

Acquisition of novel DNA is however not sufficient by
itself to produce a sustainable or competitive new genotype.
The foreign DNA needs to be integrated as well, since
microbes tend to remove non-functional or unnecessary DNA
from the genome (Chih-Horng and Howard, 2008; Popa and
Dagan, 2011). Intriguingly, in E. coli K-12 two gene classes
exist, which together comprise more than 225 genes (∼5%
of the total gene pool), with no apparent function at all
(Keseler et al., 2013). These are Phantom-genes, which have
been identified as genes through computational searches, but
without any observed expression, and Pseudo-genes, which
are genes with homology to functionally expressed genes,
but with changes in their sequences that prevent expression
(Keseler et al., 2013; Goodhead and Darby, 2015). The
widespread appearance of such genes might indicate that
they are not subject to deselection even though they are
redundant. Instead their presence at specific positions might

be important for a genomic structure that is favorable for the
bacterium.

Integration of Foreign DNA
Optimal integration of horizontally acquired DNA requires
positioning of the acquired DNA at the most ideal genomic
location for highest fitness in the given environment. Many
variables have been shown to influence the successful integration
of DNA, such as nucleotide sequence, NAP binding, gene
function and expression level, and several positional biases have
been observed as well. Uptake of plasmids tends to be a metabolic
burden for a cell (Baltrus, 2013), whereas incorporation of whole
bacterial genomes into other organisms possibly have minimal
large-scale consequences to fitness (Itaya et al., 2005).

Impact of Sequence Composition and Function on
Integration
The sequence of the acquired DNA is not only important
for acquisition but also for sustainable integration into the
chromosome. When considering the promoter and regulatory
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region of foreign DNA, genes that fit into existing regulatory
networks are usually retained with higher efficiency. The same
is true for genes with similar GC content as the recipient
chromosome (Popa and Dagan, 2011). The coding sequence of
the newly acquired DNA might have a different codon usage as
well, further imposing a strain on the host. Studies, however,
suggest that the strain imposed by suboptimal codon usage is
highly overrated (Popa and Dagan, 2011; Großmann et al., 2017;
Porse et al., 2018).

Horizontally acquired DNA often has a higher AT-content
compared to the remaining host genome, and in E. coli
and related species this is exploited by silencing horizontally
acquired DNA through H-NS binding (Navarre et al., 2006;
Stoebel et al., 2008; Gordon et al., 2011). H-NS binding has
been proposed as a mechanism for avoiding the unwanted
expression of newly acquired genes that have yet to be
integrated into existing cellular processes (Doyle et al., 2007;
Paytubi et al., 2013; Dorman, 2014). This makes it possible
for bacteria to obtain e.g., large pathogenicity islands that
would otherwise represent a massive burden. The foreign
DNA might then first be expressed under a particular
stress condition where the new gene products are needed.
This idea is further underlined by the observations that
high expression levels impact the transferability of a gene
negatively (Park and Zhang, 2012). Furthermore, large AT-rich
plasmids/xenogeneic DNA elements may disturb the intracellular
equilibrium of H-NS regulation by introducing new binding
sites. Consistently, many plasmids carry their own H-NS
homolog to keep cellular status quo and not decrease the
fitness of the host cell severely (Doyle et al., 2007; Takeda
et al., 2011). Observations in Salmonella, however, indicate
that the presence of whole or truncated H-NS homologs
in horizontally acquired genetic islands may antagonize the
silencing effects of the native H-NS (Walthers et al., 2007,
2011; Cameron and Dorman, 2012). Genes encoding other
NAPs, such as Fis and HU, have also been observed on
plasmids, further suggesting the importance of NAP equilibrium
for minimal fitness cost during successful DNA acquisition
(Takeda et al., 2011). H-NS may further facilitate sequence
diversification as H-NS-associated genomic regions tend to
differ more between closely related species compared to regions
without H-NS, but only when these H-NS-associated regions
are located upstream of genes (Higashi et al., 2016). Acquisition
of foreign DNA may further influence the nucleoid structure
through the regulation of H-NS. Compact spatial clusters form
through oligomerization of DNA bound H-NS, sequestering the
associated operons, and juxtaposing various DNA segments,
and deletion of H-NS causes major chromosomal reorganization
(Wang et al., 2011 Science; Winardhi et al., 2015; Helgesen
et al., 2016). Thus, by association to H-NS, newly inserted
AT-rich DNA may juxtapose entire segments of DNA, making
even small insertion capable of causing major structural
changes.

