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Abstract 
Cytosine methylation is an important DNA epigenetic modification. In 
vertebrates, methylation occurs at CpG sites, which are dinucleotides 
where a cytosine is immediately followed by a guanine in the DNA 
sequence from 5' to 3'. When located in the promoter region of a 
gene, DNA methylation is often associated with transcriptional 
silencing of the gene. Aberrant DNA methylation is associated with the 
development of various diseases such as cancer. Bisulfite sequencing 
(BS-seq) is the current "gold-standard" technology for high-resolution 
profiling of DNA methylation. Reduced representation bisulfite 
sequencing (RRBS) is an efficient form of BS-seq that targets CpG-rich 
DNA regions in order to save sequencing costs. A typical 
bioinformatics aim is to identify CpGs that are differentially 
methylated (DM) between experimental conditions. This workflow 
demonstrates that differential methylation analysis of RRBS data can 
be conducted using software and methodology originally developed 
for RNA-seq data. The RNA-seq pipeline is adapted to methylation by 
adding extra columns to the design matrix to account for read 
coverage at each CpG, after which the RRBS and RNA-seq pipelines are 
almost identical. This approach is statistically natural and gives 
analysts access to a rich collection of analysis tools including 
generalized linear models, gene set testing and pathway analysis. The 
article presents a complete start to finish case study analysis of RRBS 
profiles of different cell populations from the mouse mammary gland 
using the Bioconductor package edgeR. We show that lineage-
committed cells are typically hyper-methylated compared to 
progenitor cells and this is true on all the autosomes but not the sex 
chromosomes. We demonstrate a strong negative correlation 
between methylation of promoter regions and gene expression as 
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measured by RNA-seq for the same cell types, showing that 
methylation is a regulatory mechanism involved in epithelial linear 
commitment.
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Introduction
Cytosine methylation is an important epigenetic DNA modification that is generally associated with transcrip-
tional silencing1. In vertebrates, methylation occurs at CpG sites, which are dinucleotides where a cytosine 
(C) is immediately followed by a guanine (G) in the DNA sequence from 5’ to 3’. CpG dinucleotides are  
relatively uncommon on the human genome but occur more frequently in gene promoters and exons2. About 
72% of human gene promoters are enriched for CpGs2. CpGs in gene promoters tend to cluster in CpG islands  
(CGIs), which are regions of a few hundred to a couple of thousand base pairs with very strong enrichment of  
CpGs3.

The relationship of DNA methylation to transcription in vertebrates is complex4. Methylation of CGIs causes 
robust transcriptional repression and is required for long-term mono-allelic silencing including X inactivation and 
genomic imprinting1. Methylation of CpG-poor promoters is more weakly associated with gene expression, and 
the mechanisms by which this occurs are unclear1. Methylation of gene bodies on the other hand can be positively  
associated with gene expression4,5.

DNA methylation is relatively stable in that most CGIs do not change methylation state during normal cell 
development. Nevertheless DNA methylation is understood to play a regulatory role in differentiation and  
commitment in adult cell lineages6,7. Aberrant methylation patterns are also associated with the development of  
diseases such as cancer8,9.

Bisulfite sequencing (BS-seq) is increasingly used to profile DNA methylation10,11. Unmethylated cytosines (C) 
are converted to Uracils (U) by sodium bisulfite and then deaminated to thymines (T) during PCR amplification. 
Methylated Cs, on the other hand, remain intact after bisulfite treatment. This strategy produces whole genome  
bisulfite sequencing (WGBS) when combined with sequencing of the entire genome. WGBS is sometimes consid-
ered the “gold standard” for methylation profiling because it provides single-nucleotide resolution and whole-genome 
coverage11. However it requires large quantities of DNA and is expensive because of the amount of sequencing  
required.

The fact that CpG islands constitute only a small percentage of the genome makes the WGBS approach inefficient 
in terms of information content per sequenced read. To improve efficiency and reduce costs, enrichment strategies 
have been developed and combined with BS-seq to target a specific fraction of the genome. A common targeted 
approach is reduced representation bisulfite sequencing (RRBS) that targets CpG-rich regions11,12. Under the RRBS  
strategy, small fragments that compose only 1% of the genome are generated using MspI digestion, which means 
fewer reads need to be sequenced in total to provide reasonable coverage of the targeted regions. The RRBS 
approach can capture approximately 70% of gene promoters and 85% of CpG islands, while requiring only small  
quantities of input sample13. RRBS has great advantages in cost and efficiency, especially when CGI or gene- 
orientated results are required. RRBS is also applicable for single cell studies14.

The first step of analyzing BS-seq data is to align short sequence reads to a reference genome. The number of  
C-to-T conversions are then counted for all the mapped reads. A number of software tools have been developed to  
facilitate read mapping and methylation calling, including Bismark15, MethylCoder16, BRAT17, BSSeeker18,19 and 
BSMAP20. Most of these tools rely on existing short read aligners, such as Bowtie21,22.

Typical downstream DNA methylation studies often involve finding differentially methylated regions (DMRs) 
between different experimental conditions. A number of statistical methods and software packages have been  

            Amendments from Version 1

The Introduction has been rewritten and a new Discussion section has been added. The expository introduction to the 
NB linear modeling approach has been expanded to include an example with replicates and to explain the coefficient 
estimates more explicitly. New functions modelMatrixMeth, readBismark2DGE and nearestTSS have been added to 
streamline the code. New plots have been added based on distance to the TSS (Figure 3 and Figure 4). The CpG 
filtering has been relaxed slightly. The calculation of M-values for the MDS plot has been improved and the MDS plot 
using beta-values has been removed. Other minor corrections have been made to improve the exposition. All software 
packages have been updated to Bioconductor 3.7. 

See referee reports
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developed for detecting DMRs using the BS-seq technology. methylkit23 and RnBeads24 implement Fisher’s Exact Test,  
which is a popular choice for two-group comparisons with no replicates. In the case of complex experimental 
designs, regression methods are widely used to model methylation levels or read counts. RnBeads offers a linear 
regression approach based on the moderated t-test and empirical Bayes method implemented in limma25. BSmooth26 
is another analysis pipeline that uses linear regression together with a local likelihood smoother. methylkit also 
has an option to apply logistic regression with overdispersion correction23. Some other methods have been devel-
oped based on beta-binomial distribution to achieve better variance modeling. For example, DSS fits a Bayesian 
hierarchical beta-binomial model to BS-seq data and uses Wald tests to detect DMRs27. Other software using  
beta-binomial model include BiSeq28, MOABS29 and RADMeth30.

In this workflow, we demonstrate an edgeR pipeline for differential methylation analysis. edgeR is one of the most 
popular Bioconductor packages for assessing differential expression in RNA-seq data31,32. It is based on the negative 
binomial (NB) distribution and it models the variation between biological replicates through the NB disper-
sion parameter. Unlike other approaches to methylation sequencing data, the analysis explained in this workflow 
keeps the counts for methylated and unmethylated reads as separate observations. edgeR linear models are used to 
fit the total read count (methylated plus unmethylated) at each genomic locus, in such a way that the proportion 
of methylated reads at each locus is modeled indirectly as an over-dispersed binomial-like distribution. This 
approach has a number of advantages. First, it allows the differential methylation analysis to be undertaken  
using existing edgeR pipelines developed originally for RNA-seq differential expression analyses. The edgeR 
generalized linear model (GLM) framework offers great flexibility for analysing complex experimental designs 
while still accounting for the biological variability33. Second, keeping methylated and unmethylated read 
count as separate data observations allows the inherent variability of the data to be modeled more directly and  
perhaps more realistically. Differential methylation is assessed by likelihood ratio tests so we do not need to  
assume that the log-fold-changes or other coefficient estimators are normally distributed.

This article presents an analysis of an RRBS data set generated by the authors containing replicated RRBS  
profiles of basal and luminal cell populations from the mouse mammary epithelium. Our primary interest is 
in gene-orientated and pathway-orientated interpretations of the result. It is of particular importance to relate 
methylation changes to RNA-seq expression changes for the same genes. We show how to analyze differential  
methylation changes either for individual CpGs or for pre-specified genomic regions, such as chromosomes or  
genes, and we particularly focus on methylation changes by promoter regions.

As with other articles in the Bioconductor Gateway series, our aim is to provide an example analysis with  
complete start to finish code. As with other Bioconductor workflow articles, we illustrate one analysis strategy in 
detail rather than comparing different pipelines. The analysis approach illustrated in this article can in principle 
be applied to any BS-seq data but is especially appropriate for RRBS data. The approach is designed for  
experiments that included biological replication but can be used without replication if the NB dispersion is preset.  
The results shown in this article were generated using Bioconductor Release 3.7.

The next section gives an expository introduction to the edgeR approach to methylation data. The analysis of the  
mammary epithelial data starts afterwards.

Introducing the NB linear modeling approach to BS-seq data
A very small example
To introduce the edgeR linear modeling approach to BS-seq data, consider a genomic locus that has mA methylated 
and u

A
 unmethylated reads in condition A and m

B
 methylated and u

B
 unmethylated reads in condition B. Our 

approach is to model all four counts as NB distributed with the same dispersion but different means. Suppose the  
data is as given in Table 1. The counts can be entered into a matrix in R:

> counts <- matrix(c(2,12,11,0),1,4)
> dimnames(counts) <- list("Locus", c("A.Me","A.Un","B.Me","B.Un"))
> counts

      A.Me A.Un B.Me B.Un
Locus    2   12   11    0
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The experimental design of the data can be summarized by indicating which counts correspond to each sample  
and each condition:

> design <- cbind(Sample1 = c(1,1,0,0),
+                 Sample2 = c(0,0,1,1),
+                 A = c(1,0,0,0),
+                 B = c(0,0,1,0))

In the design matrix, the first two columns are indicators for samples 1 and 2 while the third and fourth  
columns indicate the methylated count columns for conditions A and B.

If this were a complete data set, then it could be analyzed in edgeR as follows. First we fit a negative binomial  
generalized linear model to the counts:

> library(edgeR)
> fit <- glmFit(counts, design, lib.size=c(100,100,100,100), dispersion=0.0247)

The first two coefficients in the linear model are used to model the total number of reads (methylated or unmeth-
ylated) for samples 1 and 2, respectively. Coefficient 3 estimates the log ratio of methylated to unmethylated 
reads for condition A, a quantity that can also be viewed as the logit proportion of methylated reads in  
condition A. In mathematical terms, we have β̂ A= log

2
(2.125/12.125) = −2.51. (Note that edgeR adds 0.125 

to each count when reporting the coefficients to avoid taking logarithms of zero.) Coefficient 4 estimates the log  
ratio of methylated to unmethylated reads for condition B, in mathematical terms β̂ B = log

2
(11.125/0.125) = 6.48.

Then we conduct a likelihood ratio test to compare the methylation rate in condition B to that in condition A:

> lrt <- glmLRT(fit, contrast = c(0,0,-1,1))
> topTags(lrt)

Coefficient:  -1*A 1*B
      logFC logCPM   LR   PValue      FDR
Locus  8.99   16.3 20.7 5.27e-06 5.27e-06

The contrast vector indicates that we wish to compare the fourth to the third coefficient, ignoring the two sample 
coverage coefficients. The estimated value for the contrast is the difference in logit methylation rates, which is 
estimated as β̂ B− β̂A= 6.48 − (−2.51) = 8.99, a quantity that is shown as the log2-fold-change (logFC) column of 
the results table. The chisquare likelihood ratio statistic (LR) is 20.7 and the P-value for differential methylation  
in condition B vs condition A is P = 5.27 × 10−6.

