
ISSN 8755-6839 

SCIENCE OF TSUNAMI HAZARDS 

 

Journal of Tsunami Society International 

Volume 37 Number 4 2018 

CHARACTERISTICS OF THE TSUNAMI WAVE REFLECTION FROM THE 
BEACH 

R.Kh. Mazova1, I.V. Remizov1, N.A. Baranova1, Yu.F. Orlov1, S.M. Nikulin1,  
A.V. Andriyanov1, V.D. Kuzin1 

1Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, RUSSIA 

ABSTRACT 

It is well known that reflection from the complex relief of the continental slope can significantly 
affect the runup of a long wave on the beach and significantly increase the destructive impact on the 
coast. In this paper, we consider the reflection of long waves from a plane slope and from a slope 
conjugated with even bottom. The problem is considered both for a monochromatic wave and for an 
arbitrary initial perturbation. Using the "vertical wall" and "plane slope" approximations, the 
reflection coefficients and the solution for the reflected wave are obtained. Numerical simulation is 
carried out for the case of reflection of the "Lorentz pulse" from the slope, which is conjugated with 
even bottom. The results obtained are in good agreement with the available results, both an analytical 
study of the process and numerical modeling of runup of an arbitrary initial perturbation with taking 
into account of reflection from the shore. 

Keywords: long gravitational wave, reflection wave from the beach, analytical solution, 
reflection coefficient, reflection of the pulse of arbitrary form. 
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1. INTRODUCTION 

The study of the characteristics of the long gravitational wave (tsunami) reflected from the beach is 
interesting not only for a more complete understanding of the processes taking place in the coastal 
zone during the wave runup, but also for solution specific tasks of coastal engineering. The main point 
in coastal engineering is to understand the coastal behavior of wave movements: in particular, to 
assess both the maximum runup in abnormally large waves on the beach, and the problems of water 
withdrawal from the shore. 

It is well known [Belokon, Semkin, 1998] that reflection from the continental slope and other 
irregularities of the bottom relief in many cases can significantly affect the runup of the long wave 
and their destructive impact on the coast. In general, the coastal relief is quite complex, so the 
problem of reflection is solved approximately. However, often large inhomogeneities such as an 
underwater ridge or a continental slope are elongated along one of the directions, what makes it 
possible to simplify the formulation of the problem. One of the important issues that makes it possible 
to solve the problem of wave reflection from the shore is the task of interpretation of a record of a tide 
gauge in the coastal zone that records a complex superposition of incident, reflected, and diffracted 
waves [Volzinger et al., 1989]. The coefficients of wave reflection from the underwater slope as well 
as from a plane slope were considered in a number of works (see, for example, [Kozlov, 1981, 
Pelinovsky, 1982, Mazova, 1984]). The problem of reflection of long sea waves from flat slopes and 
slopes conjugated with even bottom has also been many times considered in the literature [Sugimoto, 
Kakutani, 1984, 1988; Synolakis, 1987; Jeffrey, Day, 1988, 1989; Day, Jeffrey, 1989]. 

2.  STATEMENT OF THE PROBLEM  

After the wave climbed the bench, the rundown process begins and a reflected wave is generated that 
propagates to the sea. As shown in [Sugimoto, Kakutani, 1988], a reflected wave can be observed 
only at distances from the shore x > 2.5d, where d is the depth of water above a flat bottom. Close to 
the shoreline, at x < 2.5d, the incident and reflected waves can not be differentiated - they merge into 
one wave. The reflected wave has a dipole character, and although both the linear and nonlinear 
theories predict perfect reflection for non-breaking waves, the dipole nature of the reflected wave is 
clearly expressed. Because linear and nonlinear theories are in good agreement with laboratory data at 
the base of the coast, apparently, the dipole wave is transformed into a wave of one sign only after 
passing over a region of constant depth. The results of numerical modeling of wave reflection from a 
vertical wall lead to similar conclusions [Zheleznyak, 1985]: when reflected from a wall, the wave at 
small distances is essentially asymmetrical and a pronounced trough follows the crest. Over time, the 
waveform is approaching the original, but complete recovery does not occur - behind the single wave 
it is a train and an oscillating "tail". Analogous phenomena are observed at high-amplitude waves in 
laboratory experiments (see Zheleznyak, 1985). Very long waves "see" the shore as a vertical wall: the 
wavelength changes rapidly and the reflection appears immediately. Shorter, steeper waves, at first, at  
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least, go ashore, as if there would be no shore. The wavelength remains constant and the reflection 
begins only when the total wave has come ashore [Synolakis, 1987]. 

