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INTRODUCTION

During the last decade, Network Science has become one of the most active fields in applied physics
and mathematics (Newman, 2010). From all its possible applications, in this Opinion paper we
are concerned about the analysis of one of the most extended sports, football (soccer in U.S.
terminology) (Sumpter, 2016), since it allows addressing different aspects of the team organization
and performance not captured by classical analyses based on the performance of individual players.
The reason behind relies on the complex nature of the game, which, paraphrasing the foundational
paradigm of complexity sciences “can not be analyzed by looking at its components (i.e., players)
individually but, on the contrary, considering the system as a whole” or, in the classical words of
after-match interviews “it’s not just me, it’s the team.”

The recent ability of obtaining datasets of all events occurring during a match allows analysing
and quantifying the behavior of a team as a whole, together with the role of each single player
(Gudmundsson and Horton, 2017). Under this framework, the organization of a team can be
considered as the result of the interaction between its players, creating passing networks, which
are directed (i.e., links between players go in one direction), weighted (the weight of the links is
based on the number of passes between players), spatially embedded (i.e., the Euclidean position of
the ball and players is highly relevant) and time evolving (i.e., the network continuously changes its
structure).

PASSING NETWORKS: INFORMATION FROM A NEW
PERSPECTIVE

Passes along the match give rise to three main types of passing networks: (i) player passing networks,
where nodes are the players of a team (Passos et al., 2011; Grund, 2012), (ii) pitch passing networks,
where nodes are specific regions of the field connected through passes made by players occupying
them (Cintia et al., 2015) or (iii) pitch-player passing networks, where nodes are a combination of
a player and its position at the moment of the pass (Cotta et al., 2013; Narizuka et al., 2014). See
Figure 1 for an example of a player passing network.

Once the network is constructed, several “topological scales” can be identified inside the passing
network of a football team: (i) themicroscale, where the analysis is carried out at the level of nodes,
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FIGURE 1 | Construction of a passing network. In this example, passes from the match Real Madrid –Barcelona of the Spanish national league “La Liga”, season
2017/2018. In the upper row, initial position of all passes made by Barcelona (A) and Real Madrid (B). In the bottom row, Barcelona (C) and Real Madrid (D) passing

networks, where link widths are proportional to the number of passes between players, whose position in the network is given by the average position of all their

passes. Datasets were provided by Opta and are accessible through the Supplementary Information.

i.e., the players and its role inside the network, (ii) the
mesoscale, which ranges from small motifs describing the
interaction between 3 or 4 players to the detection of larger
groups of players that interact most frequently between them
and (iii) the macroscale, which considers the network as a
whole.

At the topological microscale, the importance of each player
has been related to: its degree, which is the number of passes made
by a player (Cotta et al., 2013); eigenvector centrality, a measure
of importance obtained from the eigenvectors of the adjacency
matrix (Cotta et al., 2013); closeness, measuring the minimum
number of steps that the ball has to undergo from one player to
reach any other in the team (López-Peña and Touchette, 2012); or
betweenness centrality, which accounts how many times a given
player is necessary for completing the routes (made by the ball)
connecting any other two players of its team (Duch et al., 2010;
López-Peña and Touchette, 2012). Other metrics, such as the
clustering coefficient, which measures the number of “neighbors”
of a player that also have passed the ball between them (i.e., the
number of triangles around a player), has also been quantified to
evaluate the contribution of a given player to the local robustness
of the passing network (López-Peña and Touchette, 2012).

At the mesoscale level, the analysis of network motifs has
shown how the overabundance of certain kinds of passes between
groups of three/four players can be related to both the success of
a team (Gyarmati et al., 2014) and the identification of leaders in
the passing network (López Peña and Sánchez Navarro, 2015).
Concerning the role of communities of players playing tightly
connected between them, Clemente et al. (2015), related the
high heterogeneity of the number of passes between players
to the existence of sub-communities, which would hinder the
behavior of the team as a whole. In the same sense, Gyarmati and
Anguera (2015) studied all the recurring pass sequences, relating
discovered sequence patterns to teams’ playing style and strategy.