Note that the specific parametrization used to account for the sample effects is not important. The test for  
differential methylation would be unchanged if we represented the two sample effects using an intercept model.  
Indeed, the first two columns of the design matrix could be any two columns spanning the sample effects:

> design <- cbind(Intercept = c(1,1,1,1),
+                 Sample2 = c(0,0,1,1),
+                 A = c(1,0,0,0),
+                 B = c(0,0,1,0))

Table 1. A very small example data set.

Sample Condition Methylated Count Unmethylated Count

1 A 2 12

2 B 11 0
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> fit <- glmFit(counts, design, lib.size=c(100,100,100,100), dispersion=0.0247)
> lrt <- glmLRT(fit, contrast = c(0,0,-1,1))
> topTags(lrt)

Coefficient:  -1*A 1*B
      logFC logCPM   LR   PValue      FDR
Locus  8.99   16.3 20.7 5.27e-06 5.27e-06

The dispersion parameter controls the degree of biological variability33. If we had set dispersion=0 in 
the above code, then the above analysis would be exactly equivalent to a logistic binomial regression, with 
the methylated counts as responses and the total counts as sizes, and with a likelihood ratio test for a difference 
in proportions between conditions A and B. Positive values for the dispersion produce over-dispersion relative 
to the binomial distribution. We have set the dispersion here equal to the value that is estimated below for  
the mammary epithelial data.

In the above code, the two library sizes for each sample should be equal. Otherwise, the library size values are  
arbitrary and any settings would lead to the same P-value.

Relationship to beta-binomial modeling
It is interesting to compare this approach with beta-binomial modeling. It is well known that if m and u are inde-
pendent Poisson random variables with means µ

m
 and µ

u
, then the conditional distribution of m given m + u 

is binomial with success probability p = µ
m

/(µ
m
 + µ

u
). If the Poisson means µ

m
 and µ

u
 themselves follow gamma 

distributions, then the marginal distributions of m and u are NB instead of Poisson. If the two NB distributions 
have different dispersions, and have expected values in inverse proportion to the dispersions, then the condi-
tional distribution of m given m + u follows a beta-binomial distribution. The approach taken in this article is 
closely related to the beta-binomial approach but makes different and seemingly more natural assumptions about 
the NB distributions. We instead assume the two NB distributions to have the same dispersion but different means. 
The NB linear modeling approach allows the means and dispersions of the two NB distributions to be estimated  
separately, in concordance with the data instead of being artificially linked.

A small example with replicates
edgeR linear modeling takes advantage of replicate libraries for each condition. Now we augment the small 
example above to include two replicates for each experimental condition. There are now four samples and eight  
counts (Table 2). The eight counts can be represented in R as follows:

> counts <- matrix(c(2,12,4,20,11,0,15,3),1,8)
> row.names(counts) <- "Locus"
> colnames(counts) <- c("A1.Me","A1.Un","A2.Me","A2.Un",
+                       "B1.Me","B1.Un","B2.Me","B2.Un")
> counts

      A1.Me A1.Un A2.Me A2.Un B1.Me B1.Un B2.Me B2.Un
Locus     2    12     4    20    11     0    15     3

Table 2. A slightly less small example data set with n = 2 
replicates for each condition.

Sample Condition Methylated Count Unmethylated Count

1 A 2 12

2 A 4 20

3 B 11 0

4 B 15 3
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We can represent the sample information associated with the counts as follows:

> Sample <- gl(4,2,8)
> Methylation <- gl(2,1,8, labels=c("Me","Un"))
> Condition <- gl(2,4,8, labels=c("A","B"))
> SampleInfo <- data.frame(Sample,Methylation,Condition)
> row.names(SampleInfo) <- colnames(counts)
> SampleInfo

      Sample Methylation Condition
A1.Me      1          Me         A
A1.Un      1          Un         A
A2.Me      2          Me         A
A2.Un      2          Un         A
B1.Me      3          Me         B
B1.Un      3          Un         B
B2.Me      4          Me         B
B2.Un      4          Un         B

The design matrix is a simple combination of two parts. First there is a matrix to model the sample coverages:

> design.samples <- model.matrix(~0+Sample)

Then there is a matrix to model the two treatment conditions.

> design.conditions <- model.matrix(~0+Condition)

The full matrix is constructed from the two parts, with the condition design matrix mediating the methylation effects:

> design <- cbind(design.samples, (Methylation=="Me") * design.conditions)
> design

   Sample1 Sample2 Sample3 Sample4 ConditionA ConditionB
1        1       0       0       0          1          0
2        1       0       0       0          0          0
3        0       1       0       0          1          0
4        0       1       0       0          0          0
5        0       0       1       0          0          1
6        0       0       1       0          0          0
7        0       0       0       1          0          1
8        0       0       0       1          0          0

Now we can fit the GLM and conduct the statistical test for differential methylation:

> fit <- glmFit(counts, design, lib.size=100, dispersion=0.0247)
> contBvsA <- makeContrasts(BvsA = ConditionB - ConditionA, levels=design)
> lrt <- glmLRT(fit, contrast=contBvsA)
> topTags(lrt)

Coefficient:  -1*ConditionA 1*ConditionB
     logFC logCPM   LR   PValue      FDR
Locus  5.4   16.6 34.3 4.84e-09 4.84e-09

The results for each condition have been averaged over the replicates. The change in methylation is now of  
smaller magnitude than for Table 1, as shown by the smaller logFC value, but the P-value is more significant  
because of the greater confidence that comes from the extra replicates.
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Automatic construction of the design matrix
In this expository introduction we have demonstrated the construction of the design matrix from basic principles. 
In practice, edgeR provides a function modelMatrixMeth to automate the construction of the design matrix. 
The user can simply specify the treatment conditions associated with each DNA sample (as in the second column  
of Table 2):

> Condition <- factor(c("A","A","B","B"))

Then the design matrix is constructed by:

> design <- modelMatrixMeth(~0+Condition)
> design

  Sample1 Sample2 Sample3 Sample4 ConditionA ConditionB
1       1       0       0       0          1          0
2       1       0       0       0          0          0
3       0       1       0       0          1          0
4       0       1       0       0          0          0
5       0       0       1       0          0          1
6       0       0       1       0          0          0
7       0       0       0       1          0          1
8       0       0       0       1          0          0

Alternatively, a user can construct any appropriate design matrix at the sample level (with 4 rows), exactly as one 
would do for a RNA-seq differential expression analysis, then the function will expand the sample-level design  
matrix to the appropriate observation-level matrix with 8 rows:

> designSL <- model.matrix(~0+Condition)
> design <- modelMatrixMeth(designSL)

This gives exactly the same result as above.

Another way to make the design matrix
When there are just two treatment conditions to be compared, it can be slightly simpler to compute the  
log2-fold-change directly as a coefficient of the linear model, rather than forming it as a contrast. This can be done  
by including an intercept in the design matrix as follows:

> design <- modelMatrixMeth(~Condition)
> design

  Sample1 Sample2 Sample3 Sample4 (Intercept) ConditionB
1       1       0       0       0           1          0
2       1       0       0       0           0          0
3       0       1       0       0           1          0
4       0       1       0       0           0          0
5       0       0       1       0           1          1
6       0       0       1       0           0          0
7       0       0       0       1           1          1
8       0       0       0       1           0          0

In this formulation, the second last coefficient still estimates the logit methylation level in condition A, but  
the last coefficient now estimates the log2-fold-change directly:

> fit <- glmFit(counts, design, lib.size=100, dispersion=0.0247)
> lrt <- glmLRT(fit, coef="ConditionB")
> topTags(lrt)
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Coefficient:  ConditionB
      logFC logCPM   LR   PValue      FDR
Locus   5.4   16.6 34.3 4.84e-09 4.84e-09

Again, this gives the same results as the previous analysis.

Analogy with paired-samples expression analyses
The above design matrix might seem as if it is very special to methylation data, but in fact the same sort of design 
matrix would be used for any gene expression analysis when there are paired-samples and we wish to com-
pare treatment effects between groups. To see this, consider the small RNA-seq experiment shown in Table 3. 
This experiment has four subjects, each of whom contributes both treated and untreated RNA samples.  
The subjects belong to two groups (A and B) and we wish to test whether the treatment effect differs between  
the groups.

Readers will note that Table 3 is the same as Table 2 except that the columns have been relabeled. Here, the 
four subjects are analogous to the four DNA samples in Table 2, the groups are analogous to conditions, and 
treatment is analogous to methylation. Exactly the same design matrix, as used above for the methylation 
experiment, would be appropriate here for the expression experiment. In edgeR, the only difference between  
the methylation and expression analyses would be in the normalization steps. The linear modeling and testing  
steps would be identical.

This shows that BS-seq data has a structure that is already familiar from RNA-seq experiments with paired- 
samples. The theme of this article is that statistical analysis methods developed for RNA-seq can be beneficially  
applied to BS-seq data.

NB GLMs
In practice, the data will consist of many thousands of genomic loci and the counts matrix will have a row for  
each locus. The function glmFit fits a NB GLM to each row of read counts. If y

gi
 is the ith read count for genomic 

locus g, then y
gi
 is assumed to be NB distributed with expected value µ

gi
 and dispersion φ

g
. The expected values  

are modeled by the design matrix,

                                                                   1

log log
p

ij gj i
j

x Nµ β
=

= +∑gi

where the x
ij
 are the ith row of the design matrix, β

gj
 are the regression coefficients and N

i
 are the library sizes. 

In the small example above with four samples, the design matrix had 6 columns, so p = 6. In general, if we have 
an experiment comparing k treatment conditions using n samples, then the count matrix will have 2n columns and 
the design matrix will have p = n + k columns. The first n coefficients capture sample effects in read abundance,  
while the remaining k coefficients compare the methylation proportions between the conditions.

Dispersion estimation
In the small example above we did not estimate the dispersion but simply used a preset value. In practice, 
there will not only be replicates for each genomic locus but also many thousands of loci. The edgeR package 

Table 3. A hypothetical paired-samples 
RNA-seq experiment.

Subject Group Treated Untreated

1 A 2 12

2 A 4 20

3 B 11 0

4 B 15 3
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estimates a dispersion for each locus from the replicate variability, using an empirical Bayes procedure 
to pool information across all the loci while estimating locus-specific dispersion estimates33–35. The full  
data example on mouse mammary epithelial cells will illustrate this.

The variance of the read counts is assumed to follow a quadratic mean-variance relationship

                                                                         2var( )gi gi g giy µ φ µ= +

where φ
g
 is the dispersion for locus g. The first term follows from sequencing variability and the second from 

biological variability33. The NB variance function captures the fact that larger counts have larger variances. 
The quadratic relationship captures the technical factors that affect variability, so that φ

g
 itself reflects only the  

biological characteristics of each locus.

