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Robot-assisted training combined with neural guided strategy has been increasingly

applied to stroke rehabilitation. However, the induced neuroplasticity is seldom

characterized. It is still uncertain whether this kind of guidance could enhance the

long-term training effect for stroke motor recovery. This study was conducted to explore

the clinical improvement and the neurological changes after 20-session guided or

non-guided robot hand training using two measures: changes in brain discriminant ability

between motor-imagery and resting states revealed from electroencephalography (EEG)

signals and changes in brain network variability revealed from resting-state functional

magnetic resonance imaging (fMRI) data in 24 chronic stroke subjects. The subjects were

randomly assigned to receive either combined action observation (AO) with EEG-guided

robot-hand training (RobotEEG_AO, n = 13) or robot-hand training without AO and EEG

guidance (Robotnon−EEG_Text, n = 11). The robot hand in RobotEEG_AO group was

activated only when significant mu suppression (8–12Hz) was detected from subjects’

EEG signals in ipsilesional hemisphere, while the robot hand in Robotnon−EEG_Text

group was randomly activated regardless of their EEG signals. Paretic upper-limb

motor functions were evaluated at three time-points: before, immediately after and 6

months after the interventions. Only RobotEEG_AO group showed a long-term significant

improvement in their upper-limb motor functions while no significant and long-lasting

training effect on the paretic motor functions was shown in Robotnon−EEG_Text group.

Significant neuroplasticity changes were only observed in RobotEEG_AO group as well.

The brain discriminant ability based on the ipsilesional EEG signals significantly improved

after intervention. For brain network variability, the whole brain was first divided into six

functional subnetworks, and significant increase in the temporal variability was found

in four out of the six subnetworks, including sensory-motor areas, attention network,

auditory network, and default mode network after intervention. Our results revealed the

differences in the long-term training effect and the neuroplasticity changes following the

two interventional strategies: with and without neural guidance. The findings might imply
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that sustainable motor function improvement could be achieved through proper neural

guidance, which might provide insights into strategies for effective stroke rehabilitation.

Furthermore, neuroplasticity could be promoted more profoundly by the intervention with

proper neurofeedback, and might be shaped in relation to better motor skill acquisition.

Keywords: long-term training effect, motor imagery, action observation, motor recovery, EEG discriminant rate,

resting state fMRI, temporal variability, brain network

INTRODUCTION

Stroke-induced disabilities often imperil the independence of
stroke survivors and increase burden of care on their caregivers.
Effective stroke rehabilitation is therefore in great demand
to help stroke survivors to regain their independence and to

relieve the burden. Robot-assisted therapy is now emerging
and has been proved to exhibit encouraging effects on upper-
limb motor recovery (1–4), by utilizing robotic device to

facilitate reiterative movement training with high precision and

intensity. Moreover, there is growing evidence suggesting that
clinical recovery is attributed to neuroplastic reorganization, and
the neuroplasticity can be promoted by specific interventions
(5–7). A number of interventions, such as robot-hand training

combined with neurofeedback system, have been adopted to
facilitate neuroplastic changes and enhance recovery potential.

This kind of approach usually asks subjects to perform motor
imagery, detects their movement intentions from real-time
electroencephalography (EEG) signals, and a robotic device

is triggered when desirable EEG features are detected. Such
neurofeedback system has been suggested to possess the
capability of inducing neural plasticity (8). However, the recovery
following this strategy can still be various across the stroke

patients (2, 9). One of the challenges is that the interpretation
of motor imagery can be varied from person to person, leading
to diverse treatment outcomes. Action observation (AO) could
be a possible means to overcome this challenge, which has
been shown to have potential of rebuilding motor function
by involving similar brain regions to motor execution. The
impaired motor system after stroke could become accessible
by recruiting the shared motor circuits during AO. The motor
training effects on post-stroke motor memory formation could
also be further augmented by observing an action congruent to
the practiced task during physical training in order to facilitate
the brain to have better motor relearning. Furthermore, from
EEG studies, AO is found to be associated with mu suppression
which the brainwave at around 10Hz over the sensorimotor areas
is suppressed significantly while observing motor acts performed
by the others (10, 11). Therefore, an interactive brain-computer
platform was built based on real-time detection of significant
mu suppression from EEG signals. Neural guided training was
provided to the subjects to train them using the right signals from
the ipsilesional motor areas to control the system and activate
the robot hand. The training effects on paretic upper-limb motor
function were evaluated by Fugl-Meyer Assessment for upper-
extremity (FMA-UE) which was repeatedly assessed before,
immediately after and 6 months after the intervention, and were

compared to a robot-hand training without AO and the input of
the subjects’ EEG signals.