Finally, at the topological macroscale, a diversity of network
metrics has been shown to be informative about the style and
performance of football teams. For example, the position of
the network centroid has been related to the performance of
the teams (the more forward, the better) and has been shown
to move backwards when teams play as visitors (Bialkowski
et al., 2014). Other positional variables, such as the stretch
index (mean dispersion of the players around the centroid),
the surface area or the team length and width have also been
used as more sophisticated metrics related to team performance
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(Duarte et al., 2012). On the other hand, Duch et al. (2010)
designed a performance metric based on the betweenness of
the players, showing how it correlated with the probability of
winning a match. Other macro-scale measures such as the team
average degree (i.e., average number of passes) or the variability
of the players’ degrees have also been proposed as proxies for
evaluating team performance (Cintia et al., 2015; Pina et al.,
2017). Concerning the macro-scale topology of the passing
network, the small-world property (Watts and Strogatz, 1998),
observed in a diversity of social, biological and technological
networks, has also been reported (Narizuka et al., 2014). The
average clustering coefficient of the team has also been shown
to be much higher, during a match, than in equivalent random
networks, unveiling the creation of triplets between players
(Cotta et al., 2013). More recent studies tracking the position of
the players have shown that it is better to maintain a balanced
betweenness and a high closeness along the nodes of the passing
network (Gonçalves et al., 2017).

Finally, it is worth mentioning that despite the micro- (i.e.
player) and macro- (team) scales are perfectly identified, it is
not clear how to define mesoscale units: What is the role of
small motifs? Are there groups of players that can be considered
as a unit? What is the role of small communities of players in
the game? All these questions are of extreme importance and
can be addressed using Network Science methodologies such as
clustering or community identification algorithms (Fortunato,
2010), quantification of overrepresentedmotifs (Milo et al., 2002)
or analysis of hierarchical structures (Corominas-Murtra et al.,
2013).

SOME CHALLENGES: DYNAMICS, SPACE,
TIME AND INTERACTION BETWEEN
TEAMS

Passing networks are, in fact, dynamical system themselves,
and the full identification and quantification of how variables
determine the evolution of the game of a team are still
open problems. Indeed, since the game cannot escape from
the existence of stochastic forces combined with the high
complexity of its intrinsic dynamics, modeling and forecasting
a football match becomes a highly challenging task. Fortunately,
distinguishing noise from determinism is an issue whereNetwork
Science can help, since it is possible to determine the level of
randomness of the topology of the network and the dynamics
occurring in it (e.g., how the ball moves along the network). We
are on the way of constructing adequate null models of passing
networks that are able to quantify the amount of disorder and
complexity of the network topology. As explained in Sarzynska
et al. (2016), the interpretation of network metrics should be
referred to reference values, which can be obtained from adequate
null models. However, these null models must incorporate the
particular features of the system they are describing, and the
Euclidean position of the nodes and temporal evolution should
be taken into account (Sarzynska et al., 2016). Therefore, null
models for passing networks must be as realistic as possible and
include the intrinsic features of the game such as the degree

distribution, length of the passes and positions of the players in
the pitch. Concerning the dynamics along the network, recent
approaches using Markovian models could be a starting point
to unravel hidden patterns in the passing sequences of a team
(López Peña, 2014) but must include the particular features of
players’ movements and their ability of decision.

Nonetheless, topology is only one dimension of the analysis of
passing networks and at least other two must be included to have
a complete picture: space and time. Concerning the former, the
division of the pitch into different sub-regions has been carried
out in a series of papers; however, it is not clear what is the
most adequate spatial partition or, even if a unique partition (or
scale) exists for a given team. From the division of the pitch
into 6x3 rectangles of equal size up to a segmentation of 100
regions (Cintia et al., 2015) a diversity of field partitions has
been suggested (Camerino et al., 2012; Narizuka et al., 2014;
Arriaza-Ardiles et al., 2018). The translation of passes into pitch
or pitch-player networks seems to be a promising complementary
vision of the game, despite the information loss about the players’
behavior.

