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A novel label fusion method for multi-atlas based image segmentation method is

developed by integrating semi-supervised and supervised machine learning techniques.

Particularly, our method is developed in a pattern recognition based multi-atlas label

fusion framework. We build random forests classification models for each image voxel

to be segmented based on its corresponding image patches of atlas images that

have been registered to the image to be segmented. The voxelwise random forests

classification models are then applied to the image to be segmented to obtain a

probabilistic segmentation map. Finally, a semi-supervised label propagation method

is adapted to refine the probabilistic segmentation map by propagating its reliable

voxelwise segmentation labels, taking into consideration consistency of local and global

image appearance of the image to be segmented. The proposed method has been

evaluated for segmenting the hippocampus in MR images and compared with alternative

machine learning basedmulti-atlas based image segmentationmethods. The experiment

results have demonstrated that our method could obtain competitive segmentation

performance (average Dice index > 0.88), compared with alternative multi-atlas based

image segmentation methods under comparison. Source codes of the methods under

comparison are publicly available at www.nitrc.org/frs/?group_id=1242.

Keywords: multi-atlas, image segmentation, hippocampus, random forests, label propagation

INTRODUCTION

In recent years, multi-atlas based image segmentation (MAIS), as an automatic medical image
segmentation technique, has been widely adopted in medical image segmentation studies (Hao
et al., 2012a,b,c, 2014; Zhu et al., 2015, 2016, 2017; Zheng and Fan, 2018). Most typical MAIS
methods consist of two components: atlas image registration and atlas label fusion. Particularly, the

atlas image registration component aligns atlas images and their segmentation labels to an image to
be segmented, and then the aligned segmentation labels are fused to obtain a segmentation result for
the image to be segmented by the atlas label component. Besides improving the image registration
component (Hao et al., 2012b; Alven et al., 2016; Doshi et al., 2016; Alchatzidis et al., 2017), many
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MAIS methods have focused on improving the label fusion
component (Rohlfing et al., 2004; Coupé et al., 2011; Han, 2013;
Wang et al., 2013; Hao et al., 2014; Amoroso et al., 2015; Roy
et al., 2015; Wu et al., 2015; Zhu et al., 2015, 2017; Doshi
et al., 2016; Giraud et al., 2016; Zhang et al., 2017; Zu et al.,
2017; Yang and Fan, 2018a,b). In particular, majority voting
(MV) might be the simplest label fusion method (Rohlfing
et al., 2004), and more sophisticated label fusion strategies have
been built upon a nonlocal patch-based label fusion strategy
(Coupé et al., 2011), such as metric learning (Zhu et al., 2017),
joint label fusion (Wang et al., 2013), and dictionary learning
(Roy et al., 2015; Yang and Fan, 2018a). A pattern recognition
framework has also been developed to solve the label fusion
problem (Hao et al., 2012c, 2014; Han, 2013). In the pattern
recognition based label fusion framework, image patches of
the registered atlases and their segmentation labels are used
as training data to build pattern classification models using
support vector machines (SVM) (Hao et al., 2012c, 2014), linear
regression model (Zhu et al., 2015), artificial neural networks
(ANNs) (Amoroso et al., 2015), or random forests (RF) (Han,
2013), and then the trained pattern classification models are used
to predict segmentation labels of image patches in the image to be
segmented.

Although the existing label fusion methods differ in many
aspects, they typically implement the label fusion for different
voxels independently without taking into consideration spatial
consistency among voxels of images to be segmented. Since
imaging noise often presents in biomedical images, it may obtain
degraded performance to segment image voxels independently.
Furthermore, the pattern recognition label fusion methods might
be hampered by discrepancy between atlas images and images
to be segmented, which cannot be fully eliminated by the image
registration, particularly image intensity differences (Li et al.,
2010; Coupé et al., 2011; Li and Fan, 2012). These problems
have been addressed in different studies for medical image
segmentation problems (Li et al., 2010; Coupé et al., 2011; Li
and Fan, 2012; Koch et al., 2014). However, a unified solution is
desirable for segmenting images in the MAIS framework.