Apart from evaluating behavioral changes using clinical
assessments, more understanding of the neural mechanisms
that underpins a restorative approach to stroke rehabilitation is
also important. It is because the cerebral cortex plays a critical
role in human locomotor functions. Here, EEG and functional
magnetic resonance imaging (fMRI) were used to study the
post-stroke neuroplasticity mechanisms after the interventions.
In this study, EEG is not only used to detect the voluntary
motor intention for brain-computer interface, but also used to
explore the brain discriminant ability between motor imagery
state and resting state during the early training stage and late
training stage of the intervention. Brain discriminant ability
can be referred as an index of discriminating brain activity
between different mental states. Higher value of discriminant
index represents a more prominent mental state transformation
with evident brain activity features across different mental states,
while lower value indicates no distinguishable features that
can characterize the mental states. Stroke subjects might have
difficulty in switching between the resting state and the task state
like motor imagery. Hence this index has been used to detect
motor imagery or to indicate motor imagery performance in
brain-computer interface training for stroke recovery (2, 12).
Classification techniques such as linear discriminant analysis
(LDA) and support vector machines have been adopted to
identify changing topographies during natural motor behaviors
(13), brain state dynamics during neurodevelopment (14) and
brain features during brain-computer interface control (15). An
increase in classification accuracy under the same classification
model after intervention may indicate an improvement in
brain state transformation ability, demonstrating that different
mental states can be classified more clearly and separately after
training with the same classification model used. This brain state
transformation ability, also named brain discriminant ability,
may provide us more insights into the brain reorganization after
the interventions.

Besides EEG, fMRI which employs blood-oxygen-level
dependent (BOLD) contrast can provide high-spatial-
resolution details of neuroplasticity mechanisms during
neural reorganization (16). Resting state functional connectivity
derived from fMRI data has been widely used to explore the brain
activity in the absence of an explicit task, which subject stays still
without any external stimuli or tasks (17). Conventional analysis
methods usually use the whole period of resting state fMRI data
and compute the average functional connectivity representing
the resting brain activity. However, brain activity fluctuates
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even during resting state and the spontaneous fluctuations
have been reported to be related to vigilance (18), arousal (19),
and consciousness (20). Recent studies tried to use dynamic
functional connectivity to characterize various neurological
diseases (21–23). The signs of showing brain dynamics from the
spontaneous fluctuations of the resting brain activity (24–26)
might be related to motor relearning and brain adaptation
during stroke recovery process. Therefore, dynamic functional
connectivity analysis could be superior to the static way to look
at the resting brain activity which the brain-network functions
can fluctuate on a time scale from seconds to minutes. Thus,
studying temporal variability of resting brain activity may
provide new information of brain-network interactions during
the reorganization.

The temporal changes of brain activity can be characterized
as flexibility or variability. A network flexibility derived from
multilayer approach was used to reveal network reconfiguration
during linguistic processing (27). Other study used temporal
variability of brain networks to reveal the differences between
healthy brains and brains with mental disorders (28), and found
out that the variability can be a biomarker to distinguish between
patients and healthy subjects. In fact, the term variability has
been widely used in different brain researches, such as applying
internetwork correlation to study functional variability from
childhood to adulthood (29), and studying modular variability
in relation to cognitive flexibility (30). These studies uncovered
that the brain regions with different variability changes may be
involved in different modes of information transformation under
different situations.

In this study, two neuroimaging modalities, including EEG
and fMRI, were employed to evaluate the neuroplasticity changes
in chronic stroke subjects after interventions using two different
kinds of motor imagery robot hand training paradigm: with AO
plus real-time EEG guidance and without AO and EEG guidance.
Motor function of the paretic upper-limb was evaluated at three
time-points: before, immediately after and 6 months after the
interventions. The brain discriminant ability between motor
imagery state and resting state revealed from EEG data, and
the brain network variability revealed from resting-state fMRI
data were studied and used to indicate the neuroplasticity
changes. We hypothesized that the stroke subjects with neural
guided training would have a sustainable improvement in motor
functional recovery and a significant neuroplasticity change in
the brain discriminant ability and the brain network variability
after the intervention compared with the subjects without guided
training. Such findings may provide us a better understanding of
neural mechanisms during stroke recovery from the two different
training strategies.

MATERIALS AND METHODS

Participants
Twenty-four chronic stroke subjects (20 males and 4 females;
mean age = 54 ± 9 years) were recruited from local community.
All of them suffered from first-ever stroke. The inclusion criteria
were: (1) sufficient cognition to follow experimental instructions
with Mini–Mental State Examination (MMSE) score >21, (2)

moderate to severe motor impairments at the paretic upper
limb (Fugl-Meyer Assessment score for upper-extremity less than
47) (31), and (3) hemiparesis resulting from a single unilateral
brain lesion with stroke onset more than 6 months before data
collection. Exclusion criteria were: (1) severe hand spasticity (the
spasticity during extension of the finger joints was more than 3 as
assessed by Modified Ashworth Scale) (1), open hand wound or
hand deformity, (2) visual field deficits, (3) aphasia, neglect, and
apraxia, (4) participation in any therapeutic treatment (“outside
therapy”) performed with the affected upper limb during the
course of the study, (5) history of alcohol, drug abuse, or epilepsy,
and (6) bilateral infracts, uncontrolled medical problems, and
serious cognitive deficits.

All subjects completed a 20-session robot hand training with
simultaneous EEG signal recording. However, only 16 out of
24 subjects who had no MRI contraindications were able to
complete MRI scan. Motor functions of paretic upper limb
of stroke subjects were assessed at three time-points (before,
immediately after and 6 months after intervention) by trained
clinical assessors who were blinded to the experiment. Fugl-
Meyer Assessment for upper-extremity (FMA-UE) (32) was
used to evaluate and measure the upper limb motor function.
The changes in the FMA-UE were compared against minimal
clinically important difference (MCID) (33) which was set at 4
based on sensitivity analysis (34). The MCID is defined as the
smallest change in a treatment outcome that would be identified
as important by a patient, and provides a threshold above which
the patient would experience the outcome as relevant. The study
was approved by the Joint Chinese University of Hong Kong-
NewTerritories East Cluster Clinical Research Ethics Committee.
Each subject gave informed consent before the experiment.