When unbroken waves run to the shore, the reflected wave is generated continuously, this reflection is 
manifested as a "trail" between incoming and outgoing waves. However, the magnitude of the 
reflected wave, generated at a wave height in the open ocean of H = 0.3d, is negligible, until the wave 
reaches the maximum runup and the reflection process begins [Synolakis, 1987]. The process of 
reflection from a sloping beach is usually characterized by a reflection coefficient, which is the ratio 
of the incident and reflected waves. Because the height of the reflected wave can not be determined 
exactly due to the dipole nature of the wave, it is possible to determine the reflection coefficient from 
the ratio of the height of the positive dipole wave to the height of the incident wave [Synolakis, 1987].   

2. REFLECTED WAVE FROM A PLANE SLOPE 

It is obvious that the problem of reflection of a long wave from the shore is solved in direct 
connection with the problem of wave runup onto a slope. In the works [Mazova, Pelinovsky, 1982; 
Mazova 1984], the problems of runup in the framework of a linear and nonlinear formulation of the 
problem were considered in neglecting dispersion and dissipation. In this case, the nonlinear equations 
of shallow water by means of the Carrier-Greenspan transformations are reduced to a linear equation 
for the elevation of the water surface [Pelinovsry, 1982; Sugimoto and Kakutani, 1984; Sugimoto and 
Kakutani, 1988; Synolakis 1987; Jeffrey and.Dai 1988; Dai and A.Jeffrey 1989; Zheleznyak 1982; 
Mazova and Pelinovsky, 1982; Mazova et al, 1982]. 
The linear wave equation is solved           

                                                  !                                                        (1) 

Then the solution for a monochromatic wave runup in the "classical" geometry: the plane slope h = -α 
x, the wave moves along the normal to the shore, gives the wave field as the sum of the fields of the 
incoming and reflected waves (Fig. 1) (see, for example, [Mazova , 1984]) 

!  
Fig. 1. The geometry of the problem for a plane slope. 
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! ,                   (2) 

where  ;   is the time of wave movement from isobath h0  to the 
shoreline (-) and back (+).  
Those solution in the most general form is a superposition of two waves with a frequency ! and with 
a variable amplitude a (x). The coefficient A can be found by taking the amplitude of the incident 
wave at the depth h0 to be equal H0. Then we will have 

                                                    ,                                                                 (3) 
where L0 is the shelf length, λ0 is the wavelength at isobath  h0 , J0 is the Bessel function. 
The solution for runup of pulse wave can be obtained applying the Fourier superposition of solutions 
like (2), considering H0 = H(ω)   

              ! ,                       (4) 
or, in the form more convenient for further transformations [Mazova, 1984; Voltsinger et al., 1989] 

             ! ,                      (5) 
where H(ω) is the spectrum of a coming wave. This solution also consists of the sum for the fields of 
the incident and reflected waves. Knowing the shape of the incident wave at a depth h0, we can 
calculate its spectrum 

! .                      (6) 

Submitting (6) to (5) we have  

!  .                         (7) 
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From formulas (2) and (5) it can be seen that the amplitude of the reflected signal does not change, 
and the phase changes by π/2. It can be shown that in this case 