In this study, we develop a novel MAIS method by integrating
a semi-supervised label propagation (SSLP) method and a
supervised random forests (RF) classification method in the
MAIS framework (Breiman, 2001; Zhou et al., 2004), aiming to
achieve improved image segmentation performance. Particularly,
after atlas images and their segmentation labels are registered
to an image to be segmented, a local RF classification model is
built for every image voxel to be segmented upon its neighboring
image patches of the registered atlas images in the MAIS
framework to obtain a probabilistic image segmentation map
(Hao et al., 2012c, 2014; Han, 2013). Then, the probabilistic
image segmentation map is refined by a semi-supervised
label propagation method that propagates reliable segmentation
information within the image to be segmented, under a
constraint of local and global image intensity consistency (Zhou
et al., 2004; Coupé et al., 2011; Li and Fan, 2012). An information-
balance-weighting scheme is proposed to propagate the reliable
image segmentation within the image to be segmented itself,
rather than propagating information among the target image and

the atlas images (Koch et al., 2014), which may suffer from image
intensity inconsistency across images. We have validated the
proposed method for segmenting the hippocampus in magnetic
resonance imaging (MRI) scans based on segmentation labels
provided by the EADC–ADNI (European Alzheimer’s Disease
Consortium and Alzheimer’s Disease Neuroimaging Initiative)
harmonized segmentation protocol (http://www.hippocampal-
protocol.net; Boccardi et al., 2015). Comparison results with
alternative MAIS methods have demonstrated that the proposed
method could achieve competitive segmentation performance.
Preliminary results of this study have been reported in a
conference paper (Zheng and Fan, 2018). Source codes of
the methods under comparison and segmentation evaluation
metrics are publicly available at www.nitrc.org/frs/?group_id=
1242.

MATERIALS AND METHODS

Imaging Data and Hippocampus Atlases
In this study, we used publicly available imaging data to develop
and validate our method. Particularly, magnetic resonance
imaging (MRI) scans were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu/).
The ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). The ADNI MRI scans were acquired using a sagittal 3D
MP-RAGE T1-w sequence (TR = 2,400ms, minimum full TE,
TI = 1,000ms, FOV = 240mm, voxel size of 1.25 × 1.25 ×

1.2 mm3; Jack et al., 2008). For up-to-date information, see
www.adni-info.org.

To validate our method for segmenting the hippocampus, a
subset of the ADNI MRI scans with manual segmentation
labels of the hippocampus was obtained from the
EADC-ADNI harmonized segmentation protocol project
(www.hippocampal-protocol.net; Boccardi et al., 2015). In
particular, the hippocampus segmentation labels of 135 subjects
are available, consisting 100 subjects from a preliminary release
and 35 subjects from a final release. In the present study, we
downloaded MRI scans and their hippocampus labels in NIFTI
format. In the preliminary release dataset, 002_S_0938’s bilateral
hippocampus labels missed several slices. In the final release
dataset, MRI scans of 4 subjects (007_S_1304, 002_S_4121,
029_S_4279, and 136_S_0429) are not matched with their
corresponding label images due to image format conversion.
The mismatch problem was corrected by reorienting the
hippocampus label images. Finally, we obtained 99 subjects
and 35 subjects from preliminary release and final release,
respectively, with each subject having both MRI scan and
its corresponding hippocampus label. The data from the
final release were used as atlas images, and the data from
the preliminary release were used as test data in our study.
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TABLE 1 | Demographic information.

Subject

size

Males/

Females

Age (years):

mean ± std

Normal controls (NC) 44 22/22 76.18 ± 7.45

Mild cognitive

impairment (MCI)

46 27/19 74.70 ± 8.10

Alzheimer’s disease (AD) 45 21/24 74.45 ± 8.10

Basic demographic data of these subjects are summarized in
Table 1.

Multi-Atlas Based Image Segmentation by
Integrating Semi-supervised Label
Propagation and Random Forests
Our method, referred to as RF-SSLP, consists of anMAIS method
for generating a probabilistic segmentation result using a RF
classification method and a SSLP method for computing reliable
image segmentation.

Local Label Fusion Based on Random Forest
Given a target image I and N registered atlas images and their
labels Ai = (Ii, Li) , i = 1, · · · ,N, where Ii and Li are the i

th atlas
and label images, respectively, random forest models are built to
generate a probabilistic segmentation result of the target image in
a pattern recognition framework (Hao et al., 2014). Particularly, a
pattern recognition model is built for each voxel to be segmented
based on image features computed from image patches (Coupé
et al., 2011).

In order to segment each voxel in the target image, a 3D
image patch consisting of its neighboring voxels with size

(2rs + 1) × (2rs + 1) × (2rs + 1) is identified to compute
image features for characterizing the voxel under consideration,
where rs is the image patch’s radius. Particularly, image
intensity values of the image patch are first normalized
by subtracting its mean value and followed by dividing its
standard deviation, then a set of texture filters are applied
to the normalized image patch for computing image texture
features, including the first and second order difference filters,
3D Hyperplane filters, 3D Sobel filters, Laplacian filters, and
Range difference filters are utilized to extract features, and
finally the texture features and image intensity values are
concatenated to form a feature vector (Hao et al., 2014). The same
image feature extraction procedure is used to compute image
features for each voxel of both the target image and the atlas
images.