Interventional Protocols
All subjects received a 20-session robot-assisted hand training,
with an intensity of 3–5 sessions per week that was completed
within 5–7 weeks. During each session, 100 repetitive hand
movements were performed by each subject with intermittent
rest after every 10 trials. A robot hand providing mechanical
support was used to assist the subject in completing hand
grasp/open task during the training (1). Subjects were randomly
assigned to one of the two groups: (1) RobotEEG_AO Group:
Action observation and motor imagery during playback of video
of biological movement with real-time EEG guidance to trigger
the robot hand. The subjects were asked to observe a video
demonstrating either grasping or releasing a cup using the
subjects’ unaffected hand, and the video frames were flipped to
pretend that the subjects were observing their affected hand to
do those hand actions. Robot hand was triggered to help hand
open or grasp if mu suppression calculated from real-time EEG
signals was above 20 (35). The calculation of mu suppression
can be found in EEG preprocessing part. (2) Robotnon−EEG_Text

Group (sham group): Motor imagery during display of text
instruction of movement without EEG guidance and the robot
hand was triggered randomly. The subjects were instructed
to imagine their affected hand movements during a text cue
of showing “hand open” or “hand grasp”. Robot hand was
randomly triggered regardless of the subjects’ EEG signals. In
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order to maintain the two groups having comparable training
intensity for the paretic hand, the “success rate” of triggering
the robot hand in Robotnon−EEG_Text Group was set as 80%,
which was the similar level as that in RobotEEG_AO Group from
our preliminary study. All subjects were instructed to imagine
the same movement with the affected hand during the video or
text display. The display of experimental sequences for the two
training paradigms was controlled by the Psychophysics Toolbox
3.0 (http://psychtoolbox.org/). The experimental paradigm was
shown in Supplementary Figure 1.

EEG and MRI Data Acquisition
The EEG signals were captured continuously and simultaneously
by an amplifier (g.USBamp, g.Tec Medical Engineering GmbH,
Austria) with 16 active electrodes (g.LADYbird, g.Tec Medical
Engineering GmbH, Austria) during the robot-assisted hand
training in both groups. Sixteen electrodes were placed over
the motor related regions at the central area according to the
international 10–20 system (C1, C2, C3, C4, C5, C6, Cz, FC1,
FC2, FC3, FC4, FCz, CP1, CP2, CP3, CP4). EEG signals were
referenced to a unilateral earlobe, grounded at a frontal position
(Fpz), with a sampling rate of 256Hz, and a band-pass filtering
(2–60Hz) and a notch filtering (48–52Hz) applied. Transmission
impedance was kept below 1 kOhm with conductive gel for all
electrodes.

Sixteen subjects who had no MRI contraindications had MRI
scans before and after the intervention with eight subjects in each
group. A 3T Philips MR scanner (Achieva TX, Philips Medical
System, Best, Netherlands) with an 8-channel head coil was
used to acquire high resolution T1-weighted anatomical images
(TR/TE=7.47/3.45ms, flip angle= 8◦, 308 slices, voxel size= 0.6
× 1.042 × 1.042 mm3) using a T1-TFE sequence (ultrafast
spoiled gradient echo pulse sequence), and BOLD fMRI images
(TR/TE = 2,000/30ms, flip angle = 70◦, 37 slices/volume, voxel
size=2.8 × 2.8 × 3.5 mm3) using a FE-EPI sequence (gradient-
echo echo-planar-imaging sequence). Subjects were presented
with a white crosshair in black background and instructed to rest
while focusing on the fixation cross during the fMRI acquisition.
The resting state fMRI acquisition lasted for 8min.

EEG Data Preprocessing and Analysis
Online Data Analysis
Only for the subjects who were presented with video display
(RobotEEG_AO group), their EEG signals were processed in real
time to provide EEG guidance to the subjects. The mu rhythm
is mainly found over the vertex (EEG Cz electrode location)
or laterally across the precentral motor cortex, normally at C3
or C4 electrode depending on which hand or arm movement
is being performed or visualized contralaterally (36). The mu
rhythm occurs when a person is at rest, and it is suppressed
when the person executes a motor action or views a motor
action performed by the other. Since it has been suggested that
restitution of near-normal circuitry might be the best basis for
better functional recovery for stroke survivors (37–39), either
C3 or C4 electrode was selected to compute the mu suppression
according to the subjects’ brain lesion side for promoting their
motor relearning patterns similar to the normal patterns. The

mu suppression is believed to be associated with the activation
of mirror neuron system and has been used in motor imagery
study (40). Hence it can be used as an indicator of mirror neuron
activity to provide neurofeedback to the participant. Fast Fourier
transform with a Hanning window covering the EEG data during
the video display (6 s) was applied to convert the EEG signals
to the frequency domain. The mean power in the mu band (8–
13Hz) of the EEG signal was calculated to get the mu suppression
score. Then the mu suppression score was calculated using the
following Equation (41):

MSS = −
PAO − Prest

Prest
× 100

where MSS represents the mu suppression score, PAO and Prest
represent the mu power of EEG signals during AO and rest,
respectively. Robot hand was triggered to help hand grasp or
open if the mu suppression score is >20, which means that the
ratio of the mu power between observation and rest was below
80% according to the average results of healthy subjects (35).