RRBS profiling of mammary epithelial cells
Aim of the study
We now describe the main data set to be analyzed in this article. The epithelium of the mammary gland exists 
in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation 
and regression36. Characterization of the lineage hierarchy of cells in the mammary epithelium is an impor-
tant step toward understanding which cells are predisposed to oncogenesis. In this study, we profiled the  
methylation status of the two major functionally distinct epithelial compartments: basal and luminal cells. 
The basal cells were further divided into those showing high or low expression of the surface marker Itga5 as  
part of our investigation of heterogeneity within the basal compartment. We carried out global RRBS DNA  
methylation assays on two biological replicates of each of the three cell populations to determine whether the 
epigenetic machinery played a potential role in (i) differentiation of luminal cells from basal and (ii) any  
compartmentalization of the basal cells associated with Itga5. Of particular interest is to relate transcriptional changes 
to methylation changes for the same genes.

Sample preparation
Inguinal mammary glands (minus lymph node) were harvested from FVB/N mice. All animal experiments 
were conducted using mice bred at and maintained in our animal facility according to the Walter and Eliza Hall  
Institute of Medical Research Animal Ethics Committee guidelines. Epithelial cells were suspended and fluo-
rescence-activated cell sorting (FACS) was used to isolate basal and luminal cell populations37. Genomic DNA 
(gDNA) was extracted from freshly sorted cells using the Qiagen DNeasy kit. Around 25ng gDNA input was 
subjected to DNA methylation analysis by BS-seq using the Ovation RRBS Methyl-seq kit from NuGEN. 
The process includes MspI digestion of gDNA, sequencing adapter ligation, end repair, bisulfite conversion, 
and PCR amplification to produce the final sequencing library. The Qiagen EpiTect Bisulfite kit was used for  
bisulfite-mediated conversion of unmethylated cytosines.

Experimental design
There are three groups of samples: luminal population, Itga5- basal population and Itga5+ basal population.  
Two biological replicates were collected for each group. This experimental design is summarized in the table below.

> targets <- read.delim("targets.txt", row.names="Sample", stringsAsFactors=FALSE)
> targets

     Population     Description
P6_1         P6         Luminal
P6_4         P6         Luminal
P7_2         P7 Basal_Itga5_neg
P7_5         P7 Basal_Itga5_neg
P8_3         P8 Basal_Itga5_pos
P8_6         P8 Basal_Itga5_pos

The experiment has a simple one-way layout with three groups.

The sequencing was carried out on the Illumina NextSeq 500 platform. About 30 million 75bp paired-end reads  
were generated for each sample.
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Reading and annotating the methylation counts
Processing the BS-seq FASTQ files with Bismark
The first step of the analysis is to map the sequence reads from the FASTQ files to the mouse genome and to  
perform methylation calls. This is the only step of the analysis that cannot currently be done in R.

Though many options are available, we used Bismark software (https://www.bioinformatics.babraham.ac.uk/
projects/bismark) to count the methylated and unmethylated reads at each genomic locus. Bismark was run 
using recommended default settings. We first ran trim_galore (https://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/) to remove adapters and to trim poor quality reads. Then Bismark version v0.13.0 
was used to align the reads to the mouse mm10 genome using Bowtie222. Finally, methylation calls were made  
using bismark_methylation_extractor.

The Bismark output consists of one coverage file for each sample. Readers wishing to reproduce the analysis  
presented in this article can download the coverage files produced by Bismark from http://bioinf.wehi. edu.au/ 
edgeR/F1000Research2017.

Reading in the data
The Bismark coverage files are just tab-delimited text files and so can be read into a dataframe in R using read.
delim. Each of the files has the following format:

> P6_1 <- read.delim("P6_1.bismark.cov.gz", header=FALSE, nrows=6)
> P6_1

     V1      V2      V3    V4 V5 V6
1 chr15 3051454 3051454  87.5 14  2
2 chr15 3051455 3051455 100.0  1  0
3 chr15 3051486 3051486 100.0 16  0
4 chr15 3051555 3051555  81.2 13  3
5 chr15 3051556 3051556 100.0  1  0
6 chr15 3051559 3051559  87.5 14  2

The columns in the coverage file represent: V1: chromosome number; V2: start position of the CpG site; V3: end  
position of the CpG site; V4: methylation proportion; V5: number of methylated Cs; V6: number of unmethylated  
Cs.

In practice, we only need to read in columns V1, V2, V5 and V6. Column V3 is the same as V2, and the methylation 
proportion V4 is just a function of V5 and V6.

We now read in the Bismark coverage files for all the samples. The edgeR function readBismark2DGE reads  
all the files and collates the counts for all the sample into one data object:

> Sample <- row.names(targets)
> files <- paste0(Sample,".bismark.cov.gz")
> yall <- readBismark2DGE(files, sample.names=Sample)

Reading P6_1.bismark.cov.gz
Reading P6_4.bismark.cov.gz
Reading P7_2.bismark.cov.gz
Reading P7_5.bismark.cov.gz
Reading P8_3.bismark.cov.gz
Reading P8_6.bismark.cov.gz
Hashing ...
Collating counts ...

> dim(yall)

[1] 3538117      12
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The edgeR package stores the counts and associated annotation in a simple list-based data object called a  
“DGEList”. The count matrix is

> head(yall$counts)

              P6_1-Me P6_1-Un P6_4-Me P6_4-Un P7_2-Me P7_2-Un P7_5-Me P7_5-Un
chr15-3051454      14       2      18       0       6       0      15       1
chr15-3051455       1       0       1       0       0       0       0       0
chr15-3051486      16       0      17       1       6       0      16       0
chr15-3051555      13       3      18       0       5       1      16       0
chr15-3051556       1       0       1       0       0       0       0       0
chr15-3051559      14       2      15       3       5       1      15       1
              P8_3-Me P8_3-Un P8_6-Me P8_6-Un
chr15-3051454       8       0       3       0
chr15-3051455       0       0       1       0
chr15-3051486       8       0       3       0
chr15-3051555       8       0       3       0
chr15-3051556       0       0       1       0
chr15-3051559       8       0       3       0

There is a row for each CpG locus found in any of the files. There columns of methylated and unmethylated counts  
for each sample. The chromosomes and genomic loci are stored in the annotation data.frame:

> head(yall$genes)

                Chr   Locus
chr15-3051454 chr15 3051454
chr15-3051455 chr15 3051455
chr15-3051486 chr15 3051486
chr15-3051555 chr15 3051555
chr15-3051556 chr15 3051556
chr15-3051559 chr15 3051559

Summary information on each sample is stored in yall$samples:

> yall$samples$group <- factor(targets$Population)
> head(yall$samples)

        group lib.size norm.factors
P6_1-Me    P6 27803470            1
P6_1-Un    P6 33444764            1
P6_4-Me    P7 37579181            1
P6_4-Un    P7 35595908            1
P7_2-Me    P8 17902366            1
P7_2-Un    P8 15609315            1

Filtering unassembled chromosomes
It is convenient to remove genomic segments that have not been assembled into any of the recognized chromosomes:

> keep <- rep(TRUE, nrow(yall))
> Chr <- as.character(yall$genes$Chr)
> keep[ grep("random",Chr) ] <- FALSE
> keep[ grep("chrUn",Chr) ] <- FALSE

For this analysis, we also remove the Y chromosome and mitochondrial DNA:

> keep[Chr=="chrY"] <- FALSE
> keep[Chr=="chrM"] <- FALSE
> table(keep)
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keep
  FALSE    TRUE
   6285 3531832

Then we can subset the DGEList data object to remove the rows corresponding to the unwanted chromosomes:

> yall <- yall[keep,, keep.lib.sizes=FALSE]

The option keep.lib.sizes=FALSE causes the library sizes to be recomputed.

Sort into genomic order
Just for convenience, we sort the DGEList so that all loci are in genomic order, from chromosome 1 to  
chromosome X:

> ChrNames <- paste0("chr",c(1:19,"X"))
> ChrNames

 [1] "chr1"  "chr2"  "chr3"  "chr4"  "chr5"  "chr6"  "chr7"  "chr8"  "chr9"
[10] "chr10" "chr11" "chr12" "chr13" "chr14" "chr15" "chr16" "chr17" "chr18"
[19] "chr19" "chrX"

> yall$genes$Chr <- factor(yall$genes$Chr, levels=ChrNames)
> o <- order(yall$genes$Chr, yall$genes$Locus)
> yall <- yall[o,]

Gene annotation
We now annotate the CpG loci with the identity of the nearest gene. We search for the gene transcriptional start  
site (TSS) closest to each our CpGs:

> TSS <- nearestTSS(yall$genes$Chr, yall$genes$Locus, species="Mm")
> yall$genes$EntrezID <- TSS$gene_id
> yall$genes$Symbol <- TSS$symbol
> yall$genes$Strand <- TSS$strand
> yall$genes$Distance <- TSS$distance
> yall$genes$Width <- TSS$width
> head(yall$genes)

              Chr   Locus EntrezID Symbol Strand Distance  Width
chr1-3020689 chr1 3020689   497097   Xkr4      -  -650809 457017
chr1-3020690 chr1 3020690   497097   Xkr4      -  -650808 457017
chr1-3020708 chr1 3020708   497097   Xkr4      -  -650790 457017
chr1-3020724 chr1 3020724   497097   Xkr4      -  -650774 457017
chr1-3020725 chr1 3020725   497097   Xkr4      -  -650773 457017
chr1-3020814 chr1 3020814   497097   Xkr4      -  -650684 457017

Here EntrezID, Symbol, Strand and Width are the Entrez Gene ID, symbol, strand and width of the 
nearest gene. Distance is the genomic distance from the CpG to the TSS. Positive values means the TSS is  
downstream of the CpG and negative values means the TSS is upstream.

Differential methylation analysis at CpG loci
Filtering to remove low counts
We now turn to statistical analysis of differential methylation. Our first analysis will be for individual CpG loci.

CpG loci that have low coverage are removed prior to downstream analysis as they provide little information for  
assessing methylation levels. Filtering low-coverage CpGs also simplifies the subsequent analysis because of the  
reduction in data rows.
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We sum up the counts of methylated and unmethylated reads to get the total read coverage at each CpG site for  
each sample:

> Coverage <- yall$counts[, Methylation=="Me"] + yall$counts[, Methylation=="Un"]
> head(Coverage)

             P6_1-Me P6_4-Me P7_2-Me P7_5-Me P8_3-Me P8_6-Me
chr1-3020689      16      21       4      13       6       2
chr1-3020690      37      47      18      46      15      22
chr1-3020708       0       2       0       1       0       0
chr1-3020724      16      21       4      14       6       2
chr1-3020725      37      47      18      46      15      22
chr1-3020814       0       0       0       1       0       0

The analysis needs to be restricted to CpG sites that have enough coverage for the methylation level to be  
measurable in a meaningful way at that site. As a conservative rule of thumb, we require a CpG site to have a total 
count (both methylated and unmethylated) of at least 8 in every sample before it is considered in the study.

> keep <- rowSums(Coverage >= 8) == 6
> table(keep)

keep
  FALSE    TRUE
3019830  512002

This filtering criterion could be relaxed somewhat in principle but the number of CpGs kept in the analysis is  
large enough for our purposes.