The image features extracted from the atlas images with
their segmentation labels are used as training data for building
pattern classification models for image voxels to be segmented.
Particularly, a pattern recognition model can be built for
each voxel of the image to be segmented based on its
neighboring voxels of the atlas images (Hao et al., 2014).
Given a voxel x to be segmented in the target image,
voxels of the atlas images in its neighborhood N (x) with

(2r + 1) × (2r + 1) × (2r + 1) are used as training samples,

where r is the neighborhood size for building training data.
For each of the training voxels, image features are computed
as aforementioned, and we obtain (2r + 1)3 × N training

samples
{(−→

f i,j, li,j

)

|i = 1, · · · ,N, j ∈ N (x)
}

, where
−→
f i,j is a

feature vector with label li,j ∈ {1, 0} with 1 indicating the
hippocampus and 0 indicating background. Based on the training
samples, a RF classification model is trained for predicting the
segmentation label of the voxel under consideration. To build
the classification model on balanced training samples, we select
the same number (k) of positive and negative samples that
are most similar to the voxel to be segmented, to train the
classification model (Hao et al., 2014). The similarity between
voxels is measured by Euclidean distance between their image
features.

The random forest classification model is an ensemble of
classification trees that are built upon the training data using
randomly sampling, with 2 parameters: NTree (the number of
trees) and NSplit (the number of predictors sampled for splitting
at each node; Breiman, 2001). Once NTree classification trees are
trained, they are applied to image features fx of voxel x to predict
its segmentation label:

p
(

fx
)

=
1

NTree

∑NTree

i=1
Ti

(

fx
)

(1)

where Ti is the ith tree with a classification result of 1 or
0, and p is a probabilistic segmentation result. Applying the
voxelwise classification model to an image to be segmented,
we obtain a probabilistic segmentation map. The probabilistic
segmentation map could be binarized using a threshold of 0.5
to obtain a binary segmentation image. Therefore, in addition
to a binary segmentation result for each voxel of the image
to be segmented, we also obtain a probabilistic segmentation
map for the image to be segmented. Since a segmentation result
with probabilistic value close to 0.5 might be unreliable and the
segmentation results might be degraded by imaging noise since
they are obtained for different voxels separately, we adopt a semi-
supervised label propagation method to refine the probabilistic
segmentation map (Zhou et al., 2004; Li et al., 2010; Coupé et al.,
2011; Li and Fan, 2012).

Semi-supervised Label Propagation for the

Hippocampus Segmentation
A graph theory based label propagation method is adopted to
refine the probabilistic image segmentation map (Zhou et al.,
2004). Particularly, to refine the probabilistic segmentation map
with n voxels under a constraint of local and global image
consistency, the label propagation obtains a new segmentation
map by minimizing

E (L) = LT (I − S) L+ α (L− P)T (L− P) , (2)

where P is an n × 2 matrix for encoding foreground and
background of the probabilistic segmentation map to be refined,
respectively, with pi,1 = max

(

2× (p
(

fi
)

− 0.5), 0
)

, pi,2 =

max
(

2× (0.5− p
(

fi
)

), 0
)

, i = 1, . . . , n, p
(

fi
)

is the probabilistic
segmentation result obtained by the Local label fusion based on
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random forest, L is an n× 2 matrix for encoding foreground and
background of the refined segmentation map, S is a symmetric
normalized Laplacian matrix, I is an identity matrix, and α is
a parameter. Particularly, S plays an important role in the label
propagation in that it characterizes similarity among different
voxels. In our study, image similarity between two voxels x and y
is defined by

Wxy =







exp

(

−
‖Ix−Iy‖

2

σ 2

)

, x 6= y

0, x = y
, (3)

where Ix and Iy are image intensity values of voxels x and y,
respectively, and σ is a parameter. Given a pairwise similarity
matrix,W, between all voxels defined by Equation (3),

S = D−1/2WD−1/2, (4)

where D is a diagonal matrix with its diagonal element equal to
the sum of the corresponding row ofW.

The optimization problem of Equation (2) can be solved
iteratively as follows (Zhou et al., 2004):

Ln+1 = (1− β) SLn + βP, (5)

where n is the number of iteration steps, and 0 < β < 1 is a
trade-off parameter related to α.