Offline Data Analysis
For all subjects in both groups, EEG signals were analyzed offline
to investigate motor imagery performance, which is represented
as an ability of discriminating between motor imagery state and
resting state. We defined a discriminate rate (DR) to reflect this
ability. LDA classifier, a linear classifier which usually works well
in EEG signal classification compared to other models such as
principal component analysis (PCA), independent component
analysis (ICA) or support vector machines (42, 43), was used to
calculate DR in this study. It has been used in a number of brain-
computer interface (BCI) studies such as motor imagery based
BCI (44), P300 speller (45), or asynchronous BCI (46). The EEG
data of the first four training sessions were used to calculate the
DR to reflect the brain discriminant ability at early training stage
while the last four training sessions were used to calculate the DR
to reflect the brain discriminant ability at late training stage. We
randomly chose two sessions of the EEG dataset from the first and
last four sessions separately as the training set and the remaining
two sessions in the respective four sessions as the testing set.
The purpose of the training set was to estimate the subject
dependent parameters of LDA classifier which are the coefficients
of the classifier and distinct among subjects for characterizing
their own brain activities. Based on classifier model built from
the training set, motor imagery performance was estimated
using the testing sets. As shown in Figure 1A, the EEG signals
from electrodes in the contralesional hemisphere were used
to calculate the contralesional-DR while the EEG signals from
ipsilesional hemisphere were used to calculate the ipsilesional-
DR. This is for studying whether there is an improvement in
the motor imagery performance based on the ipsilesional and/or
the contralesional EEG signals after the interventions. Alpha (8–
13Hz), Low-beta (12.5–16Hz), Beta (16.5–20Hz), andHigh-beta
(20.5–28Hz) powers of EEG signals averaged from all electrodes
in the ipsilesional hemisphere or contralesional hemisphere were
served as the four features input into LDA classifier model to
calculate the ipsilesional-DR or contralesional-DR of each stroke
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FIGURE 1 | Illustration of EEG and fMRI data analysis. (A) Definition of EEG discriminant rate based on the ipsilesional and contralesional EEG signals. The ipsilesional

and contralesional discriminant rates were calculated based on the ipsilesional and contralesional EEG signals, respectively, during motor imagery state (task state)

relative to the respective EEG signals during resting state. The subject with right brain lesion was used as an example in the figure. (B) Definition of temporal variability

derived from resting state fMRI data. A regional variability is defined as the variation in functional connectivity profiles of that region across different time windows. The

variability indices of all regions were regrouped into six functional subnetworks for further examination. SMA, sensory-motor areas; ATT, attention network; AUD,

auditory network; VIS, visual recognition network; DMN, default mode network; SUB, subcortical network.

subject, respectively. Features of all trials in each session were
averaged to avoid bias.

MRI Data Preprocessing and Analysis
Functional MRI Data Preprocessing
The fMRI data were preprocessed and analyzed using Analysis of
Functional NeuroImages (AFNI) software (http://afni.nimh.nih.
gov/afni). The analysis steps followed the recommended analysis
procedures for resting state fMRI data (47, 48). The first 10
volumes of each subject’s fMRI data were removed to assure that
the remaining volumes in the data were at magnetization steady
state. Despiking of large transients, slice-timing correction and
motion correction with six-parameter rigid body transformation
were done for the remaining 230 functional brain volumes. Then
the anatomical dataset was aligned to the functional dataset.
Spatial normalization of the T1 images registered to MNI152
template in MNI space and a 4mm full-width-at-half-maximum
(FWHM) isotropic Gaussian kernel smoothing were applied.
The time series from lateral ventricles and white matter were
derived for nuisance regression by segmenting the T1 image into
gray matter, white matter, and CSF using FreeSurfer for each
subject (49). Other nuisances included motion parameters and

motion parameter time derivatives. In the meantime, volumes
with excessive motion were censored if the Euclidean norm of
the derivatives of the motion parameters exceeded 0.2 by using
the function regress_censor_motion in AFNI. Bandpass filtering
(0.009–0.08Hz) were also applied simultaneously. For group
statistical analysis, subjects with left-hemispheric lesions were
flipped along the midsagittal plane, so that the lesions of all
subjects were in the right hemisphere.

Regions of Interest Definition
The whole-brain temporal variability changes were studied in
chronic stroke patients before and after the interventions. It
is common to apply popular standard brain atlas, such as
automated anatomical labeling (AAL) atlas or Harvard-Oxford
(HO) atlas to perform brain segmentation. However, varied
lesion extent and multiple lesion areas of stroke subjects
could render such standard atlas less accurate. Therefore, for
the T1-weighted anatomical image, white and gray matter
segmentation was done for each subject using FreeSurfer
(Athinoula A. Martinos Center for Biomedical Imaging, USA)
to partition the brain volume to generate outputs with labels
corresponding to the white matter, the cortex, and the deep
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gray nuclei (17). After the brain segmentation, the parcellated
regions constructed by FreeSurfer were remapped to AAL
template, a total of 84 regions overlapping with the AAL
template were chosen, including cortical and subcortical areas.
Six functional subnetworks, including default mode network,
attention network, visual recognition network, auditory network,
sensory-motor areas, and subcortical network, were used to
regroup the 84 regions according to the classification method
of Tao et al. (50) for studying the temporal variability of brain
regions in the subnetworks with similar functions and dense
functional connectivity with each other. Supplementary Table 1

lists all the regions of interest and their corresponding
subnetworks.