                  !    .                                                        (8) 
The last term in the denominator can be eliminated by redefining the zero of the time. This solution 
was first obtained by using Hilbert transformations in works [Mazova, 1984; Volzinger et al., 1989]. 
Thus, for a plane slope, for an arbitrary initial perturbation, the solution for the reflected wave will 
have the form 

                              !   .                                                        (9) 

3. CALCULATION OF THE ANALYTICAL MODEL OF THE REFLECTED WAVE. 

For example, consider the reflection of a single wave from a plane slope (the Lorentz momentum) 
[Mazova, 1984], whose spectrum has the following form 

                                      ! .                                                           (10) 

The reflected wave is obtained by means of the Hilbert transform, where the initial perturbation is 
calculated by formula 

             ! ,                                               (11) 
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!  
                       Fig. 2. Tide-gauge records of incident wave for θ:  0; π/10; 2π/3; 5π/3. 

Figures 2 and 3 show tide-gauge records for the incident and reflected waves for various values of the 
parameter !  (see formulas (11) and (9)). As can be seen from the figures, the shape of the reflected 
wave changes significantly in comparison with the shape of the incident wave when !  changes 
[Mazova, 1984]. 

      
4. REFLECTED WAVES FROM THE SLOPE - CONJUGATED WITH PLANE BOTTOM 

Reflection for a monochromatic wave. In the region of a constant depth x > x1 (Fig. 4), the solution 
of equation (2) for a monochromatic wave is represented as a superposition of the incident and 
reflected waves [Mazova, 1984] 

                !  ,                                         (12) 

where ! , !  (h = const), A and B are amplitudes of incident and reflected waves, 
respectively. Here, second term corresponds to the solution for reflected wave.    

                        !     .                                                    (13) 
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!  
Fig. 3. Tide-gauge records of reflected wave for θ: 0; π/10; 2π/3; 5π/3 

!  
Fig.4. The geometry of the problem for a sloping beach - conjugated with even bottom. 

The solution for plane slope 0 < x < x1 can be wrote via the Bessel function  

             ! ,                                             (14) 

where , α is the inclination angle of the plane slope, J0 is the first kind Bessel function, 
N0 is the Neumann function, and C and D are arbitrary constants. Because the solution must be  
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bounded everywhere, including at the shoreline (x = 0), then it is necessary to require D = 0, since the 
function N0 has a logarithmic singularity for x = 0. Then 
                               

  ! .                                                     (15) 
The boundary conditions in the point x = x1 can be obtained using system of linear shallow water 
equations  

                                        !                                                               (16) 

by integrating (16) we will obtain  

                                          !                                               (17) 

where !  or ! . 
Using the continuity conditions at the point x1 for the displacement of the water points and the 
equality of the water mass flows, we "sew" these solutions at the point x = x1 (or x = L, where L is the 
shelf length) 

                            !                                                             (18) 

In the point x = x1, using condition of equality of water point displacement  

            ! ,                                   (19) 

where !  

! , 
rewrote in the form  

                                                 ! .                                               (20) 
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In the point x = x1, using condition of equality of water mass  and from (16) at 

! , we will obtain  

! , 
then 

     !      
Since 

! , 
we  will obtain  

!  
and from  (16) 

!  . 
Since  

!    
then 

! . 
By equating,   

!  
we have  

!        
or 

                              !  .                                             (21) 
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By writing solutions (20) or (21)  

!  
we can find coefficient C 

!  

!  

By designating for ! ,  we will obtain solution for reflected wave      

                      ! .                         (22) 
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Reflection of the pulse of arbitrary form. Using the Fourier transformation  

                                 ! ,                                                 (23) 
we will obtain 

                                !  .                            (24) 
By substituting (23) to (24), we will have  

                   !                      (25) 
or 

                     ! !   .                            (26) 
By taking inner integral for Green function  

                                       ! ,                                      (27) 
We will solve in the form   

                                           ! .                                              (28) 
Rewriting Green function in the following form  

                                              ! ,                                             (29) 

where  !   is the reflection coefficient. 
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Using asymptotic expansions of Bessel functions at infinity and for small values of the argument 