The DGEList object is subsetted to retain only the non-filtered loci:

> y <- yall[keep,, keep.lib.sizes=FALSE]

Again, the option keep.lib.sizes=FALSE causes the library sizes to be recomputed after the filtering.  
We generally recommend this, although the effect on the downstream analysis is usually small.

Normalization
A key difference between BS-seq and other sequencing data is that the pair of libraries holding the methylated and 
unmethylated reads for a particular sample are treated as a unit. To ensure that the methylated and unmethylated 
reads for the same sample are treated on the same scale, we need to set the library sizes to be equal for each pair of  
libraries. We set the library sizes for each sample to be the average of the total read counts for the methylated and 
unmethylated libraries:

> TotalLibSize <- y$samples$lib.size[Methylation=="Me"] +
+                 y$samples$lib.size[Methylation=="Un"]
> y$samples$lib.size <- rep(TotalLibSize, each=2)
> y$samples
         
        group lib.size norm.factors
P6_1-Me    P6 27754786            1
P6_1-Un    P6 27754786            1
P6_4-Me    P7 41007143            1
P6_4-Un    P7 41007143            1
P7_2-Me    P8 21424225            1
P7_2-Un    P8 21424225            1
P7_5-Me    P6 26197143            1
P7_5-Un    P6 26197143            1
P8_3-Me    P7 18782105            1
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P8_3-Un    P7 18782105            1
P8_6-Me    P8 15539660            1
P8_6-Un    P8 15539660            1

Other normalization methods developed for RNA-seq data, such as TMM38, are not required for BS-seq data.

Exploring differences between samples
In microarray methylation studies, a common measure of methylation level is the M-value, which is defined as  
M = log

2
 {(Me + α)/(Un + α)} where Me and Un are the methylated and unmethylated intensities and α is 

some suitable offset to avoid taking logarithms of zero39. The M-value can be interpreted as the base2 logit  
transformation of the proportion of methylated signal at each locus.

We compute the corresponding methylation summary from the methylated and unmethylated counts.

> Me <- y$counts[, Methylation=="Me"]
> Un <- y$counts[, Methylation=="Un"]
> M <- log2(Me + 2) - log2(Un + 2)
> colnames(M) <- Sample

Here M contains the empirical logit methylation level for each CpG site in each sample. We have used a prior count 
of 2 to avoid logarithms of zero. The exact value of the prior count is unimportant, but a value of 2 is common in  
other contexts such as RNA-seq.

Now we can generate a multi-dimensional scaling (MDS) plot to explore the overall differences between the  
methylation levels of the different samples (Figure 1):

> plotMDS(M)

In this plot the distance between each pair of samples represents the average logit change between the samples for 
the top most differentially methylated CpG loci between that pair of samples. (We call this average the leading  
log-fold-change.) The two replicate samples from the luminal population (P6) are seen to be well separated from the 
four basal samples (populations P7 and P8), with a leading change of about 6 logit units.

Figure 1. MDS plots showing overall differences in methylation levels between the samples. Replicate samples 
from the same population cluster together. The first dimension separates the luminal cells from the basal cells. The 
second dimension separates the Itga+ basal cells at the bottom from the Itga- basal cells at the top.

Page 15 of 42

F1000Research 2018, 6:2055 Last updated: 06 AUG 2021



Design matrix
One aim of this study is to identify differentially methylated (DM) loci between the different cell populations.  
In edgeR, this can be done by fitting linear models under a specified design matrix and testing for corresponding  
coefficients or contrasts. A basic sample-level design matrix can be made as follows:

> designSL <- model.matrix(~0+Population, data=targets)
> colnames(designSL) <- c("P6","P7","P8")
> designSL

     P6 P7 P8
P6_1  1  0  0
P6_4  1  0  0
P7_2  0  1  0
P7_5  0  1  0
P8_3  0  0  1
P8_6  0  0  1
attr(,"assign")
[1] 1 1 1
attr(,"contrasts")
attr(,"contrasts")$Population
[1] "contr.treatment"

The we expand this to the full design matrix modeling the sample and methylation effects:

> design <- modelMatrixMeth(designSL)
> design

   Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 P6 P7 P8
1        1       0       0       0       0       0  1  0  0
2        1       0       0       0       0       0  0  0  0
3        0       1       0       0       0       0  1  0  0
4        0       1       0       0       0       0  0  0  0
5        0       0       1       0       0       0  0  1  0
6        0       0       1       0       0       0  0  0  0
7        0       0       0       1       0       0  0  1  0
8        0       0       0       1       0       0  0  0  0
9        0       0       0       0       1       0  0  0  1
10       0       0       0       0       1       0  0  0  0
11       0       0       0       0       0       1  0  0  1
12       0       0       0       0       0       1  0  0  0

The first six columns represent the sample coverage effects. The last three columns represent the methylation levels  
(in logit units) in the three cell populations.

Dispersion estimation
With the design matrix specified, we can now proceed to the standard edgeR pipeline and analyze the data in the 
same way as for RNA-seq data. Similar to the RNA-seq data, the variability between biological replicates has also 
been observed in bisulfite sequencing data. This variability can be captured by the NB dispersion parameter under the 
generalized linear model (GLM) framework in edgeR.

The mean-dispersion relationship of BS-seq data has been studied in the past and no apparent mean-dispersion 
trend was observed27. This is also verified through our own practice. Therefore, we would not consider a mean- 
dependent dispersion trend as we normally would for RNA-seq data. A common dispersion estimate for all 
the loci, as well as an empirical Bayes moderated dispersion for each individual locus, can be obtained from the  
estimateDisp function in edgeR:

> y <- estimateDisp(y, design, trend="none")
> y$common.dispersion
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[1] 0.0275

> y$prior.df

[1] Inf

This returns a DGEList object with additional components (common.dispersion and tagwise.disper-
sion) added to hold the estimated dispersions. Here the estimation of trended dispersion has been turned off by 
setting trend="none". For this data, the estimated prior degrees of freedom (df) are infinite for all the loci, which 
implies all the CpG-wise dispersions are equal to the common dispersion. A BCV plot is often useful to visualize the  
dispersion estimates, but is not informative in this case.

Testing for differentially methylated CpG loci
We first fit NB GLMs for all the CpG loci using the glmFit function in edgeR.

> fit <- glmFit(y, design)

Then we can proceed to testing for differentially methylated CpG sites between different populations. One of the  
most interesting comparisons is between the basal (P7 and P8) and luminal (P6) populations. The contrast 
corresponding to any specified comparison can be constructed conveniently using the makeContrasts  
function:

> contr <- makeContrasts(LvsB=P6-0.5*(P7+P8), levels=design)

The actual testing is performed using likelihood ratio tests (LRT) in edgeR:

> lrt <- glmLRT(fit, contrast=contr)

The top set of most differentially methylated (DM) CpG sites can be viewed with topTags:

> topTags(lrt)

Coefficient:  1*P6 -0.5*P7 -0.5*P8
                  Chr     Locus EntrezID Symbol Strand Distance  Width logFC
chr16-76326604  chr16  76326604   268903  Nrip1      -   -46445  85647 -8.87
chr13-45709467  chr13  45709467    66355   Gmpr      +  -202023  38943  7.60
chr10-40387375  chr10  40387375    78334  Cdk19      +   -38067 134511 -8.13
chr11-100144651 chr11 100144651    16669  Krt19      -      952   2889 -8.19
chr17-46572098  chr17  46572098    20807    Srf      -    15936   9324  9.10
chr13-45709489  chr13  45709489    66355   Gmpr      +  -202045  38943  7.47
chr3-54724012    chr3  54724012    69639 Exosc8      -   -11352   6686 -8.40
chr13-45709480  chr13  45709480    66355   Gmpr      +  -202036  38943  7.70
chr8-120068504   chr8 120068504   102193 Zdhhc7      -   -32968  20378  7.42
chr2-69631013    chr2  69631013    72569   Bbs5      +    16242  20315 -7.30
                logCPM  LR   PValue      FDR
chr16-76326604    1.52 321 8.35e-72 4.27e-66
chr13-45709467    1.98 319 2.62e-71 6.70e-66
chr10-40387375    1.77 312 6.46e-70 1.10e-64
chr11-100144651   1.58 306 1.40e-68 1.79e-63
chr17-46572098    1.61 302 1.44e-67 1.48e-62
chr13-45709489    1.97 294 5.46e-66 4.66e-61
chr3-54724012     1.31 292 1.56e-65 1.14e-60
chr13-45709480    1.97 292 2.01e-65 1.28e-60
chr8-120068504    1.73 285 7.12e-64 4.05e-59
chr2-69631013     2.03 277 3.66e-62 1.88e-57
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Here positive log-fold-changes represent CpG sites that have higher methylation level in the luminal population 
compared to the two basal populations. The Benjamini-Hochberg multiple testing correction is applied to control  
the false discovery rate (FDR).

The total number of DM CpG sites identified at an FDR of 5% can be shown with decideTests. There are in fact 
more than 50,000 differentially methylated CpGs in this comparison:

> summary(decideTests(lrt))

       1*P6 -0.5*P7 -0.5*P8
Down                  20302
NotSig               451589
Up                    40111

The differential methylation results can be visualized with an MD plot (see Figure 2):

> plotMD(lrt)

The logFC of the methylation level for each CpG site is plotted against the average abundance in log2-CPM.  
Significantly differentially methylated CpGs are highlighted.

Differential methylation by chromosome
We now explore overall methylation patterns by chromosome. To do this we make a list of index vectors, with each 
vector identifying the loci that belong to that chromosome:

> ChrIndices <- list()
> for (a in ChrNames) ChrIndices[[a]] <- which(y$genes$Chr==a)

Figure 2. MD plot showing the log-fold-change of the methylation level and average abundance of each CpG site. 
Significantly hyper- and hypomethylated CpGs are highlighted in red and blue, respectively.
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Then we can conduct “fry” gene set tests to evaluate overall changes in methylation in each chromosome:

> fry(y, index=ChrIndices, design=design, contrast=contr)

      NGenes Direction  PValue     FDR PValue.Mixed FDR.Mixed
chr18  16963        Up 0.00110 0.00543     1.02e-04  1.15e-04
chr15  22338        Up 0.00165 0.00543     8.53e-05  1.15e-04
chr10  27969        Up 0.00264 0.00543     1.03e-04  1.15e-04
chr7   31266        Up 0.00276 0.00543     1.08e-04  1.15e-04
chr2   36289        Up 0.00284 0.00543     7.08e-05  1.15e-04
chr3   24889        Up 0.00339 0.00543     1.22e-04  1.22e-04
chr9   26363        Up 0.00365 0.00543     6.43e-05  1.15e-04
chr8   29208        Up 0.00369 0.00543     5.90e-05  1.15e-04
chr11  35826        Up 0.00371 0.00543     4.70e-05  1.15e-04
chr13  22202        Up 0.00372 0.00543     8.61e-05  1.15e-04
chr14  18362        Up 0.00377 0.00543     6.85e-05  1.15e-04
chr12  20927        Up 0.00390 0.00543     8.22e-05  1.15e-04
chr1   30567        Up 0.00400 0.00543     7.50e-05  1.15e-04
chr6   24880        Up 0.00412 0.00543     1.09e-04  1.15e-04
chr5   37115        Up 0.00436 0.00543     8.93e-05  1.15e-04
chr19  15758        Up 0.00460 0.00543     8.50e-05  1.15e-04
chr16  16025        Up 0.00462 0.00543     6.52e-05  1.15e-04
chr4   34681        Up 0.00532 0.00591     8.54e-05  1.15e-04
chr17  23812        Up 0.01027 0.01082     7.03e-05  1.15e-04
chrX   16562        Up 0.93464 0.93464     4.27e-06  8.55e-05

This shows that methylation increases overall in committed luminal cells for every chromosome except for  
Chromosome X. This is consistent with the expectation that methylation is associated with silencing of genes not 
needed in a committed lineage. The column heading NGenes gives the number of CpG loci in each chromosome.