Temporal Variability Analysis
The mean BOLD time series was extracted for each brain region,
and all the BOLD signals of all 84 regions were partitioned into
non-overlapping time windows. As illustrated in Figure 1B, an
84∗84 adjacency matrix W was calculated for each window. Each
element of W represents the Pearson correlation of two regions
in that window. The temporal variability of a region of interest k
is defined as follows (28):

Vk = 1− corrcoef
(

Wi,k, Wj,k

)

, i, j = 1, 2, 3, . . . , n, i 6= j

where Vk stands for the variability of region k, i, and j refer to
the ith and the jth window, respectively. Therefore, the variability
of a region characterizes the mean correlation of temporal
functional changes at different time windows. Here Pearson
correlation coefficient was used as the measurement of functional
connectivity.

To reduce the effect from randomly choosing window length,
the variability values of a certain brain region across different
window lengths (10, 12, 14, . . . , 26, 28, 30 time points,
corresponding 20, 24, . . . , 52, 56, 60 s, TR= 2 s) were averaged for
each subject. The reason of choosing this range of window lengths
was that these window lengths can capture rapidly temporal
characteristics and get rid of noise influence (24, 51–53). To test
the consistency of different window lengths, we investigated the
correlations between the variability values calculated with these
window lengths, and found that the variability values were highly
correlated (r > 0.97, Supplementary Figure 2). This indicated
that variability values of chosen window lengths can be averaged
together as suggested by Zhang et al. (28).

Statistical Analysis
The statistical tests were conducted using either SPSS 19 (IBM
SPSS, NY, US) or Excel. Friedman test was used to evaluate the
long-term changes in the FMA-UE scores before, immediately
after and 6 months after the intervention for each group
separately. Non-parametric Wilcoxon signed-rank test was used
as post-hoc test to examine significant changes of different
combinations of three time-points for FMA-UE scores. The
Scheirer-Ray-Hare test which is a 2-way non-parametric analysis
of variance (ANOVA) was applied to examine whether the FMA-
UE score was influenced by time and group factors. Paired t-test

was used to reveal any significant changes in the ipsilesional and
contralesional EEG discriminant rate for each group separately.
A two-way repeated-measures ANOVAwith “time” (pre-training
vs. post-training) and the temporal variability of brain regions
within the same functional subnetworks as within-subject factors
was used to assess the training effects. The Greenhouse-Geisser
adjustment was applied to the degrees of freedom for all analyses
if the Mauchly’s test of sphericity was significant. A paired t-test
was applied to each voxel in standard MNI space to find the
regions with significant changes in variability before and after
the intervention. A one-way multivariate analysis of variance
(MANOVA) was used to test the statistical difference in the
changes of fMRI temporal variability of six brain subnetworks
between the two subject groups.

RESULTS

Clinical Characteristics
Demographics and clinical characteristics of the stroke
participants are listed in Table 1. Before the interventions,
there was no significant difference in the clinical score between
the two groups (FMA-UE: p = 0.772). After the interventions,
only RobotEEG_AO group showed significant difference in paretic
upper-limb motor functions across the longitudinal evaluation
[χ2 (2) = 7.659, p = 0.022] while no significant difference
in the motor functions was revealed in Robotnon−EEG_Text

group [χ2 (2) = 4.537, p = 0.103]. Post-hoc analysis using
Wilcoxon signed-rank tests showed that there were significant
improvements in the paretic motor functions between pre- and
post-intervention (Z = −2.135, p = 0.033) and between pre-
intervention and 6-month follow-up (Z = −2.451, p = 0.014)
in the RobotEEG_AO group. However, no significant difference
in the motor functions was found between post-intervention
and 6-month follow-up (Z = 1.682, p = 0.092) for the same
subjects. The proportion of stroke subjects exceeding the MCID
(that was 4 for FMA-UE) was higher in the RobotEEG_AO group
(pre vs. post: 53.8%; pre vs. 6-month: 54.5%) compared with the
Robotnon−EEG_Text group (pre vs. post: 36.4%; pre vs. 6-month:
36.4%). However, the effect of the interaction between factors
time and group (p= 0.78), or the effect of group factor (p= 0.94),
or the effect of time factor (p= 0.17) on the FMA-UE scores were
all found insignificant from the results of the Scheirer-Ray-Hare
test. The changes of FMA-UE scores for the two groups are
illustrated in Figure 2.

EEG Discriminant Rate
For RobotEEG_AO group, the results of paired t-test showed
significant increase in the ipsilesional-DR (t = 2.762; p = 0.018)
after the training. However, there was no significant change in
the contralesional-DR before and after the training (t = 0.757;
p = 0.465). For Robotnon−EEG_Text group, no significant change
was found in either the ipsilesional-DR (t = −0.765; p = 0.462)
or the contralesional-DR (t = −0.169; p = 0.869). The average
ipsilesional and contralesional discriminant rates in the two
groups before and after training are presented in Figure 3.
This indicated that guided robot hand training could enhance
motor imagery performance of the stroke subjects using their
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TABLE 1 | Demographics and clinical characteristics of the participants.