To relieve impact of unreliable image segmentation results
on the label propagation, the probabilistic segmentation map
is weighted by reliable segmentation information, referred
to as information-balance-weighting. Particularly, the reliable
segmentation result is determined by a threshold T. Since
the number of background voxels is typical larger than the
number of the foreground voxels, to balance the background
and foreground label information in the label propagation, the
reliable background label information is enhanced as

p
∗

i,2 =

{

max
(

Nf

Nb
pi,2,T

)

, pi,2 > T

pi,2, pi,2 ≤ T
, (6)

where Nf is the number of voxels with reliable foreground
(hippocampus) segmentation labels, Nb is the number of voxels

with reliable background segmentation labels, and T is the
threshold for determining the reliable segmentation result. It
is worth noting that max (·,T) guarantees that the reliable p∗i,2
remains no smaller than the threshold T after the information-
balance-weighting. Then, P is normalized by updating pi,1 with

pi,1
(

pi,1 > T
)

= pi,1
(

pi,1 > T
)

/pi,1
(

pi,1 > T
)

and updating

pi,2 with pi,2
(

p∗i,2 > T
)

= p∗i,2
(

p∗i,2 > T
)

/p∗i,2
(

p∗i,2 > T
)

, where
pi,1 encodes the foreground segmentation label, pi,2 encodes

the background segmentation label, and pi,1
(

pi,1 > T
)

and

p∗i,2
(

p∗i,2 > T
)

are mean values of the reliable foreground
and background labels, respectively. Finally, a refined
segmentation coding matrix L obtained by updating the
normalized segmentation coding, as formulated by Equation
(5), and a binary refined segmentation map is obtained by
assigning voxels as foreground if li,1 > li,2, i = 1, . . . , n or
background otherwise. An example image slice, its probabilistic
segmentation map obtained by the random forest classification
model, and its balanced label information are shown in
Figure 1.

Bounding Box Generation and Atlas
Selection for Improving Computational
Efficiency
Instead of applying the pattern recognition based label fuse to
all voxels of the target image, we reduced the computational
cost by following preprocessing steps. First, we linearly aligned
all the images to the MNI152 template with voxel size of 1 ×

1 × 1 mm3 and identified bounding boxes that were large
enough for covering the hippocampal region in the MNI space
(Hao et al., 2014). Second, we selected 20 most similar atlases
for each target image by computing and ranking normalized
mutual information between each candidate atlas image and
the target image within the bounding box, and then registered
the selected atlas images to the target image (Avants et al.,
2009). Third, the majority voting label fusion method was
used to obtain an initial segmentation result of the target
image, and the RF-SSLP based label fusion was then applied
to voxels without 100% votes for either the foreground or
the background in the majority voting method (Hao et al.,
2014).

FIGURE 1 | An example image slice with the hippocampus boundary (left), its probabilistic segmentation map obtained by the random forest classification model

(middle), and its probabilistic segmentation map with balanced label information (right). The colorbars indicate segmentation probability values or balanced reliable

label information for background (−1∼0) and hippocampus (0∼1). The threshold T was 0.5.
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Parameter Optimization Based on the
Training Data
Our method has tunable parameters for both the image feature
extraction and the pattern recognition. For the image feature
extraction, we followed the local label learning study to set the
image patch size and the neighborhood size for training samples
(Hao et al., 2014). Particularly, rs = 3 for the image patches, and
r = 1 for the neighborhood size. For the pattern recognition,
our method has 6 parameters, including k (the number of nearest
neighboring samples for training local random forests), NTree

(the number of trees), NSplit (the number of predictors sampled
for splitting at each node), T (the threshold for determining the
reliable segmentation), σ (the image similarity parameter), and
β (the trade-off parameter for updating the segmentation). Based
on the training dataset, we adopted leave-one-out (LOO) cross-
validation to optimize Dice index by grid-searching parameters
from k ∈ {100, 200}, NTree ∈ {100, 200}, NSplit ∈ {10, 20, 30},
T ∈ {0.4, 0.5, 0.6}, σ ∈ {5, 10, 20}, and β ∈ {0.5, 0.6, 0.7}.

Particularly, the RF parameter optimization was implemented
based on 12 settings of (k×NTree×NSplit = 2× 2× 3 = 12). For
each setting of RF parameters, we optimized the SSLP parameter
under 27 different settings of (T× σ ×β = 3× 3× 3 = 27). The
optimized parameters were finally determined by grid-searching
all of the parameter combinations.

Evaluation of Segmentation Accuracy
The evaluation of hippocampus segmentation was based on the
training and testing data. Particularly, Dice, Jaccard, Precision,
Recall, Mean Distance(MD), Harsdorff Distance(HD), Average
Symmetric Surface Distance (ASSD) were computed to measure
the differences between the manual segmentation label A and a

TABLE 2 | Average dice index of segmentation results obtained by RF based

MAIS with k ∈ {100, 200}, NTree ∈ {100, 200}, and NSplit ∈ {10, 20, 30},

followed by optimized SSLP results with T ∈ {0.4, 0.5, 0.6}, σ ∈ {5, 10, 20}, and

β ∈ {0.5, 0.6, 0.7}.