The results for Chromosome X are interesting. The mixed P-value shows that the X chromosome is actually  
enriched for DM CpGs, but the direction of change is not consistent with hyper and hypomethylated CpGs  
balancing each other.

Global methylation patterns around TSS
Now we explore methylation patterns to relative to gene TSSs. The coefficients of the fitted model fit record  
methylation levels at each CpG in each cell population. We now relate methylation in the P6 (luminal) population 
versus distance to the nearest TSS:

> i <- abs(fit$genes$Distance) < 20000
> lo <- lowess(fit$genes$Distance[i], fit$coefficient[i,"P6"], f=0.3)
> plot(lo, type="l", xlab="Distance to TSS", ylab="Logit Methylation Level",
+      main="P6 (Luminal)")
> abline(h=0, lty=2)
> abline(v=0, lty=2)

Figure 3 shows that CpGs near a TSS tend to be unmethylated but CpGs elsewhere are predominately methylated.  
Cell populations P7 and P8 show the same patterns.

Now we examine the methylation changes stored in lrt and relate these to TSS position.

> i <- abs(lrt$genes$Distance) < 80000
> lo <- lowess(lrt$genes$Distance[i], lrt$table$logFC[i], f=0.3)
> plot(lo, type="l", xlab="Distance to TSS", ylab="Change in Methylation",
+      main="Luminal vs Basal")
> abline(v=0, lty=2, col="grey")

Figure 4 shows that methylation tends to be added around the TSS in luminal vs basal cells. CpGs further from  
TSS tend to be unchanged.
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Figure 4. Average methylation change by genomic position relative to TSS. Changes are averaged over all genes. 
Negative distances are downstream of TSS. Vertical axis shows base 2 logit differences.

Figure 3. Methylation level by distance to the nearest gene TSS. Results are averaged over all genes. Negative 
distances are downstream of TSS.

Differential methylation in gene promoters
Pre-defined gene promoters
The majority of CpGs are methylated in mammals. On the other hand, unmethylated CpGs tend to group into  
clusters of CpG islands, which are often enriched in gene promoters. CpG methylation in promoter regions is  
often associated with silencing of transcription and gene expression3. Therefore it is of great biological interest to 
examine the methylation level within the gene promoter regions.

For simplicity, we define the promoter of a gene as the region from 2kb upstream to 1kb downstream of the  
transcription start site of that gene.

> InPromoter <- yall$genes$Distance >= -1000 & yall$genes$Distance <= 2000

We subset the CpGs to those contained in a promoter region:

> yIP <- yall[InPromoter,,keep.lib.sizes=FALSE]

Summarizing counts in promoter regions
One simple and effective way to conduct a gene-orientated analysis of the methylation changes is to collapse all 
the CpGs in each promotor into one locus, i.e., to compute the total number of methylated and unmethylated reads  
within each promoter. This strategy focuses on the aggregate methylation level within each promoter and allows us to 
test for an overall increase or decrease in methylation for each gene.
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First we compute the total counts for each gene promoter:

> ypr <- rowsum(yIP, yIP$genes$EntrezID, reorder=FALSE)
> ypr$genes$EntrezID <- NULL

The rowsum function here operated on the DGEList object yIP and produces a new DGEList object ypr with 
a row for each EntrezID. The integer matrix ypr$counts contains the total numbers of methylated and  
unmethylated CpGs observed within the promoter of each gene. Same as before, ypr$counts has 12 columns, 
two for each sample. The odd-numbered columns contain the numbers of methylated Cs, whereas the even- 
numbered columns contain the numbers of unmethylated Cs. The only difference is that each row of ypr$counts  
now represents a gene promoter instead of an individual CpG site.

Filtering to remove low counts
Filtering is performed in the same way as before. We sum up the read counts of both methylated and unmethylated  
Cs at each gene promoter within each sample.

> Coveragepr <- ypr$counts[,Methylation=="Me"] +
+               ypr$counts[,Methylation=="Un"]

Since each row represents a 3,000-bps-wide promoter region that contains multiple CpG sites, we would expect less 
filtering than before.

> keeppr <- rowSums(Coverageprm >= 10) == 6
> table(keeppr)

keeppr
FALSE  TRUE
 1949 16837

> ypr <- ypr[keeppr,,keep.lib.sizes=FALSE]

Same as before, we do not perform normalization but set the library sizes for each sample to be the average of the total 
read counts for the methylated and unmethylated libraries.

> TotalLibSizepr <- 0.5*ypr$samples$lib.size[Methylation=="Me"] +
+                   0.5*ypr$samples$lib.size[Methylation=="Un"]
> ypr$samples$lib.size <- rep(TotalLibSizepr, each=2)
> ypr$samples

         group lib.size norm.factors
P6_1-Me    P6 11620642            1
P6_1-Un    P6 11620642            1
P6_4-Me    P7 11740775            1
P6_4-Un    P7 11740775            1
P7_2-Me    P8  4781385            1
P7_2-Un    P8  4781385            1
P7_5-Me    P6 10426283            1
P7_5-Un    P6 10426283            1
P8_3-Me    P7  3854829            1
P8_3-Un    P7  3854829            1
P8_6-Me    P8  3329192            1
P8_6-Un    P8  3329192            1

Exploring differences between samples
Same as before, we measure the methylation levels of gene promoter regions using M-values. A prior count of 2 
is added to the calculation to avoid undefined values and to reduce the variability of M-values for gene promoters  
with low counts. Then a MDS plot is produced to examine the overall differences between the methylation levels of 
the different samples.
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> Me <- ypr$counts[, Methylation=="Me"]
> Un <- ypr$counts[, Methylation=="Un"]
> M2 <- log2(Me + 2) - log2(Un + 2)
> colnames(M2) <- Sample
> plotMDS(M2)

The resulting Figure 5 shows that the two replicate samples from the luminal population (P6) are well separated from 
the four replicate samples from the basal population (P7 and P8).

Dispersion estimation
We estimate the NB dispersions using the estimateDisp function in edgeR. For the same reason, we do not  
consider a mean-dependent dispersion trend as we normally would for RNA-seq data.

> ypr <- estimateDisp(ypr, design, trend="none")
> ypr$common.dispersion

[1] 0.0304

> ypr$prior.df

[1] 10.7

The dispersion estimates (φ
g
 ) can be visualized with a BCV plot (see Figure 6):

> plotBCV(ypr)

Testing for differential methylation in gene promoters
We first fit NB GLMs for all the gene promoters using glmFit.

> fitpr <- glmFit(ypr, design)

Then we can proceed to testing for differential methylation in gene promoter regions between different populations. 
Suppose the comparison of interest is the same as before. The same contrast can be used for the testing.

> lrtpr <- glmLRT(fitpr, contrast=contr)

Figure 5. MDS plot showing differences in methylation profiles at gene promoters. Basal and luminal cell populations 
are well separated by the first dimension.
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The top set of most differentially methylated gene promoters can be viewed with topTags:

> topTags(lrtpr, n=20)

Coefficient:  1*P6 -0.5*P7 -0.5*P8
            Chr        Symbol Strand logFC logCPM  LR   PValue      FDR
16924      chr5          Lnx1      - -6.85   5.34 313 4.92e-70 8.29e-66
238161    chr12         Akap6      + -5.26   4.16 248 6.55e-56 5.51e-52
64082     chr16        Popdc2      +  4.91   5.94 225 7.96e-51 4.47e-47
11601      chr8        Angpt2      -  5.58   3.40 208 3.45e-47 1.45e-43
108168987  chr4       Gm13205      -  4.37   7.13 196 1.57e-44 5.29e-41
12740      chr5         Cldn4      - -5.56   5.26 189 6.49e-43 1.82e-39
16669     chr11         Krt19      - -5.05   6.58 187 1.65e-42 3.96e-39
73644     chr12 2210039B01Rik      + -4.31   5.36 180 6.00e-41 1.26e-37
387514     chr6      Tas2r143      +  4.52   4.59 177 2.10e-40 3.94e-37
321019    chr14        Gpr183      -  5.86   2.92 152 5.36e-35 9.02e-32
76509      chr9         Plet1      + -6.00   2.45 146 1.43e-33 2.18e-30
100043766  chr2       Gm14057      -  5.40   3.74 145 2.04e-33 2.87e-30
68386      chr2 0610039K10Rik      + -4.43   6.58 143 4.70e-33 6.09e-30
110308    chr15          Krt5      -  4.09   3.62 140 2.60e-32 3.13e-29
59091      chr2          Jph2      -  3.56   4.70 139 3.46e-32 3.89e-29
244198     chr7        Olfml1      +  5.91   3.36 133 1.04e-30 1.10e-27
18291      chr6         Nobox      -  4.75   3.37 130 5.22e-30 5.17e-27
21345      chr9         Tagln      -  4.62   4.25 127 1.54e-29 1.44e-26
653016    chr17          Mymx      -  2.75   5.69 127 1.71e-29 1.52e-26
229277     chr3        Stoml3      +  4.85   2.73 126 3.09e-29 2.60e-26

Here positive log-fold-changes represent gene promoters that have higher methylation level in the luminal  
population compared to the basal population. The Benjamini-Hochberg multiple testing correction is applied to  
control the false discovery rate (FDR).

Figure 6. Scatterplot of the biological coefficient of variation (BCV) against the average abundance of each gene. 
The plot shows the square-root estimates of the common and tagwise NB dispersions.
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The total number of DM gene promoters identified at an FDR of 5% can be shown with decideTests. There  
are in fact about 1,200 differentially methylated gene promoters in this comparison:

> summary(decideTests(lrtpr))

       1*P6 -0.5*P7 -0.5*P8
Down                    368
NotSig                15627
Up                      842

For future reference we make a dataframe of all the DM genes:

> topME <- topTags(lrtpr, n=Inf, p=0.05)$table
> dim(topME)

[1] 1210    8

The differential methylation results can be visualized with an MD plot (see Figure 7):

> plotMD(lrtpr)

Correlate with RNA-seq profiles
RNA-seq profiles of mouse epithelium luminal and basal cells
To explore whether hypermethylation of promoter regions is associated with repressed gene expression, we relate 
the differential methylation results to differential expression results from RNA-seq for similar cell populations. The  
RNA-seq data used here is from a study of the epithelial cell lineage in the mouse mammary gland, in which 
the expression profiles were generated from basal stem-cell enriched cells and committed luminal cells in the  
mammary glands of virgin, pregnant and lactating mice40. The complete differential expression analysis of the data is 
described in Chen et al.32.