Group Subject Age

range

Gender Lesion

side

Lesion locations Stroke

Type

Stroke

onset (y)

FMA-UE

Pre Post 6 month

RobotEEG_AO S1 55–59 M R Brainstem I 11 24 21 22

S2 60–64 M L PLIC, putamen I 11 22 24 24

S3 45–49 M R MFG, SFG, precentral,

supramarginal, SMA

I 1 19 34 28

S4 65–69 M L Insula, putamen, IFG, temporal pole H 8 22 27 32

S5 65–69 M R Insula, ITG, IOG, putamen H 1 13 16 27

S6 45–49 M R ITG, MTG, STG, MOG, angular,

supramarginal

H 0.67 17 25 25

S7 60–64 M R Insula, putamen, rolandic operculum,

IFG

I 3 16 14 18

S8 50–54 M L MFG, precentral, IFG, postcentral,

insula, SFG

I 1 41 36 40

S9 45–49 F R Putamen, insula I 1 36 41 48

S10 45–49 M L NA H 2 20 24 26

S11 65–69 F R NA I 2 25 26 26

S12 65–69 M R NA I 5 23 33 NA

S13 30–34 M R Insula, STG, IFG, putamen, rolandic

operculum, temporal pole

I 2 25 32 NA

Robotnon−EEG_Text S14 55–59 M L Insula, IFG, putamen H 5 28 33 24

S15 55–59 M R Insula, IFG, putamen, rolandic

operculum, temporal pole

I 7 20 25 21

S16 50–54 M L Putamen, caudate nucleus I 1 24 22 22

S17 40–44 M R Insula, rolandic operculum, IFG, STG,

putamen, temporal pole

H 5 15 17 16

S18 40–44 M R Insula, MTG, STG, putamen,

temporal pole, rolandic operculum

H 3 17 20 20

S19 55–59 M R Insula, rolandic operculum, IFG I 6 13 23 20

S20 50–54 F L Insula, rolandic operculum, putamen H 3 34 34 37

S21 45–49 M R Insula, putamen H 1 34 37 35

S22 55–59 M L NA H 2 20 19 28

S23 40–44 M R NA I 2 33 31 50

S24 55–59 F L NA I 4 31 39 35

Mean ± SD 54 ± 9 4 ± 3 24 ± 8 27 ± 8 28 ± 9

y, year; M, male; F, female; R, right hemisphere lesion; L, left hemisphere lesion; IFG, Inferior frontal gyrus; IOG, Inferior occipital gyrus; ITG, Inferior temporal gyrus; MFG, Middle frontal

gyrus; MOG, Middle occipital gyrus; MTG, Middle temporal gyrus; PLIC, Posterior limb of the internal capsule; SFG, Superior frontal gyrus; SMA, Supplementary motor area; STG,

Superior temporal gyrus; H, hemorrhagic stroke; I, ischemic stroke; FMA- UE, Fugl-Meyer Assessment for upper-extremity (maximum: 66); SD, standard deviation; NA, not available.

ipsilesional EEG signals. On the contrary, the non-guided robot
hand training did not promote the ability of discriminating
between motor imagery state and resting state.

Network Based Temporal Variability From
Resting-State fMRI
For the RobotEEG_AO group, the results from time × network
repeated measures ANOVA showed significant effect across
within-subject time point on the temporal variability of brain
regions within the same functional subnetworks, including
sensory-motor areas [F(1, 7) = 7.554, p = 0.029, η2 = 0.519],
attention network [F(1, 7) = 12.354, p = 0.01, η2 = 0.638],

auditory network [F(1, 7) = 13.095, p = 0.009, η2 = 0.652]
and default mode network [F(1, 7) = 5.73, p = 0.048, η2 =

0.45]. No significant effect was found for the visual and
subcortical networks. There was also no significant interaction
between time and network. For the Robotnon−EEG_Text group,
no significant main effect was found for either time factor or
temporal variability factor of any of the subnetworks. Figure 4A
illustrates the brain network variability changes in two groups.
For the RobotEEG_AO group, the whole-brain temporal variability
topographies before and after the intervention are shown in
Figure 4B. Three regions, including right (ipsilesional) anterior
cingulate cortex (p = 0.0053), left (contralesional) superior
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FIGURE 2 | FMA-UE changes in the two training groups at three time-points. Significant improvement in the paretic motor functions was revealed between pre- and

post-intervention, and between pre-intervention and 6-month follow-up in RobotEEG_AO group. Error bar stands for the standard error. Asterisk (*) indicates that

significant difference was observed at p < 0.05.

FIGURE 3 | Changes in EEG discriminant rate in two groups before and after intervention. Significant increase in the discriminant rate based on the ipsilesional EEG

signals was found after training compared to the baseline in RobotEEG_AO group. No significant change was found in Robotnon−EEG_Text group in either the

ipsilesional or the contralesional discriminant rate. The color bars indicate the average discriminant rate values across the subjects in each group. DR stands for

discriminant rate. Error bars stand for the standard deviation. Asterisk (*) indicates that significant difference between pre- and post-training was observed at p < 0.05.

parietal lobule (p = 0.0039) and left (contralesional) middle
frontal gyrus (p = 0.009), were found having significant increase
in variability after the intervention based on the paired t-test (p
< 0.01), and they are highlighted in Figure 4C. For the between-
group comparison, there was no statistically significant difference
in temporal variability changes of the six subnetworks between
the two groups [F(6, 9) = 1.523, p= 0.275;Wilk’sλ= 0.496, partial
η2 = 0.504].