Time is another dimension traditionally overlooked when
constructing passing networks. Note that the analysis of passing
networks must take into account its continuous evolution in
time and space. For example, as shown in Duarte et al. (2012),
entropy decreases as the game evolves, which is attributed to the
fatigue of the players. In addition, collective behaviors decrease
in complexity/irregularity during the time periods, accompanied
with an increase of the deviations from the mean tendency.
Network’s density, heterogeneity and centralization also show
differences between the 1st and 2nd part of a match (Clemente
et al., 2015). However, it is common to average along the whole
match (Gonçalves et al., 2017), or even along a competition
(López-Peña and Touchette, 2012; Gyarmati et al., 2014),
obtaining a network that can be informative about the general
behavior of a team but excludes the unavoidable fluctuations
during a match. Considering the networks during each of the two
parts (Clemente et al., 2015) or constructing sliding windows of a
certain length (between 5 and 15min) are reasonable approaches
(Yamamoto and Yokoyama, 2011; Duarte et al., 2012; Cotta et al.,
2013) as suggested in Ribeiro et al. (2017). More recently, the
construction of temporal multilayer networks has been proposed
(Ramos et al., 2018). Under this framework, each temporal layer
consists of a sub-network only containing the passes during
a specific attacking phase, starting with the ball recovery and
finishing with a shot or a ball loss. As explained in Ramos et al.
(2018), aggregated or averaged networks contain unreal paths
(or shortest-paths) between players, since these paths may go
through passes that occurred at, for example, different parts
of the match. Using temporal multilayer networks overcomes
this issue, however, assuming an a priori temporal division of
the network may introduce some bias into the network metrics
and alternative approaches should focus on finding the time
scales of the match from the observation of the game. This
could be done by computing the network properties for any
possible temporal division and, next, using community detection
algorithms (Fortunato, 2010) to identify the optimal temporal
partition of the match into time slots. Note that these time slots
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may have different lengths and would be indicators of how (and
when) the game style changed, quantifying the temporal scales
associated to each team.

At the same time, a football match is the result of the
competition between two teams, i.e., the interaction between
two networks. Therefore, the passing network of a team must
be analyzed in combination with the network of the opponent
(Narizuka et al., 2014). In this way, it will be possible to draw
conclusions about how a team adapts its game depending on
the opponent and what kind of topological organization leads
to better results. Recent studies about networks-of-networks in
other fields have shown that when networks get connected,
important properties of the ensembled systems are modified
(Boccaletti et al., 2014; Kivelä et al., 2014). With this regard,
a multilayer description of a match, with two interacting
networks, or layers, composed of the internal passes of each
team, is still missing. This multilayer approach based on
networks-of-networks would be complementary to the temporal
multilayer networks proposed in Ramos et al. (2018). Specifically,
the intra-layer links would be composed of the passes only
within each team, while the inter-layer links would consist on
ball recovery/losses. The analysis of the resulting network-of-
networks could be fundamental to understand the evolution
and adaptability of the teams along the match, which cannot
be interpreted without analysing the behavior of each team
separately. In this way, the competition between the two
networks, suggests the application of the network-of-networks
framework proposed in Aguirre et al. (2013), where it was
shown that it is possible to find the optimal strategies of
interaction with other networks, or in the case of football passing
networks, that each team should find the most appropriate way
of organizing its passing network according to the organization
of the opponent.

On the other hand, there are parallel methodologies, such as
the use of hypernetworks (Johnson, 2016), which would benefit
from the inclusion of the information contained in the passing
networks. Ramos et al. (2017) proposed the use of hypernetworks
as an alternative way of studying the spatial competition
and cooperation between players, translating actions occurring
between two or more players into hypernodes. As they suggest,
including passes between players in the hypernetwork seems a
promising step forward in the application of hypernetworks to
understand the organization of the game.

Finally, it is possible to translate and generalize the results of
network theory in football to organizational studies (Orlikowski,
1996; Padgett and Powell, 2012). When two teams are competing
in the field, they need to develop strategies to create new options
and “entrepreneurial actions” that generate “surprises” to the
opponent (Dew, 2009). Furthermore, the interaction between
teams goes beyond the notion of “adaptation” challenging the
concept of the “interface” or dynamic limit between the two
teams. We believe that teams (beyond football and sports)
need to generate new competencies such as systematic creativity
and organizational learning that allow them to anticipate to
the competition, promote their superiority and to create order
and optimal organizational structures but, at the same time, to
generate “disorder” in the opponent with the aim of creating
situations of superiority.
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