The RNA-seq data is stored as a DGEList object y_rna and saved in a RData file rna.RData. The object  
y_rna contains the count matrix, sample information, gene annotation, design matrix and dispersion estimates 

Figure 7. MD plot showing the log-fold-change of the methylation level and average abundance of CpG sites 
in each gene promoter. Significantly hyper and hypomethylated gene promoters are highlighted in red and blue, 
respectively.
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of the RNA-seq data. The gene filtering, normalization and dispersion estimation were performed in the same way 
as described in Chen et al.32. The rna.RData file is available for download at http://bioinf.wehi.edu.au/edgeR/
F1000Research2017.

We load the RData file:

> load("rna.RData")
> dim(y_rna)

[1] 15641    12

> y_rna$samples

              group lib.size norm.factors
MCL1.DG    B.virgin 23137472        1.235
MCL1.DH    B.virgin 21687755        1.213
MCL1.DI  B.pregnant 23974787        1.125
MCL1.DJ  B.pregnant 22545375        1.069
MCL1.DK B.lactating 21420532        1.036
MCL1.DL B.lactating 19916685        1.087
MCL1.LA    L.virgin 20273585        1.370
MCL1.LB    L.virgin 21568458        1.368
MCL1.LC  L.pregnant 22117517        1.006
MCL1.LD  L.pregnant 21877287        0.924
MCL1.LE L.lactating 24657903        0.529
MCL1.LF L.lactating 24600304        0.535

We keep only the genes that are also included in our methylation analysis:

> haveME <- row.names(y_rna) %in% row.names(ypr)
> y_rna <- y_rna[haveME,]
> dim(y_rna)

[1] 13210 12

We assess differential expression between the luminal and basal virgin samples:

> fitrna <- glmFit(y_rna)
> Contrastrna <- makeContrasts(L.virgin-B.virgin, levels=y_rna$design)
> lrtrna <- glmLRT(fitrna, contrast=Contrastrna)

Correlate methylation and expression
We can add the expression log-fold-changes to our methylation results:

> topME$logFC.RNA <- lrtrna$table[row.names(topME),"logFC"]
> topME[1:30,c("Symbol","logFC","logFC.RNA")]

                 Symbol logFC logFC.RNA
16924              Lnx1 -6.85    2.2748
238161            Akap6 -5.26   -3.2258
64082            Popdc2  4.91   -7.6743
11601            Angpt2  5.58   -2.1021
108168987       Gm13205  4.37        NA
12740             Cldn4 -5.56    5.0985
16669             Krt19 -5.05    4.5266
73644     2210039B01Rik -4.31        NA
387514         Tas2r143  4.52   -3.1034
321019           Gpr183  5.86   -1.9598
76509             Plet1 -6.00    4.8335
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100043766       Gm14057  5.40   -0.8902
68386     0610039K10Rik -4.43    2.1650
110308             Krt5  4.09   -8.9403
59091              Jph2  3.56   -7.2598
244198           Olfml1  5.91        NA
18291             Nobox  4.75        NA
21345             Tagln  4.62   -6.4003
653016             Mymx  2.75        NA
229277           Stoml3  4.85        NA
16846               Lep  3.96   -6.1556
231253    9130230L23Rik -5.21    3.9109
16012            Igfbp6  3.02   -2.4216
675921           Tnk2os -3.69    2.0039
11529              Adh7  5.53   -0.0508
100526468       Mir3063  3.56        NA
78896     1500015O10Rik  6.94   -6.6807
217143           Gpr179  5.05   -2.9424
17242               Mdk  2.93   -4.5784
100526559       Mir3103  6.24        NA

The negative correlation between methylation and expression is immediately apparent. Of the top 30 DM genes, 
eight have NA expression fold-changes because the genes were not expressed at a high enough level to be included in  
the analysis. Of the rest, all but Akap6 have methylation and expression logFCs of opposite signs.

We can explore this correlation further by plotting the expression logFC vs the methylation logFC for all DM genes 
(see Figure 8):

> plot(topME$logFC, topME$logFC.RNA, main="Lumina vs Basal",
+     xlab="Methylation logFC", ylab="Expression logFC",
+     pch=16, cex=0.8, col="gray30")
> abline(h=0, v=0, col="gray10", lty=2, lwd=2)

Figure 8. Scatter plot of the log-fold-changes of methylation levels in gene promoters (x-axis) vs the log fold-
changes of gene expression (y-axis). The plot shows results for the genes of which the promoters are significantly 
differentially methylated between basal and luminal. The red line shows the least squares line with zero intercept.  
A strong negative correlation is observed.
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The horizontal axis of the scatterplot shows the log-fold-change in methylation level for each gene promoter while the 
vertical axis shows the log-fold-change in gene expression. To assess the correlation, we fit a least squares regression 
line through the origin and compute the P-value:

> RNAvsME <- lm(topME$logFC.RNA ~ 0 + topME$logFC)
> coef(summary(RNAvsME))

            Estimate Std. Error t value Pr(>|t|)
topME$logFC   -0.738     0.0472   -15.7 6.17e-48

> abline(RNAvsME, col="red", lwd=2) 

The negative association is highly significant (P = 6 × 10−48). The last line of code adds the regression line to the plot 
(Figure 8).

Gene set testing
The correlation in Figure 8 is convincing, but the above P-value computation assumes that genes are statistically  
independent of one another. We can perform a gene set test to get around this assumption.

First we make a dataframe of the logFCs of the DM genes, keeping only the genes for which we have RNA-seq 
results:

> ME <- data.frame(ID=row.names(topME), logFC=topME$logFC, 
stringsAsFactors=FALSE)
> inRNA <- ME$ID %in% row.names(y_rna)
> ME <- ME[inRNA,]

Then we test whether the DM genes are up or down-regulated using a “fry” gene set test. This analysis weights the 
DM genes by their methylation logFCs so that the test evaluates whether the expression changes are positively or  
negatively associated with the methylation changes:

> fry(y_rna, index=ME, contrast=Contrastrna)

     NGenes Direction   PValue PValue.Mixed
set1    740      Down 1.28e-09        5e-11

The result Down in the Direction column indicates negative correlation between the methylation and expression 
changes. The small PValue confirms a highly significant result.

We can visualize the gene set test result with a barcode plot (see Figure 9):

> logFC.ME <- rep_len(0,nrow(y_rna))
> names(logFC.ME) <- row.names(y_rna)
> logFC.ME[ME$ID] <- ME$logFC
> barcodeplot(lrtrna$table$logFC, gene.weights=logFC.ME,
+             labels=c("Basal","Luminal"), main="Luminal vs Basal",
+             xlab="Expression logFC", weights.label="Me logFC")
> legend("topright", col=c("red","blue"), lty=1, lwd=2,
+        legend=c("Hypermethylated in Luminal", "Hypomethylated in Luminal"))

In the barcode plot, genes are sorted left to right from most down-regulated to most up-regulated in luminal vs  
basal. The x-axis shows the expression log2-fold-change. The vertical red bars indicate genes hypermethylated 
in luminal and vertical blue bars indicate genes hypomethylated in luminal. The variable-height vertical bars 
show the methylation log-fold-changes. The red and blue worms measure relative enrichment, showing that  
hypermethylation is associated with decreased regulation and hypomethylation is associated with up-regulation. 
In other words, there is a strong negative association between methylation of promoter regions and expression of  
the corresponding genes.
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Discussion
This article has presented a complete start to finish analysis of an RRBS dataset from our own practice. The analysis 
demonstrates how BS-seq data can be analyzed using software designed for RNA-seq, thus benefiting from a large 
reservoir of highly-developed RNA-seq methodology. At first sight, BS-seq data is fundamentally different to RNA-
seq because of the need to focus on the proportion of methylated reads at each locus rather than on the absolute 
number of reads at each locus. The link is achieved by conducting the statistical inference conditional on the read  
coverage at each locus, and this in turn is achieved by including sample-specific locus effects in the linear model.

We have concentrated on analysing methylation changes for pre-defined genomic regions. At the highest resolu-
tion, conducted differential methylation tests for each distinct CpG site. Our main analysis was gene-level, whereby 
we aggregated counts over a putative promoter region around the TSS for each gene. This gives a “big picture”  
analysis and facilities a correlation of DM results with differential expression results from RNA-seq for 
the same cell populations. We also illustrated the use of gene set tests to examine whether there were  
overall methylation changes at the whole chromosome level.

The analysis presented here was designed for reduced representation BS-seq and was tuned to our own research  
interests. While the same analysis approach could be fruitfully applied to WGBS data, researchers with WGBS data 
may also want to discover DMRs de novo without the use of gene annotation or pre-specified genomic regions, 
something we haven’t explored in this article. The edgeR approach presented here could in principle be extended to  
discover DMRs in a de novo fashion using similar methods to those developed for ChIP-seq data41–43.

Packages used
This workflow depends on various packages from version 3.7 of the Bioconductor project, running on R version 3.5.0 
or higher. For all the code to work as presented, edgeR 3.22.2 or later is required. A complete list of the packages used 
for this workflow is shown below:

> sessionInfo()

R version 3.5.1 (2018-07-02)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 15063)

Matrix products: default

Figure 9. Barcode plot showing strong negative correlation between expression changes and methylation 
changes when luminal cells are compared to basal. The plot is analogous to Figure 8 with the DM genes now 
displayed as gene sets and the methylation logFCs now displayed as gene weights.

Page 28 of 42

F1000Research 2018, 6:2055 Last updated: 06 AUG 2021



locale:
[1] LC_COLLATE=English_Australia.1252  LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252

attached base packages:
[1] stats     graphics  grDevices utils     datasets methods base

other attached packages:
[1] edgeR_3.22.5 limma_3.36.5 knitr_1.20

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18         AnnotationDbi_1.42.1 magrittr_1.5
 [4] IRanges_2.14.11      BiocGenerics_0.26.0  hms_0.4.2
 [7] bit_1.1-14           lattice_0.20-35      R6_2.2.2
[10] rlang_0.2.2          blob_1.1.1           stringr_1.3.1
[13] highr_0.7            tools_3.5.1          parallel_3.5.1
[16] grid_3.5.1           Biobase_2.40.0       DBI_1.0.0
[19] bit64_0.9-7          digest_0.6.17        tibble_1.4.2
[22] crayon_1.3.4         org.Mm.eg.db_3.6.0   readr_1.1.1
[25] S4Vectors_0.18.3     codetools_0.2-15     memoise_1.1.0
[28] evaluate_0.11        RSQLite_2.1.1        stringi_1.1.7
[31] compiler_3.5.1       pillar_1.3.0         stats4_3.5.1
[34] locfit_1.5-9.1       pkgconfig_2.0.2

Data and software availability
All software packages used in this workflows are publicly available as part of Bioconductor 3.7. The data and 
analysis code used in this workflow are available from http://bioinf.wehi.edu.au/edgeR/F1000Research2017.  
The data and analysis code as at time of publication of this article has been archived at http://doi.org/10.5281/ 
zenodo.105287044.
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Chen et al. propose a novel use of negative binomial generalized linear models (GLMs), as 
implemented in the edgeR software, to test for differential methylation from bisulfite-sequencing 
data, particularly reduced representation bisulfite-sequencing (RRBS). By leveraging the existing 
edgeR software, a popular tool in the analysis of diffential gene expression analysis from RNA-seq 
data, this method is immediately able to handle complex experimental designs and integrates 
with downstream analysis tools such as gene set tests provided by the limma software. The paper 
is well-written and I was able to reproduce the authors’ analysis. It will be a useful workflow for 
people needing to develop an analysis of RRBS data. 
 