The function of the foreign DNA sequence also impacts
its ability to integrate. If a transferred gene originates from a
very distantly related bacterial species, the change in cellular
context and possible lack of chaperones can result in a higher

protein misfolding rate, which can be lethal for the host (Baltrus,
2013). Horizontally transferred genes are mostly related to the
peripheral metabolism (uptake) rather than central metabolism,
and rarely to the flow of genetic information. Genes that
specify subcomponents of larger cellular complexes are less
well integrated too, since they require transfer of all complex-
related genes en bloc to function properly (Cohen et al., 2011;
Popa and Dagan, 2011). Optimal integration does not depend
exclusively on the sequence of the integrated DNA, but also
on the genomic location of integration. The gene products
specified by the foreign DNA need to be functionally integrated
into the cellular processes of the recipient host, and in this
respect the site of integration on the nucleoid play an important
role since both the gene expression level and distribution of
gene products may depend on genomic position (Kuhlman
and Cox, 2012; Pulkkinen and Metzler, 2013; Bryant et al.,
2014).

Impact of Genomic Position on Integration
On a global scale, horizontally acquired DNA is evenly
distributed among the two halves of the nucleoid, relative
to oriC and terminus, but also between different regions of
the two arms, suggesting a need for conservation of the
overall nucleoid proportions (Figure 5; Frimodt-Møller et al.,
2015). This imposes global constraints to an optimal positional
integration of foreign DNA in the genome. However, more
local constraints seem to exist at the macrodomain level as
well. Moreover, rRNA operons appear to cluster closer to the
origin in E. coli (Figure 5). The directionality of genes is also
biased. In E. coli K-12 MG1655, approximately 2.000 genes
are expressed against the direction of the oncoming replication
fork, whereas approximately 2.500 genes are expressed in
the direction of a working replication fork (Figure 5). This
bias might be due to replication fork stalling induced by
collisions with the transcription machinery (Sankar et al.,
2016).

On a local scale, genes whose products function together
in cellular pathways tend to cluster (Ma and Xu, 2013).
Transcription of genes will affect neighboring genes through
the supercoiling gradient unless supercoiling is released or
physical barriers that restrict the transmission of supercoiling
are formed. Evidence of supercoiling release has been observed
at specific REP elements located at the end of certain
open reading frames. REP elements are recognized by the
DNA gyrase to enable quick relief of the positive supercoil
introduced by RNAP (Dorman, 2014). Barriers restricting the
transmission of DNA supercoiling can be formed by binding
of NAPs (Rogozin et al., 2002; Meyer and Beslon, 2014).
For instance, the nucleoid binding protein HU has been
shown to mediate transcriptional insulation (Berger et al.,
2016).

Regulation of gene expression by H-NS depends on the
chromosomal position of the target promoter, suggesting
that spatial distance between regulator and target might
have an impact on the level of interaction (Brambilla and
Sclavi, 2015). The small amount of non-coding DNA in
prokaryotic genomes, and the three-dimensional diffusion
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FIGURE 6 | Transcriptional spill. Recruitment of RNAP to a gene will increase
the likelihood that spatially close genes will interact with RNAP. Transcriptional
spill is not apparent from the uncoiled linear organization of genes (bottom)
but becomes apparent when considering spatial organization.

of RNAP further advocates for a spatial impact on gene
integration.