DISCUSSION

This study aimed to compare the longitudinal training effects
and neuroplasticity changes in two groups of chronic stroke
subjects who received either guided (AO + EEG feedback)
or non-guided robot hand training. The changes in brain

discriminant ability between the motor imagery state and the
resting state revealed from EEG signals, and the changes in brain
network variability revealed from resting-state fMRI data were
explored as the measures of neuroplasticity changes in the stroke
subjects following the two different training strategies. Based
on the clinical assessments, there was a statistically significant
difference in the paretic upper-limb motor functions across
the longitudinal evaluation for the subjects in guided training
group, while no significant difference in the long-term training
effect was found for the non-guided training group. Higher
proportion of stroke subjects exceeding the MCID was also
found in the group receiving guided training compared with the
non-guided training group. Besides, significant neuroplasticity
changes were only observed in the subjects who were trained with
guidance. The brain discriminant ability based on the ipsilesional
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FIGURE 4 | Brain network variability changes after the interventions. (A) Comparison of variability in six brain subnetworks between pre and post training in two

groups. Only four out of six subnetworks had significant change after training in RobotEEG_AO group while no significant change in any subnetwork in

Robotnon−EEG_Text group. Error bars are standard errors. *P < 0.05 and **P < 0.01. SMA, sensory-motor areas; ATT, attention network; AUD, auditory network;

DMN, default mode network; VIS, visual recognition network; SUB, subcortical network. (B) Whole-brain variability topography before and after training for

RobotEEG_AO group. Higher variability indicates a more flexible role of one region that may participate in multiple functions. The variability has been averaged across

all the subjects in the group. (C) Brain regions showing significant increase in variability after the intervention based on the paired t-test (P < 0.01) for the

RobotEEG_AO group. L_MFG, left middle frontal gyrus; L_SPL, left superior parietal lobule; R_ACC, right anterior cingulate cortex.

EEG signals significantly improved, and the brain network
variability derived from fMRI data also significantly increased
in four functional subnetworks, including sensory-motor areas,
attention network, auditory network and default mode network
after the intervention. These neural measures revealed the
differences in the neuroplasticity and brain reorganization in the
stroke subjects following the two training strategies. Our findings
might imply that the neuroplasticity could be promoted more
profoundly by the intervention with neurofeedback, and might
be shaped to achieve better motor skill acquisition.

Motor Functional Recovery
A significant long-term training effect on the paretic upper-
limb motor functional improvement was observed only in
RobotEEG_AO group where guided training (AO+ EEG feedback)
was applied. It should be noted that both the two groups received
comparable robot hand training. Previous studies have shown
that robot-assisted training alone can promote encouraging
upper-limb functional recovery of chronic stroke subjects (1,
54, 55). Therefore, the robot-assisted training without neural
guidance could still achieve comparable improvement in paretic
upper-limb motor performance at a similar level as the subject

group with neural guided training. However, from a long-term
perspective, the improvement in the paretic upper-limb motor
functions could bemore sustainable for the subjects who received
guided training compared to those who received non-guided
training. Moreover, it is interesting to observe higher proportions
of stroke subjects exceeding the MCID in the guided training
group. The MCID, which is defined as the smallest change in a
treatment outcome that is identified as clinically important to
patients or clinicians, is introduced since statistical significance
sometimes does not necessarily imply clinical importance. In
some cases, retaining a rigid cutoff point (p<0.05) can induce
a drawback that a potential clinically important difference can
be denoted as statistically insignificant and ignored due to a
small sample size studied (type II errors) (33). The concept of
MCID is thus proposed for studying the clinical importance
and can be a threshold above which the experienced outcome
is treated as relevant to the patient. The results of better motor
skill acquisition revealed in the guided training group might
be attributed to the synchronization between the peripheral
stretching of the paretic hand and the detection of motor imagery
with an augmented effects of action observation. It is likely that
the centers andmotor pathways involved duringmotor execution
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could be activated during motor imagery at subthreshold levels
(56). The better motor skill acquisition could be associated with
the concurrent neuroplasticity changes.

Motor Imagery Performance
EEG discriminant rate describes an ability of discriminating
brain activity between motor imagery state and resting state,
which can also be regarded as an indicator of motor imagery
performance in this study. Higher EEG discriminant rate
represents a better motor imagery performance and vice
versa. Motor imagery performance can be manifested in the
classification accuracy of a fixed classification model that can be
used to detect the change in motor imagery performance after
the intervention. In our design of interventional protocol for
EEG guided robot hand training, the subjects were trained to use
the correct signals from the ipsilesional motor areas to control
the computer system and activate the robot hand. From our
results, significant increase in the EEG discriminant rate based
on the ipsilesional EEG signals was also found accordingly after
the EEG guided training compared to the baseline. The results
could follow our expectation, showing that the subjects were
trained to have enhancedmotor imagery performance using their
ipsilesional EEG features as reflected by the significant increase
in the ipsilesional discriminant rate. On the other hand, the
subjects in non-EEG guided training group were also asked to
performmotor imagery during the display of the text instruction.
However, no significant change was found in both ipsilesional
and contralesional discriminant rates after the training. The
results further demonstrate that proper neural guidance to the
subjects could be essential and important to guide their motor
imagery and induce neuroplasticity in the ipsilesional brain
activity.