        !     !              (30) 

after a simple transformation  

                                        !                                                           (31a) 

                                   !                                                         (31b) 

it is possible to evaluate the obtained solution (26) for two limiting cases: z → 0 - reflection of a wave 
from a vertical wall and z →  ∞  - reflection from a plate slope. The first solution is well known for 
linear formulation of the problem, and the second is obtained above. So, for z → 0 (x→∞) from (27) 
we have  

                                        ! .                                          (32) 

Further, with taking into account (30), first multiplier under in integral becomes to be equal unity, and 
remaining integral is well known   

                                               ! .                                                   (33) 

Hence, from (26) we obtain that at z → 0 the Green function is transformed to the δ-function 

                                                   !                                                           (34) 
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and, substituting this expression to (25), we finally have  

      ! .            (35) 

Thus, at z → 0 we obtain a classical solution to the problem of a long wave runup to a vertical wall in 
a linear formulation [Zheleznyak, 1985] 

                            ! .                                                               (36) 
For the case of the plane slope (z → ∞), using (30), we will consider 

! .         (37) 

Substituting (37) to (26), we obtain [Pelinovsky, 1982; Mazova, 1984]               

                                                  !  .                                                (38) 

Thus, from general solution (22) the solution for two limited cases was obtained: z → 0 and z → ∞.  
Let us now consider the case of small deviations from a vertical wall and compare it with particular 
solutions for such a case (see [Mazova, 1984, Voltsinger et al., 1989]). Rewrite the reflection 
coefficient (see (28) 

                                             !  .                                                     (39) 
Taking into account the expansion of exponent in small parameter series, we will have  

                            !  ,                                     (40) 

then, taking into account the expansion (31a) and (31b), and restricting by members of the second 
order, we will obtain:  

                                        !                                                 (41) 

Vol 37. No. 4, page 187 (2018) 

)'(')()'()'(2')'(
2
1)( ' tdttttttdttt incincincref η=−δη=−δ⋅π⋅η∫

∞

∞−π
=η ∫

∞

∞−

incref η=η

( ) ∫
∞

∞− −
=

−

−

−
−=ω−=∫

∞

∞−
ω=− −ω−ω

)(
2

)(
)1(1)(22)'( ''

)'('
2

0

1

ttitt
ideideettG ttitti

iarctg
J

J

∫
∞

∞− −

η

π
=η ')'(1)( ' dttt

t
t inc

ref

0

12

)(
J

J
arctgi

eKref

−

=ω

...
!2
421)(

0

12

0

1 +−⋅−=ω
J
J

arctg
J
J

arctgiKref

⎪
⎩

⎪
⎨

⎧

∞→
π

−−

→−
=ω

.   )
4

(21

,0             ,1
)(Re

2

2

zz

zz
Kref



Designating for ! , we have ! . 

Then, (41) will be rewritten as  

                                              !                                            (42) 

Returning to the Green function (27) and taking into account we will have 

                               !                                               (43) 
or  

                    ! .                            (44) 

Since first term in this expression is  

                       ! ,                                                (45) 
and second one can be easy transformed by following manner  

            !    

         ! ,                              (46) 
then (44) can be rewrote in the following form   

! . 
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From here, we have:   

       ! .                   (47) 

Finally, we have   

   ! ,     ! .                      (48) 

This solution agrees well with the analogous result from the work on wave reflection in the boundary 
layer theory [Sugimoto, Kakutani, 1984, 1988] for the case of steep slopes, where the coefficient in 
front of the second-order term in the differentiation operator is equal to µ2/2, and µ  = h/ctgα is a 
dimensionless quantity. The quantity γ in (48) has the dimension of time. The relation between µ and γ 

is easy to find: γ =2µτ*, where the introduced quantity  has the meaning of a characteristic 
time, and l of a characteristic length.  