OUTLOOK

The nucleoid is central to the life of prokaryotes. As such,
much attention has been devoted to the study of the functional
properties of the nucleoid as well as its interactions with
associated proteins (Dillon and Dorman, 2010; Dorman, 2014).
Less is known about the global and domain-level structure
dynamics of the nucleoid, and it is often stated in general
literature that there is no major organization of the hereditary
material in prokaryotes (Reece and Urry, 2011). There is paucity
in our understanding of how local (10–100 kbp) nucleoid
structure dynamics influences coordination of gene expression
and how this impacts the sustainable integration of foreign
DNA and hence how bacterial genomes evolve in nature. During
growth, many processes take place simultaneously, including
replication, segregation, transertion, and transcription, which
places a high demand on cellular logistics. Modulation of
the nucleoid structure is an important mechanism in this
regard.

Transcription will recruit RNAP through increased
association with the promoter, which will increase the local
RNAP concentration thereby increasing the likelihood that
nearby genes will interact with the RNAP (Figure 6; Rogozin
et al., 2002; Nudler, 2009; Svetlov and Nudler, 2013; Wang et al.,
2013a). It has been shown that gene expression is position-
dependent (Bryant et al., 2014; Sauer et al., 2016). By inserting a
reporter gene cassette at different sites on the E. coli chromosome,

Bryant et al. (2014), observed ∼300 fold differences in expression
(Bryant et al., 2014). Short- and long-range autocorrelation
patterns as a function of the genomic distance between genes
has also been observed (Jeong et al., 2004; Willenbrock and
Ussery, 2004). The structure-function relationship has been used
to develop a model that predicts the local three-dimensional
structure of the nucleoid based on transcription data, but the
extent and potential beneficial role of this spilling remains
unclear (Jeong et al., 2004; Xiao et al., 2011, 2017).

One could imagine that extensive recruitment of RNAP by
a highly transcribed gene can increase the expression of nearby
genes (in 3D) through transcriptional spilling. This speculative
concept is supported by evidence for low transferability of highly
transcribed genes, since DNA with high RNAP recruitment
would have a higher rate of spilling on nearby genes (Park and
Zhang, 2012). This is further supported by observed proportional
relation between contact frequencies and transcriptional level,
which suggest that highly transcribed genes are organized such
that the interact more often (Lioy et al., 2018). As such, the
optimal position for sustainable integration of the foreign DNA
might depend on its expression level. Gene insertion hotspots
have been found in many bacterial species (Oliveira et al., 2017),
and it would be interesting to investigate whether or not there
is a higher level of foreign DNA integration at regions with low
demand for structural integrity. By extension, less integration
of foreign DNA would be expected to occur close to highly
expressed genes due to higher demand for structural integrity.

Nucleoid structure preservation might further explain the
accumulation of pseudo- and phantom-genes in bacteria. Can
accumulation of redundant or non-coding genes be beneficial
to bacteria in certain cases if a specific spatial position of genes
relative to each other is favorable? Such non-functioning DNA
may be preserved to keep a distinct structure and intergenic
distance – a register – that is required for optimal fitness.
Nucleoid spatial structure could generate synergy between
strong promoters in spatial proximity, as observed at rRNA
operons during exponential growth (Cagliero and Jin, 2013).
Through these mechanisms, the three-dimensional structure
of the nucleoid would impact the ability of bacteria to adapt
and respond quickly to changes in the environment, since the
specific spatial context of a gene might impact the expression
level.

It is well established in eukaryotes that spatiality is critical
for optimal regulation of genes and chromosomal structure
(Lanctôt et al., 2007). Although bacterial chromosomes are
smaller and arguably less complex compared to eukaryotes, tight
control of nucleoid architecture is still required. Particularly
during rapid growth where nucleoid replication and segregation
happens simultaneously with up to >16 copies of origin-
proximal regions. Understanding how chromosomal architecture
influences DNA functionality and evolution will be of major
importance not only for our basic understanding of genome
evolution but also for rational design of novel bacterial
strains for synthetic biology purposes and biotechnological
production.

Our understanding of nucleoid evolution is still incomplete, in
particular with respect to the mechanisms governing sustainable
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integration of horizontally acquired DNA. Evolution has no
endgame, but the life of many prokaryotes has been highly
optimized for adaptation to changing environments. Modulation
of nucleoid structure through the action of NAPs, and the
accumulation of pseudo- and phantom genes is therefore
expected to strongly contribute to the evolutionary arms race.
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