XXXXXXXX
NSplit

NTree 100 200

10 Left 0.8849/0.8901 0.8851/0.8896

Right 0.8855/0.8903 0.8862/0.8905

20 Left 0.8844/0.8902 0.8855/0.8902

Right 0.8853/0.8904 0.8855/0.8907

30 Left 0.8843/0.8901 0.8849/0.8902

Right 0.8847/0.8903 0.8854/0.8906

k = 100

10 left 0.8852/0.8893 0.8854/0.8894

Right 0.8859/0.8898 0.8864/0.8899

20 Left 0.8847/0.8896 0.8858/0.8898

Right 0.8858/0.8901 0.8861/0.8900

30 Left 0.8853/0.8895 0.8852/0.8897

Right 0.8855/0.8898 0.8858/0.8902

k = 200

The bold values represent the best results.

result B obtained by an automatic image segmentation method,
defined as (Hao et al., 2014)

Dice = 2
V(A ∩ B)

V (A) + V(B)
, Jaccard =

V(A ∩ B)

V(A ∪ B)
,

Precision =
V(A ∩ B)

V(B)
, Recall =

V(A ∩ B)

V(A)
,

MD = meane∈∂A

(

minf∈∂B d
(

e, f
))

,

HD = max (H (A, B) ,H (B,A)) ,

whereH (A, B) = maxe∈∂A

(

minf∈∂B d
(

e, f
))

,

TABLE 3 | Average dice index of segmentation results obtained by the SSLP with

T ∈ {0.4, 0.5, 0.6}, σ ∈ {5, 10, 20}, and β ∈ {0.5, 0.6, 0.7} based on the best

segmentation performance selected by Table 2.

H
H

H
H

β

σ

5 10 20

0.5 Left 0.8890 0.8897 0.8892

Right 0.8894 0.8902 0.8901

0.6 Left 0.8889 0.8901 0.8894

Right 0.8892 0.8906 0.8904

0.7 Left 0.8882 0.8898 0.8890

Right 0.8877 0.8899 0.8899

T = 0.4

0.5 Left 0.8890 0.8894 0.8888

Right 0.8894 0.8901 0.8897

0.6 Left 0.8891 0.8901 0.8893

Right 0.8894 0.8907 0.8905

0.7 Left 0.8884 0.8902 0.8897

Right 0.8886 0.8905 0.8906

T = 0.5

0.5 Left 0.8887 0.8891 0.8886

Right 0.8891 0.8896 0.8893

0.6 Left 0.8888 0.8896 0.8890

Right 0.8892 0.8903 0.8900

0.7 Left 0.8883 0.8899 0.8892

Right 0.8887 0.8903 0.8901

T = 0.6

The bold values represent the best results.

TABLE 4 | Dice index values (mean ± std) for 35 training subjects.

Left hippocampus Right hippocampus

MV 0.8592 ± 0.03 0.8633 ± 0.02

MV-SSLP 0.8673 ± 0.03 0.8712 ± 0.02

RF 0.8850 ± 0.02 0.8857 ± 0.01

RF-SSLP 0.8898 ± 0.02 0.8908 ± 0.01
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HD95: similar to HD, except that 5% data points with the largest
distance are removed before calculation,

ASSD =
(

meane∈∂A

(

minf∈∂B d
(

e, f
))

+meane∈∂B

(

minf∈∂A d
(

e, f
)))/

2,

RMSD =

√

D2
A + D2

B

card {∂A} + card {∂B}
,

where D2
A =

∑

e∈∂A

(

min
f∈∂B

d
(

e, f
)

)

.

Comparison With Alternative MAIS
Algorithms
We compared our method with alternative MAIS methods,
including majority voting (MV) (Rohlfing et al., 2004), nonlocal
patch (NLP) (Coupé et al., 2011), local label learning (LLL)
(Hao et al., 2014), random local binary pattern (RLBP) (Zhu
et al., 2015), and metric learning (ML) (Zhu et al., 2016, 2017).
Parameters of these methods were set to optimal values suggested
in their respective studies. For a fair comparison, we utilized
the same parameters as recommended in Hao et al. (2014) with
fixed parameters rs = 3, r = 1 for patch size (2rs + 1) ×

(2rs + 1) × (2rs + 1) and training sample neighborhood size

(2r + 1)× (2r + 1)× (2r + 1) for all the image patch based label
fusion methods.

Since the MV method could provide probabilistic
segmentation results too, we integrated the same SSLP method
with the MV method for the hippocampus segmentation,
referred to as MV-SSLP. The same parameters used in our
method were adopted in the MV-SSLP method.

For the NLP method (Coupé et al., 2011), the parameter
σ in the Gauss similarity model was adaptively set to σ =

miny∈N(x)

{

∣

∣P (x) − P
(

xs,j
)∣

∣

2

2
+ ǫ

}

with ǫ = 1e−20. For the LLL

method (Hao et al., 2014), the number k of training samples was
set to 400. For the RLBPmethod (Zhu et al., 2015), the dimension
L of the generated RLBP feature was set to 1,000 and the balance
parameterCwas set to 4−4. For theMLmethod (Zhu et al., 2017),
the k nearest training samples was set to 9.