Thus, the solution (48) is a solution for the reflected wave from the slope, which is conjugated with 
even bottom for any slope angles. The solution is valid for any form of the initial perturbation in the 
source to obtain extreme rundown characteristics. 

Below are the figures (Fig. 5, Fig. 6) of the incident and reflected waves, calculated from the formula 
(26) for different values of the parameter θ. 
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!  
Fig. 5. Tide-gauge records of incident wave for θ: 0; π/10; 2π/3; 5π/3. 

!                     
  Fig. 6. Tide-gauge records of reflected wave for θ: 0; π/10; 2π/3; 5π/3. 

Vol 37. No. 4, page 190 (2018) 



In Fig.7 it is presented an incident wave given by expression (11) and computation on analytical 
formula (28). 

!  
Fig. 7. The incident wave given by expression (11) and calculation by the analytical formula 

(47) for θ = π / 4. 

5. CALCULATION OF THE REFLECTION COEFFICIENT   

For the Lorentz pulse, the reflection coefficient determined by the ratio of the incident and reflected 
waves was also calculated (see, for example, [Synolakis, 1987]) 

                                                   ! ,                                                       (49) 
and also by formula (38) obtained in the analytic solution of our problem. As seen from Fig. 8, both 
dependences are in good agreement, including in the initial part of the curves, where the dependence 
is quadratic in character. 

!   
                                      a)                                                                     b) 

Fig. 8. The reflection coefficient for complex slope for θ: a) 0; π/10; 2π/3; 5π/3 according to 
the formulas (39); b) by formula (49). 
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6. NUMERICAL SIMULATION OF THE REFLECTED WAVE FROM THE SLOPE, CONJUGATED 
WITH EVEN BOTTOM 

Figure 9 shows an example of the results of numerical modeling of the runup process and the 
formation of a reflected wave for the Lorentz pulse (see above) of a specific shape and typical 
parameters of the coastal slope. The calculation was carried out in an oblique coordinate system 
(scheme 35 [Marchuk et al., 1983]). As can be seen from the figure, in this case the observed value of 
the crest in the dipolar wave forming in the process of rundown (t ≈  45, 46) of the order of its 
amplitude in a coming wave in the runup phase (t = 40). At the same time, behind the crest, leaving in 
the direction of deep water, there is a well-observed depression. It is also clearly seen that at smaller 
times (t ≈  43, 44), as already mentioned above, the incident and reflected waves can not be 
differentiated from each other. At long calculation times, although the waveform approaches the initial 
wave, but with smaller amplitude, and oscillations at the trailing edge of the cavity formed during the 
reflection process. The observed picture is in good agreement with the available results of both the 
analytical study of the process and the numerical modeling of the runup of a single pulse with taking 
into account of reflection (see, for example, [Zheleznyak, 1985, Synolakis, 1987]). 

!  
Fig. 9. Numerical simulation of the reflection process of the Lorentz pulse from the slope. 
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7.  CONCLUSION  

The analysis of the characteristics of the long gravitational wave (tsunami) reflected from the sloping 
beach in the framework of the theory of shallow water allows us to indicate the main features of the 
process of runup in the coastal region. The results obtained were tested for the case of a Lorentzian 
pulse (with different phases of the wave), and a good agreement was obtained with the data available 
in the literature. In the case of a slope, conjugated with a even bottom, limiting cases of low and high 
frequencies are analytically investigated, and numerical calculations of the behavior of the reflection 
coefficient on the whole frequency interval are also carried out. Analytical and numerical results are 
consistent; the reflection coefficient of low frequencies is a quadratic function of frequency. 

Such a result agrees with the conclusions of similar studies of the reflection process in the framework 
of the "edge layer" theory. A comparison is made with numerical calculations of the reflection of a 
soliton from a vertical wall, and a qualitative agreement is obtained. Numerical modeling of the 
reflection process from a sloping beach conjugated with even bottom is carried out according to 
available programs. Good agreement with analytical results and available results of laboratory 
modeling is obtained. 
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