Brain Network Variability
Consistent with the results of EEG discriminant rate, significant
increases in the temporal variability were also only found in
the guided training group. The temporal variability can be used
to track the ongoing dynamics and spontaneous changes of
functional connectivity of a region over time. Higher variability
of a region means that the region may participate in multiple
and diverse functions across the time (27, 28). Disease-specific
variability changes have been studied in previous literature (22,
28, 57), indicating that various diseases would induce different
patterns of variability compared to the healthy controls. In our
study, significant increase in the brain network variability was
found in four functional subnetworks, including sensory-motor
areas, attention network, auditory network and default-mode
network after the intervention.

Functional MRI can offer high spatial resolution data
which can allow us to investigate deeper brain regions and
neuroplasticity changes compared to EEG signals. Hence, fMRI
results could uncover more network changes than the EEG
results which the EEG electrodes were only confined to the
central motor areas. Moreover, EEG discriminant rate could only
show the ipsilesional neuroplasticity changes after intervention,
while fMRI results could show increasing trends for both
the ipsilesional and contralesional brain regions after the

intervention, indicating that the neuroplasticity could occur not
only in the ipsilesional hemisphere but also in the contralesional
hemisphere in response to guided robot hand training.

The increased variability in sensory-motor areas after guided
training is consistent with previous findings showing that
increased sensorimotor autonomy was found during skill
acquisition, displaying a neural-efficiency state (58). In line with
the inference from the results of EEG discriminant rate, the
EEG signals from the ipsilesional motor areas were used to
activate the robot hand in the interventional protocol design, and
therefore it is reasonable that significant variability increase in the
sensory-motor areas was also revealed after the intervention.

Apart from the sensory-motor areas, significant variability
changes were also revealed in the attention, auditory and default
mode networks after the intervention. Action observation was
provided during neural guided training, which would activate
the mirror neuron system (a fronto-parietal neural circuit) that
is active during both action observation and execution (59).
The flexibility of the three regions, including anterior cingulate
cortex, superior parietal lobule and middle frontal gyrus, was
strengthen after the intervention (Figure 4C). These regions,
which had significant variability changes after the intervention,
have been documented to contain mirror neurons, constituting
the human mirror neuron system. The impaired motor system
after stroke may become accessible by recruiting the shared
motor circuits during action observation. Repetitive mental
practice might enhance these regions for their re-adaptation to
participate in multiple functions, possibly contributing to the
increase in their temporal variability. The results could again
follow our expectation, suggesting that the mirror neuron system
could be enhanced and motor relearning could be achieved by
our intervention. Moreover, previous studies have also observed
the involvement of parietofrontal areas during stroke recovery
(60, 61), which might support the increased variability of these
regions in association with the motor functional recovery after
the intervention. These regions might play a crucial role in
attentional processes related to self-monitored movement (62).
Therefore, the dynamic characteristics of these subnetworks
could be modulated by the intervention, which is in line with the
EEG results showing significant improved discriminant ability
between motor imagery and resting states.

LIMITATIONS

Motor recovery from chronic stroke is often difficult and
challenging to be achieved and maintained. This study showed
that a significant long-term training effect on the paretic upper-
limb motor functions could be observed for the subjects who
received the guided robot hand training. Moreover, higher
proportions of stroke subjects exceeding the clinical significant
improvement by using MCID was found in the group receiving
guided training compared with the non-guided training group.
However, there is also a wide range of available methods for
determining the MCID, which would create a major problem
that a number of MCID scores are available for a single outcome
measure. This would also create difficulty in the interpretation
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when deciding which MCID score is the most appropriate
(63). Despite the fact that the MCID can be varied according
to different definition methods, it is independent of treatment
methods and therefore two different treatments can be compared
using the same MCID for the same outcome measure. Besides,
this pilot study examined a total of 24 chronic stroke subjects
of which only 16 subjects had the MRI examination. This small
sample size would limit the generalization of the findings to
a larger population, and the dynamic functional connectivity
changes revealed from the 16 subjects who had the MRI
examination might also not be able to reflect the whole picture of
neuroplasticity changes in the all 24 subjects. The heterogeneous
subject demographics, including the variations in lesion site and
size, time since stroke and stroke type, may also contribute
to the differences in the electrophysiological and the dynamic
functional connectivity patterns. In spite of this, both our EEG
and fMRI results generally revealed the significant neuroplasticity
changes only in the subjects who received the guided training.
Nevertheless, future studies with larger sample size will be
needed to validate and extend the preliminary findings of this
study. Moreover, the study design was a bit ambiguous with
the involvement of several influencing factors in the training
modes, including the motor imagery in combination with action
observation or with text cue, and the EEG-based or random
triggering mode of the robot hand. The study outcomes or results
could be clearer if each factor was studied separately with more
separate subject groups.

CONCLUSION

This pilot study uncovered the differences in longitudinal
training effect and neuroplasticity changes under two kinds
of training strategies for stroke rehabilitation by investigating
the changes in the dynamic temporal characteristics of brain

regions using resting state fMRI and the brain discriminant
ability between motor imagery state and resting state using
EEG. Our findings indicated that a sustainable motor
functional improvement could be achieved through proper
guidance and neurofeedback to the stroke subjects. Moreover,
neural guidance could be essential and important to induce
neuroplasticity, and the neuroplasticity could occur in multiple
brain networks involving both the ipsilesional and contralesional
hemispheres.
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