EXPERIMENTAL RESULTS

Parameter Optimization Result Based on
the Training Data
Table 2 summarizes average Dice index measures of both the
left and right hippocampal segmentation results of the training
data obtained by the RF-based MAIS with 12 different settings
of parameters from k ∈ {100, 200}, NTree ∈ {100, 200},
NSplit ∈ {10, 20, 30}, and followed by Dice index measures
of segmentation results obtained by the SSLP method with
optimized parameters by searching 27 different parameter
settings of T ∈ {0.4, 0.5, 0.6}, σ ∈ {5, 10, 20}, and β ∈

{0.5, 0.6, 0.7}. These results demonstrated that the proposed RF-
SSLP method obtained the best segmentation results (Dice index
= 0.8904) based on the RF results obtained with k = 100,
NTree = 200, and NSplit = 20.

Table 3 summarizes average Dice index measures of both
the left and right hippocampal segmentation results of the
training data obtained by the SSLP by searching 27 different
parameter settings based on the RF based segmentation results
with k = 100, NTree = 200, and NSplit = 20. The results in

TABLE 5 | Nine index values (mean ± std) for hippocampus segmentation evaluation using different label fusion methods on testing data (* indicates that our method

achieved significantly superior results in the Wilcoxon signed rand tests with p < 0.05).

MV NLP RLBP ML LLL RF RF-SSLP

Dice Left 0.8552 ± 0.02* 0.8704 ± 0.02* 0.8757 ± 0.02* 0.8757 ± 0.02* 0.8744 ± 0.02* 0.8754 ± 0.02* 0.8801 ± 0.01

Right 0.8555 ± 0.03* 0.8731 ± 0.02* 0.8768 ± 0.02* 0.8771 ± 0.02* 0.8769 ± 0.02* 0.8767 ± 0.02* 0.8814 ± 0.01

Jaccard Left 0.7481 ± 0.04* 0.7714 ± 0.03* 0.7795 ± 0.03* 0.7797 ± 0.03* 0.7775 ± 0.03* 0.7790 ± 0.03* 0.7866 ± 0.03

Right 0.7488 ± 0.04* 0.7757 ± 0.03* 0.7814 ± 0.03* 0.7819 ± 0.03* 0.7815 ± 0.03* 0.7813 ± 0.03* 0.7886 ± 0.02

Precision Left 0.8457 ± 0.04* 0.8656 ± 0.03* 0.8716 ± 0.03* 0.8745 ± 0.03* 0.8685 ± 0.03* 0.8741 ± 0.03* 0.8821 ± 0.03

Right 0.8559 ± 0.04* 0.8771 ± 0.03* 0.8824 ± 0.03* 0.8850 ± 0.03* 0.8811 ± 0.03* 0.8846 ± 0.03* 0.8935 ± 0.03

Recall Left 0.8675 ± 0.04* 0.8770 ± 0.03 0.8809 ± 0.02* 0.8782 ± 0.03 0.8817 ± 0.03 0.8777 ± 0.02 0.8793 ± 0.03

Right 0.8588 ± 0.05* 0.8712 ± 0.04 0.8730 ± 0.03* 0.8712 ± 0.04 0.8744 ± 0.03 0.8705 ± 0.03 0.8711 ± 0.03

MD Left 0.3033 ± 0.05* 0.2699 ± 0.04* 0.2702 ± 0.04* 0.2711 ± 0.05* 0.2630 ± 0.03* 0.2704 ± 0.03* 0.2540 ± 0.04

Right 0.3196 ± 0.07* 0.2780 ± 0.05* 0.2895 ± 0.06* 0.2871 ± 0.06* 0.2786 ± 0.05* 0.2885 ± 0.05* 0.2702 ± 0.05

HD Left 3.8109 ± 1.13 3.6028 ± 1.04 3.6669 ± 0.99 3.6077 ± 1.08 3.6531 ± 1.02 3.6068 ± 1.01 3.5605 ± 1.03

Right 4.0700 ± 1.39* 3.6949 ± 1.14 3.7108 ± 1.11 3.7232 ± 1.10 3.7116 ± 1.16 3.6845 ± 1.15 3.6442 ± 0.61

HD95 Left 1.4926 ± 0.49* 1.3584 ± 0.47* 1.1880 ± 0.35 1.2224 ± 0.44 1.2787 ± 0.39 1.1813 ± 0.34 1.2511 ± 0.26

Right 1.5506 ± 0.64* 1.3501 ± 0.41* 1.1912 ± 0.32 1.2064 ± 0.37 1.2303 ± 0.33 1.2011 ± 0.33 1.2165 ± 0.20