Like Simon Andrews, I initially struggled a little with some of the detail of the method itself. The 
method’s elegance and power, like all those based on (generalized) linear models, is driven by 
careful formulation of the design matrix and the choice of contrasts. Necessarily, the design 
matrix for analysing bisulfite-sequencing data is more complex than that used to analyse RNA-seq 
data from an identical experimental design. As I know the authors are well aware, getting the 
design matrix and contrasts correct is 95% of the battle for most people analysing data with 
edgeR and limma. I will explain my concerns below (many are the same as raised by Simon in his 
review). 
 
Main points

p4: The initial example has no replicates. Since the method is designed for “any BS-seq data 
that includes some replication”, should this example include replicates? I appreciate the 
desire to keep the initial example simple (especially in light of my next comment).

○

p4: I initially found the design matrix confusing. In fact, I had the same 
reaction/interpretation as Simon Andrews 4th comment: “In the small example description 
you say that A_MvsU estimates the log ratio for Sample1, but it wasn’t clear to me why this 
would apply to only Sample 1 since the factor has a 1 against the meth count for both 
samples 1 and 2”. I had to manually check a few quantities to convince myself, e.g., to 
rounding error, `coef(fit)[, "A_MvsU"]` is `logit((2 + prior.count) / (2 + prior.count + 12 + 
prior.count)`, where `prior.count = 0.125`. Because so much depends on constructing the 

○
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appropriate design matrix, this description/section may warrant further explanation (e.g., 
comparing to some manually computed quantities).
Like James MacDonald, although the code was clearly written, I was a little surprised that it 
didn’t use more consistent integration with existing Bioconductor packages and data 
structures. To add to his example, almost all the work in the section ‘Reading in the data’ 
can be achieved with `bsseq::read.bismark(fn)`, which will: read in an arbitrary number of 
Bismark `.cov.gz` files, appropriately combine samples with different sets of CpGs, and 
return a SummarizedExperiment-derived object (a BSseq instance) which could readily be 
used to construct the DGEList used in the analysis. In my experience, loading the data and 
combining different sets of loci is a step fraught with danger of hard-to-track-down errors, 
so it may be better to advise workflow users to use a fairly well-tested function. Full 
disclosure: I am the author of `bsseq::read.bismark()`.

○

p14: The aggregation of CpGs to promoters may lead to surprising results. An (extreme) 
example: the first half of a promoter is methylated in one condition and unmethylated in 
the other, and vice versa for the second half of the promoter. In aggregate over the 
promoter the proportion of methylated CpGs may be similar in both conditions, yet this 
promoter is clearly differentially methylated. I think a note encouraging workflow users to 
think carefully about their hypothesis when doing this form of aggregation is warranted.

○

 
Minor points

p1: “The most commonly used technology of studying DNA methylation is bisulfite 
sequencing (BS-seq)”. The Illumina 27k/450k/EPIC microarrays are the most commonly used 
‘genome-wide’ assays for studying DNA methylation. However, (whole genome) BS-seq is 
arguably the gold standard genome-wide assay.

○

p3: I think there’s some confusion about CpGs and CpG islands (CGI). Approximately 0.9% of 
dinucleotides in the human genome (hg19) are CpGs, and approximately 0.7% of the 
genome is a CGI (using UCSC CGIs, which is not the only definition but perhaps the 
standard); see code below:

○

```R 
library(BSgenome.Hsapiens.UCSC.hg19) 
hg19_size <- sum(as.numeric(seqlengths(BSgenome.Hsapiens.UCSC.hg19)[ 
  paste0("chr", c(1:22, "X", "Y"))])) 
 
# CpGs on chr1-22,chrX,chrY in hg19 
n_CpGs <- Reduce(sum, bsapply(BSParams = new("BSParams", 
                                             X = BSgenome.Hsapiens.UCSC.hg19, 
                                             FUN = countPattern, 
                                             exclude = c("M", "_")), 
                              pattern = "CG")) 
100 * n_CpGs / hg19_size 
 
# CGIs in hg19                               
library(rtracklayer) 
my_session <- browserSession("UCSC") 
genome(my_session) <- "hg19" 
cgi <- track(ucscTableQuery(my_session, track = "cpgIslandExt")) 
sum(width(cgi)) / hg19_size 
```
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p3: Possible type, “with a large genome”○

p3: “WGBS is more suitable for studies where all CpG islands or promoters across the entire 
genome are of interest.” Might also add ‘distal regulatory elements’ and CG-poor regions 
(RRBS targets CG-rich regions of the genome).

○

p3: BSmooth (implemented in bsseq) doesn’t use Empirical Bayes although it does use 
limma for linear regression

○

p4: Missing a `library(edgeR)` in order for the code to work○

p4: There’s an extra parenthesis at the end of line 2 when constructing `dimnames(counts)`○

p4: The authors note that the method is “especially appropriate for RRBS data”. Is the main 
challenge for running on WGBS data that of computational resources?

○

p5: Typo, “mythlyated” should be “methylated”○

Table 1: Condition should be ‘A’ or ‘B’ instead of ‘1’ or ‘2’○

p6: Was Bowtie1 or Bowtie2 used as the Bismark backend for the mouse data?○

p8: The filtering step removes almost 90% of CpGs. Is this unavoidable, e.g., due to low 
sequencing coverage of these samples, or might the filtering be relaxed?

○

Figure 1: Any thoughts for why the P8_6 sample is rather separated from the other Basal 
samples along dim2 of the MDS plot?

○

Figure 2: What is the meaning of ‘average abundance of each CpG site’? Is ‘abundance’ 
interpretable as ‘sequencing depth’?

○

p16: Possible typo, “Suppose the comparison of interest is the same as before”○

p22: In the DNA methylation literature, ‘up-methylated’ is typically called ‘hypermethylated’ 
and ‘down-methylated’ is typically called ‘hypomethylated’.

○

15th July 2019: The competing interests section has been updated to reflect Dr Hickey’s previous 
University of Melbourne affiliation.
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: I completed my PhD in the School of Mathematics and Statistics at the 
University of Melbourne in 2015
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 30 Sep 2018
Gordon Smyth, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 

Thank you for your thoughtful and positive comments on our article. 
We particularly wish to thank you for your comments on the introductory material, which 
we have rewritten to take account of all your suggestions. We have specified the version of 
Bowtie, adopted the “hyper” and “hypo” terminology and made all the other corrections. 
In this revision we have added a lot of new material to the expository section, including an 
example with replicates, while retaining the first example without replicates. The purpose of 
the first example is to introduce the key mathematical idea that underlies our article, which 
is the use of linear model terms to account for total read coverage at each CpG, and to 
relate this to the more familiar beta-binomial modeling approach. This idea is already 
manifest in the very small dataset without replicates, and so that is the most fundamental 
context in which to exposit the idea. The need for replicates relates to dispersion 
estimation, which is a separate issue. For pedagogic purposes it is best to isolate these 
concepts separately. 
We now demonstrate in the first example how the logFC is computed in complete arithmetic 
detail. We have switched the toy examples to use the group-mean parametrization instead 
of the treatment-parametrization so that the computation of logFC is explicit rather than 
implicit. See also our reply to Simon Andrews. 
We have introduced a new function modelMatrixMeth() to automate the construction of the 
design matrix. From a user point of view, the design matrix is now made exactly as it would 
be for an RNA-seq analysis, with the sample effects added automatically. We have also 
added a new section “Analogy with paired-samples expression analyses” to show that the 
entire linear modeling approach is equivalent to an (already well understood) type of RNA-
seq experiment. 
The purpose of our article is to show that methylation data can be analyzed exactly like 
RNA-seq and we use the same packages and data structures as our earlier RNA-seq 
workflow article (Chen et al, 2017). Adding extra packages and data structures would 
complicate rather than help our workflow. 
We are aware of your read.bismark() function in the bbseq package. When run on our data, 
read.bismark() produces a number of alarming warnings suggesting that incorrect genome 
annotation has been used for some of the samples. These warnings are false alarms, but 
would worry users, so we would have to either suppress them or explain them to readers, 
were we to adopt read.bismark. 
We are also aware of the readBismark() function in the BiSeq package and the methRead() 
function in the methylKit package. It seems that every Bioconductor package that analyses 
BS-seq has its own read function. The functions read the methylation data into a binomial 
format, whereas the whole point of our article is to show that the methylated and 
unmethylated counts can be analysed as they are instead of doing a binomial analysis. All 
produce data structures that are incompatible with edgeR. We could wrangle the data 
formats back to a DGEList, but the end result would be code that is no shorter or simpler 
than our original plain base R code. In fact the code would be harder to follow because of 
the extra packages and data structures involved. 

 
Page 34 of 42

F1000Research 2018, 6:2055 Last updated: 06 AUG 2021



It seems unfortunate that the Bioconductor methylation packages all create their own read 
functions from scratch in order to create their own specialist S4 objects. Each defines a 
complex S4 class, unique to that one package. If Bioconductor provided a fast, light-weight, 
base-R style function to read Bismark files, then all the packages could use that as building 
block instead of re-writing from scratch. 
In this revision, we have decided to create a new function readBismark2DGE() to read the 
Bismark files directly into a DGEList object, substantially simplifying our workflow for users. 
The new function is faster than any existing options and over 3 times as fast as 
read.bismark() on the workflow data. The new function creates simple list output with 
minimal processing and so serves the purpose of a light-weight base-R style function. 
You comment on aggregation over promoters and guidance about hypotheses. We have 
added more text to clarify that aggregation of counts over gene promoters tests for overall 
changes only, but we think that users would have expected this already and shouldn’t be 
surprised. 
The thought example you give is indeed extreme and does not match real that we have 
seen. Even if such a phenomenon could occur, our workflow includes a CpG-level analysis, 
so readers can easily check for CpGs changing in different directions within a promoter if 
that is of interest to them. We did this check ourselves and found that for 99% of genes 
whose promoters contain any DM CpGs, all the DM CpGs change in the same direction. In 
almost all the remaining cases, only one CpG changes in the “wrong” direction. The only 
exception is Mir1298 on Chromosome X that has two CpGs changing in the other direction 
to the majority. 
Even if there were opposing effects within a few gene promoters, it wouldn’t invalidate our 
aggregate analysis. It would simply mean that exceptional genes would have to analyzed 
and interpreted individually to understand the fully story, and we see no problem with that. 
We think there is a role for both aggregate analyses and high-resolution analyses of DNA 
methylation. However we think that aggregate analyses are under-used in the literature 
and should be encouraged more than at present. We think that genomic analysts 
sometimes try to accommodate too much complexity, leading to analyses that lack 
statistical power. This in turn leads to the danger of cherry picking, possibly over-
interpreting results that might not be reproducible. Aggregate analyses ignore some of the 
complexity, but can lead to more reliable and interpretable “big picture” messages. In this 
article, our promoter region aggregated analysis leads to a clean and reliable correlation of 
methylation with RNA-seq results, a correlation that is more difficult to achieve by other 
means. 
Our remark that our method is especially appropriate for RRBS is prompted by the thought 
that researchers engaged in a WGBS study may have slightly different aims, and this goes 
back to your comment about hypotheses. In particular, it may be important in a WGBS 
analysis to discover DMRs in a de novo fashion, pooling results for consecutive genomic loci 
without the use of gene annotation. We have added remarks in the Introduction and the 
Discussion to clarify our aims and to briefly indicate possible extensions. There is no 
problem with computational resources – our pipeline is reasonably efficient. 
In this revision, we have relaxed the filtering threshold to 8 instead of 10 reads per CpG, 
although it makes no material difference to our analysis. While the filtering does indeed 
remove 85% of the CpGs, it keeps more than half the counts. The number of CpGs retained 
in the analysis is plenty for our purposes. 
In this revision, we form the MDS plot in a slightly better way and P8_6 is no longer an 
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outlier. 
In Figure 2, the meaning of “average abundance” is explained by the axis label as log count 
per million, i.e., coverage for that CpG divided by sequencing depth. In effect, it is the 
coverage for each CpG relative to other CpGs. It is independent of sequencing depth.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 18 December 2017
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© 2017 MacDonald J. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