ASSD Left 0.3715 ± 0.07* 0.3347 ± 0.06* 0.3072 ± 0.04 0.3123 ± 0.05* 0.3189 ± 0.05* 0.3091 ± 0.04* 0.3062 ± 0.04

Right 0.3799 ± 0.08* 0.3324 ± 0.05* 0.3092 ± 0.04 0.3144 ± 0.04* 0.3168 ± 0.04* 0.3116 ± 0.04* 0.3065 ± 0.04

RMSD Left 0.6860 ± 0.12* 0.6406 ± 0.11* 0.6067 ± 0.08 0.6163 ± 0.10 0.6213 ± 0.08* 0.6074 ± 0.08 0.6070 ± 0.08

Right 0.7055 ± 0.16* 0.6394 ± 0.10* 0.6133 ± 0.09 0.6198 ± 0.09* 0.6213 ± 0.08* 0.6143 ± 0.09 0.6081 ± 0.05

The bold values represent the best results.
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FIGURE 2 | Box plots of segmentation performance of the methods under comparison based on testing data, evaluated based on nine different metrics. In each box,

the central mark is the median and edges are the 25 and 75th percentiles.

FIGURE 3 | Relative improvement (%) achieved by our method compared with alternative state-of-the-art techniques in terms of Dice index values of individual testing

images. The relative improvement rates of individual testing images were ranked separately for different methods.
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TABLE 6 | Dice index values of selected scans obtained by different methods under comparison.

Subject ID MV NLP RLBP ML LLL RF RF-SSLP Description

LEFT HIPPOCAMPUS

098-S-0172 0.7266 0.7437 0.7992 0.7900 0.7770 0.8113 0.8121 Subject with the most

inaccurate result by MV

method.

100-S-0995 0.8054 0.8066 0.8085 0.8025 0.8100 0.8077 0.8088 Subject with the most

inaccurate result by our

method RF-SSLP.

073-S-0089 0.7772 0.8122 0.8471 0.8448 0.8455 0.8610 0.8660 Subject with the biggest

difference between MV and

our method RF-SSLP.

082-S-1079 0.7935 0.8258 0.8350 0.8098 0.8327 0.8269 0.8417 Subject with the biggest

difference between RF and

our method RF-SSLP.

RIGHT HIPPOCAMPUS

016-S-0991 0.7086 0.7591 0.7616 0.7656 0.7587 0.7609 0.7852 Subject with the most

inaccurate result by both

MV and our method, and

also with the biggest

difference between RF and

our method RF-SSLP.

123-S-0091 0.7442 0.7947 0.8320 0.8288 0.8316 0.8469 0.8526 Subject with the biggest

difference between MV and

our method RF-SSLP.

FIGURE 4 | Visualization of segmenation resutls of the right hippocampus of subject “123-S-0091,” obtained by the segmenation methods under comparison. (A) MV;

(B) NLP; (C) RLBP; (D) ML; (E) LLL; (F) RF; (G) RF-SSLP (Red: overlap between manual and segmentation results. Blue: manual results. Green: segmentation results).

Table 3 indicate that the SSLPmethod with T = 0.5, σ = 10, and
β = 0.6 obtained the best segmentation performance. Therefore,
the optimal parameters for our method were k = 100, NTree =

200,NSplit = 20, T = 0.5, σ = 10, and β = 0.6. These parameters
were adopted in the following experiments.

Table 4 summarizes the best segmentation performance of the
MV, MV-SSLP, RF classification, and RF-SSLP on the training
data, gaged by Dice index measures of both the left and right
hippocampi estimated using a LOO cross-validation. These
results demonstrated that the SSLP method could improve
segmentation results of both the MV and the RF label fusion
methods, and the integration of RF classification and SSLP
obtained the best performance.

Comparison With Alternative MAIS
Methods Based on the Testing Data
Table 5 summarizes performance of the segmentation methods

under comparison on the testing dataset. Wilcoxon signed rank

tests were adopted to compare the methods under comparison

in terms of 9 segmentation accuracy metrics. The statistical

significance testing results indicated that our method performed

better than the MV, NLP, RLBP, ML, LLL, RF classification

methods with respect to most of the metrics (p < 0.05). Figure 2

shows box plots of segmentation performance of the methods
under comparison based on the testing data, evaluated based on
9 different metrics.
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FIGURE 5 | Sagittal visulization of segmenation resutls of the right hippocampus of subject “123-S-0091,” obtained by the segmenation methods under comparison.

(A) original image; (B) MV; (C) NLP; (D) RLBP; (E) ML; (F) LLL; (G) RF; (H) RF-SSLP (Red: overlap between manual and segmentation results. Blue: manual results.

Green: segmentation results).