James W. MacDonald   
Department of Environmental and Occupational Health Sciences, University of Washington, 
Seattle, WA, USA 

This is primarily a software pipeline article, showing how to use the Bioconductor edgeR package 
to analyze RRBS data, but to a certain extent is also a methods paper, as to my knowledge this is 
the first proposal for directly analyzing count data rather than converting to either ratios and 
using a beta-binomial, or to logits and using conventional linear modeling. This is an interesting 
idea, and should be explored further, but for this manuscript the main goal is to present the 
software pipeline. 
 
The authors progress through each step of the pipeline, clearly describing each step as well as 
providing code (and links to the underlying data), so readers can easily understand the process 
and get some hands on experience as well. 
 
The code is clearly written, and as straightforward as one could expect for a relatively complex 
analysis. However, I would prefer to see more consistent integration with other Bioconductor 
packages. In particular, when reading in the raw data, the authors use a clever trick to account for 
the fact that not all samples have reads for the same genomic positions. This step could just as 
easily be accomplished using the Bioconductor GenomicRanges package, which is intended for 
manipulating genomic data. In fact, the authors use GenomicRanges later in the pipeline to subset 
the methylation data to just gene promoter sites, so it would be more natural to start with a 
GRanges if you will need one later anyway. 
 
Otherwise this is a good article that clearly shows how one could use an innovative method to 
analyze RRBS data using the edgeR package. 
 
Typos:  
Under a small example section, (BvsA_MvsU) estimates the difference in logit proportions of 
mythylated
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Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 01 Oct 2018
Gordon Smyth, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 

Thank you for your positive report on our article. You’re right, there is a novel methods 
proposal in our article, which we will seek to justify in more detail in a methodological article 
elsewhere, but the current article concentrates on the software pipeline. 
In this revision, we have introduced new functions readBismark2DGE() and nearestTSS() to 
simplify the workflow. These functions allow us to eliminate from the workflow any code 
chunks that involve substantial programming, making the workflow considerably easier for 
users. We felt the original code chunk to find CpGs in promoters in particular was too 
complex for the purposes of our article and assumed too much user knowledge. 
I have used GenomicRanges for other projects ( https://f1000research.com/articles/4-1080 ) 
but it doesn’t help with the current workflow. The file reading code would be similar in 
length and speed with or without GenomicRanges, so we tend to give preference to R base. 
In any case, we have eliminated that code entirely, as explained in our discussion with Peter 
Hickey. 
The new nearestTSS() function is more informative than the old code, as well as being fast. It 
has the added advantage of using the Bioconductor organism package, which has more up-
to-date TSS annotation than the transcript package.  

Competing Interests: No competing interests were disclosed.
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Reviewer Report 07 December 2017
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© 2017 Andrews S. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Simon Andrews   
Bioinformatics Group, Babraham Institute, Cambridge, UK 

Chen et al present an interesting re-application of the EdgeR analysis package to the analysis of 
bisulphite sequencing data.  The method they propose would utilise the existing negative biomial 
models within EdgeR and would potentially provide the power which comes with the linear model 
framework to bisulphite data.  The method described requires no changes to EdgeR itself, and 
merely describes a suitable formulation of design matrix to allow this to be applied to bisulphite 
data. 
 
The article is generally well written and the authors go to great lengths to break down and 
describe the method.  They also provide a page from which all of the underlying data and code 
can be obtained and I was able to reproduce the results, and independently verify them in a 
parallel analysis. 
 
The main thing which I struggled with was some of the detail in the description of the method 
itself.  There were some parts which I wasn't clear on, and some nomenclature which didn't help in 
understanding the explanation.  I'll try to lay out my concerns below: 
 
1) In the small example I completely understand that the authors wanted to keep this as simple as 
possible, but it might have helped to have had 2 samples per condition so that the full complexity 
of the method is visible.  
 
2) There is a typo in the code for the small example so it doesn't run as is.  The list function on line 
2 has an extra bracket at the end. 
 
3) The nomenclature in the small example is inconsistent.  You have samples 1 and 2, but (in the 
table) also conditions 1 and 2, but in the code the conditions are A and B.  If you had Samples 
1,2,3,4 in conditions A and B this might help to alleviate some of the confusion. 
 
4) In the small example description you say that A_MvsU estimates the log ratio for Sample1, but it 
wasn't clear to me why this would apply to only Sample 1 since the factor has a 1 against the meth 
count for both samples 1 and 2 
 
In the expanded examples there were also some points on which I wasn't clear. 
 
5) You calculate a single dispersion parameter for all data points and say that in contrast to RNA-
Seq there is no global trend to follow.  It wasn't clear to be exactly why this is since read count and 
methlyation level would all affect the dispersion - is it simply because these factors are explicitly 
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accounted for in the linear model? 
 
6) In the design matrix for the RRBS it wasn't clear why the first column was all 1s, whereas the 
rest obviously matched the condition from which they came.  This also contrasted with the simple 
example where the structure wasn't like this. Is this because you were comparing both P7 and P8 
to P6? 
 
7) I think this is possibly the same thing as point 4, but you say that the Me column represents the 
methylation level in P6, but again this highlights the methylated values in all samples, so why only 
P6? 
 
For the final results obtained it would have been nice to show the general level of concordance 
with running the same analysis through one of the beta-distribution models to either show 
general agreement, or to generally explain any major differences. 
 
 
Minor points: 
 
In the introduction you say that "40% of mammalian genes and 70% of human genes have CpG 
islands enriched in their promoter regions".  Enriched probably isn't the right word to use (or you 
need to say that CpGs are enriched rather than islands).  The difference between 'humans' and 
'mammals' is also somewhat contentious - non-human mammals certainly have weaker CpG 
islands which get missed by CpG island prediction tools, but for example in mouse Illingworth et al 
showed that if you use CpG binding protein ChIP that you can see about the same number of 
islands in both species. 
 
It's also not really fair to say that CpG methylation in promoters is "generally" associated with 
repression of transcription.  There is a categorical expression level shift associated with the 
presence/absense of CpG islands, but you can make a Dnmt1 knockout which removes pretty 
much all methlyation from the genome and for the vast majority of genes their transcription is 
completely unaffected. 
 
P3 "with large genome" should be "with large genomes" 
P5 "mythylated" should be "methylated" 
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
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Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 30 Sep 2018
Gordon Smyth, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia 

Thank you for your thoughtful comments on our article. 
We have rewritten the Introduction to take account of your comments and have fixed all 
typos. We have also expanded the expository section on the NB linear modeling approach 
to five pages instead of one. 
The purpose of the first toy example (Table 1) is to introduce the key mathematical idea that 
underlies our article, which is the use of linear model terms to account for read coverage at 
each CpG, and to relate this to the more familiar beta-binomial modeling approach. This 
idea is already manifest in the very small dataset without replicates, making the one-sample 
example the most fundamental and effective context in which to introduce the idea. We 
agree however that the condition labels in Table 1 should be A and B. 
Following your remarks, we have included a second example with 2 samples per condition 
(Table 2). Keep in mind though that the edgeR approach to methylation however is very 
powerful and flexible and its full complexity is still far from being visible in a single locus 
example like this. To see more of the features in play, one has to work through the full data 
example. We have however taken the opportunity to preview more ideas in the expanded 
linear modeling introduction, including dispersion estimation and the use of contrasts. 
You asked about the A_MvsU coefficient computation. This is a standard linear modeling 
result in R but one that does confuse a lot of people when they see it for the first time. You 
will see analogous results explained in the limma and edgeR User’s Guides. Anyway, we 
have rewritten the first example in a different way so that the coefficients are defined more 
explicitly and their calculation is explained in full arithmetic detail. 
The original implicit formulation of the logFC is now presented in the section “Another way 
to make the design matrix”. Consider the last two columns of the design matrix in that 
section, which are now called “Intercept” and “ConditionB”, and write βA and βBvsA for the 
corresponding two coefficients. The interpretation of these coefficients becomes clear by 
multiplying the coefficients by the design matrix. For samples corresponding to condition A, 
the methylation level is represented by βA alone because the last column of the design 
matrix is zero (rows 1 and 3). When condition B is applied, the methylation is modelled by βA 
+ βBvsA (rows 5 and 7). So it is apparent that βA must represent the methylation status for 
condition A while βBvsA0 must be the difference in methylation between B and A. Users 
don’t need to follow this mathematics, we just present it here for completeness. 
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You also asked about the first column of the design matrix. It doesn’t matter whether the 
first column is all 1s or not, as long as the leading columns of the design matrix span the 
sample effects. We have added a small example on pages 3-4 to demonstrate this. The first 
few columns of the design matrix model the sample coverages, and these columns are 
quite independent of the remaining columns which model the treatment conditions. We can 
compare the treatment conditions in any way we wish regardless of how the design matrix 
is parametrized. We have added some material to the introduction to try to explain this but, 
in any case, it isn’t something that a user needs to worry about. 
In this revision, we have introduced a new function modelMatrixMeth to create the design 
matrix automatically, so users now only need to focus on the treatment conditions, not on 
how to adjust for the sample effects. 
There is no reason why the dispersion should be a function of read count or of methylation 
level. The purpose of the NB statistical model is to capture the technical mean-variance 
trends so that the dispersion parameter can be interpreted independently of these things. 
We have added a sub-section on dispersion estimation to page 7 to try to make this clear. 
Regarding concordance with other methylation analysis software, we do not know of any 
beta-binomial modeling software that is able to conduct an equivalent analysis to that 
presented in our article. We have formed a contrast between luminal cells and the two basal 
populations, and no other software can do that as far as we know. This is an example of the 
extra flexibility provided by our approach. The DSS Bioconductor package is documented to 
be able to form general contrasts between treatment conditions, but this is not effective in 
practice because it does not distinguish hyper from hypo methylation for a contrast. 
Our experience is that edgeR gives better DM results than beta-binomial software but it 
would be unfair for us to claim that in our article without undertaking a full comparison 
study with rigorous benchmarking. Our plan is to publish such a comparison elsewhere. 
 

Competing Interests: No competing interests were disclosed.
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