FIGURE 6 | Transverse visulization of segmenation resutls of the right hippocampus of subject “123-S-0091,” obtained by the segmenation methods under

comparison. (A) original image; (B) MV; (C) NLP; (D) RLBP; (E) ML; (F) LLL; (G) RF; (H) RF-SSLP (Red: overlap between manual and segmentation results. Blue:

manual results. Green: segmentation results).

Relative improvement achieved by our method was measured
in terms of Dice index values of individual testing images.
Particularly, the relative improvement rate of each individual
image was calculated as the difference between Dice index
values obtained by our method and an alternative method
divided by the Dice index value obtained by the alternative
method. As shown in Figure 3, our method consistently
improved the segmentation accuracy in most cases by up
to 13%. For some cases, our method had relatively worse
segmentation performance than the alternative techniques
under comparison. However, the degradation was <1% for
all these cases. These results further demonstrated that our
method could improve the overall hippocampus segmentation
performance.

All the segmentation results indicated that the MV method
obtained the overall worst segmentation performance and the
RF-SSLP obtained the overall best segmentation performance.
We inspected the worst segmentation results obtained by these
two methods. For the left hippocampus, according to Dice
index measures, the MV had the worst segmentation result
for the subject “098-S-0172,” the RF-SSLP obtained the worst
segmentation results for the subject “100-S-0995,” and the
MV and the RF-SSLP obtained segmentation results with the
largest difference for the subject “073-S-0089.” For the right
hippocampus, according to Dice index measures, both the MV
and the RF-SSLP obtained the worst segmentation results for
the subject “016-S-0991,” and they obtained segmentation results
with the largest difference for the subject “123-S-0091.” We also
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found that the RF-SSLP improved the RF with respect to Dice
index for segmenting the left hippocampus of the subject “082-S-
1079.” Table 6 summarizes segmentation performance obtained
by the methods under comparison for these subjects.

Figure 4 shows 3D visualization results of the right
hippocampus of the subject “123-S-0091” segmented by the
segmentation methods under comparison, and Figures 5, 6

show their 2D visualization results. These results demonstrated
that more sophisticated label fusion methods could improve the
segmentation performance over the simple MV method, and the
RF-SSLP method could improve the label fusion by exploiting
the voxel correlation information in the target image.

DISCUSSION AND CONCLUSIONS

We proposed a MAIS method by integrating the random
forests based multi-atlas segmentation and the semi-
supervised label propagation under the multi-atlas based image
segmentation framework. Experiment results for segmenting
the hippocampus from MRI scans based on the EADC-ADNI
dataset demonstrated that our method achieved competitive
hippocampus segmentation performance compared with
alternative methods under comparison. We have made source
codes of the methods under comparison publicly available. These
source codes can not only be used as benchmark methods for
comparing MAIS methods, but also be useful for segmenting and
quantifying hippocampus in imaging studies.

The MAIS methods have achieved promising performance in
a variety of image segmentation studies partially due to their
capability to incorporate shape information of structures to be
segmented through registering multiple atlases to images to
be segmented. However, most of the existing MAIS methods
typically fuse the registered label information of different voxels,
ignoring potential correlations among voxels in the target image.
The proposed RF-SSLP method integrates a semi-supervised
label propagation method and a supervised random forests
method in the MAIS framework to segment the target image by
propagating reliable segmentation information within the target
image regularized by local and global image consistency. The
experimental results have demonstrated that the RF-SSLP could
improve the segmentation, indicating that the voxel correlation
information in the target image could help improve the image
segmentation performance.

The results summarized in Table 6 also indicated that
for some images, such as 016-S-0991, all the segmentation
methods under comparison had limited performance, although

the proposed RF-SSLP method still had the best performance
evaluated based on Dice index measures. The relatively poor
segmentation performance of MAIS methods might be caused
by large anatomical difference between images to be segmented
and the atlas images. To solve this problem, besides improving
the image registration (Li and Fan, 2017, 2018), we could
obtain a large number of atlas images so that the images to
be segmented could have a larger chance of being well-aligned
with the atlas images. In the present study, a fixed number of
atlas images were selected to obtain the image segmentation
results. The image segmentation performancemight be improved
if the atlas images most similar to images to be segmented
are adaptively selected, for instance selecting atlas images
according to an image similarity threshold. Furthermore, deep
learning techniques could also be adopted to improve the image
segmentation if a large number of training data are available
(Zhao et al., 2018).

In conclusion, the RF-SSLP method could obtain competitive
image segmentation performance compared with alternative
MAIS methods under comparison. The improved performance
obtained by the RF-SSLP method can be attributed to taking
into consideration correlation among voxels of images to
be segmented in the label fusion. A better atlas selection
method capable of adaptively selected atlases might be needed
to further improve the segmentation performance of MAIS
methods in addition to improve the image registration
performance.
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