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High-risk neuroblastoma is a very aggressive disease, with excessive tumor growth

and poor outcomes. A proper stratification of the high-risk patients by prognostic

outcome is important for treatment. However, there is still a lack of survival stratification

for the high-risk neuroblastoma. To fill the gap, we adopt a deep learning algorithm,

Autoencoder, to integrate multi-omics data, and combine it with K-means clustering to

identify two subtypes with significant survival differences. By comparing the Autoencoder

with PCA, iCluster, and DGscore about the classification based on multi-omics data

integration, Autoencoder-based classification outperforms the alternative approaches.

Furthermore, we also validated the classification in two independent datasets by

training machine-learning classification models, and confirmed its robustness. Functional

analysis revealed that MYCN amplification was more frequently occurred in the

ultra-high-risk subtype, in accordance with the overexpression of MYC/MYCN targets in

this subtype. In summary, prognostic subtypes identified by deep learning-based multi-

omics integration could not only improve our understanding of molecular mechanism,

but also help the clinicians make decisions.

Keywords: deep learning, high-risk neuroblastoma, multi-omics data integration, MYCN amplification, machine

learning

INTRODUCTION

Neuroblastoma is the most common extracranial solid tumor in childhood (mostly under the
age of five) and accounts for approximately 15% of childhood cancer mortality (Ward et al.,
2014). It can develop anywhere in the sympathetic nervous system (Maris et al., 2007). Sixty
percent of the tumors occur within the abdomen, commonly in the adrenal medulla. The clinical
hallmark of neuroblastoma is heterogeneity, with the outcomes of tumor progression varying
widely. According to the Children’s Oncology Group (COG) assignment, age at diagnosis, the
stage of disease,MYCN amplification (Brodeur et al., 1984; Tomioka et al., 2008), the International
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Neuroblastoma Pathology Classification and DNA ploidy are
employed to stratify risk groups. Low-risk group has good
outcome, whereas high-risk disease presents poor outcome
even with the most intensive multi-modal therapies. Several
recurrently mutated genes or loci which correlated with high-
risk neuroblastoma have been identified, such as ALK (Mosse
et al., 2008)mutations or amplifications, PHOX2B (Brodeur et al.,
1984) mutation, chromosome 1p and 11q deletions, truncating or
structural variants of ATRX gene (Cheung et al., 2012; Molenaar
et al., 2012), genomic rearrangements of TERT (Peifer et al., 2015;
Valentijn et al., 2015). These genetic events cover 92% of high-risk
neuroblastoma (Peifer et al., 2015).

Driver genes/alterations, such as MYCN, 1p/11q deletion,
ALK, ATRX and TERT, are characterized in high-risk
neuroblastoma by previous studies, however, it is difficult
to further stratify the high-risk neuroblastoma at molecular
level. Previous studies have mostly intended to predict high-risk
neuroblastoma survival using only genomic alterations (Stigliani
et al., 2012) or dysregulated genes (Blanc et al., 2005; Chen
et al., 2016; Wei et al., 2018), rarely by multi-omics integration.
Therefore, the lack of prognostic stratification for high-risk
neuroblastoma by multi-omics data integration motivated us to
conduct this study.

With the production of omics data, such as The Cancer
Genome Atlas (TCGA) and Therapeutically Applicable Research
to Generate Effective Treatments (TARGET) projects, multi-
omics integration ismuch needed in cancer researchers. Recently,
Suo et al. (2018) have proposed a driver-gene score (DGscore)
approach to predict the prognosis of the high-risk neuroblastoma
by integrating the genome and transcriptome data. However,
small sample size and no independent data for validation are
the major limitations. Moreover, integrative clustering (iCluster)
analysis (Shen et al., 2009; Cancer Genome Atlas Research,
2014) and PCA-based clustering analysis (Alexe et al., 2007;
Nicolau et al., 2011) are widely applied to cancer subtyping.
iCluster analysis could not only identify the molecular subtypes,
but also associate the multi-omics data with each other. PCA
is able to reduce the dimensionality of the multi-omics data,
and integrates high dimensional multi-omics data into principal
components. In addition, deep learning-based algorithm has
been proposed to identify cancer subtypes. The recent study
(Chaudhary et al., 2018) using deep learning-based multi-
omics data integration robustly predicts survival in liver cancer.
However, the multi-omics data integration approaches are rarely
applied to neuroblastoma subtyping.

In this study, we used multi-omics-based unsupervised
learning to stratify the high-risk neuroblastoma based on the new
features re-encoded by Autoencoder algorithm, and compared
the stratification with those identified by iCluster or PCA.
The stratification of high-risk neuroblastoma by Autoencoder
was also validated in two independent datasets, which may
not only help the clinicians make rational and efficacious
chemotherapeutic protocols, but also demonstrate that the
deep learning-based algorithm is very efficient in multi-omics
integration.

MATERIALS AND METHODS

Datasets and Study Design
We used multi-omics data from two projects in this study:
Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) project (Pugh et al., 2013) and
Sequencing Quality Control (SEQC) project (Zhang et al.,
2015). The TARGET cohort is comprised of 407 high-risk
neuroblastoma samples, including 217 samples with gene
expression data and 380 samples with copy number alterations
(CNA). Among these obtained samples, 190 has both gene
expression and CNA data. The SEQC cohort has a total of
498 neuroblastoma samples, including 176 high-risk and 322
low- or intermediate-risk samples. The survival data were
publicly available at the official website of TARGET project
(https://ocg.cancer.gov/programs/target/data-matrix), and
GEO database with accession number GSE49711 for SEQC
cohort.

To integrate gene expression and CNA data, we first stacked
these two datasets by the190 overlapping samples from TARGET
cohort to form a new one. Then we selected the initial prognostic
features (genes or CNAs) with Cox regression (log rank test, P <

0.05) for further analysis.
This new dataset with selected initial prognostic features

was used in these following parts of our work: generating new
features from a classic artificial neural network: Autoencoder
(with which 100 new features were generated and Cox regression
was applied again here to ensure that they were significantly
prognostic), obtaining labels for different survival-risk groups
through K-means clustering from transformed new features
by Autoencoder, and training classifiers with models such as
SVM, Naïve Bayes, and logistic regression according to the class
labels.

Also, to demonstrate the robustness of the classification at
predicting prognosis, these supervised classification methods
mentioned above, along with XGBoost, were trained on gene
expression data and CNA data respectively by different machine
learning methods.

There were two datasets used for demonstrating the
robustness of the classification for predicting prognosis, one
was the remaining 190 samples which had CNA data only
(the internal validation set), and the other was 176 high-risk
samples with gene expression data in SEQC project (the external
validation set). The class labels for samples from TARGET
internal validation set and SEQC external validation set were
predicted by CNA-based XGBoost and gene expression-based
SVMmodels, respectively.

Gene Expression Data From Target and
SEQC Projects
The gene expression data from TARGET project were profiled by
Affymetrix Exon ST platform, and normalized by Robust Multi-
array Average (RMA) procedure, which could be downloaded
from the website (https://ocg.cancer.gov/programs/target/data-
matrix).
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As reported by Zhang et al. (2015), a total of 498
neuroblastoma samples were selected for RNA sequencing, of
which, 176 high-risk neuroblastoma cases were selected for
external validation. The RNA sequencing reads of 176 high-
risk neuroblastoma samples were mapped to human reference
genome GRCh37/hg19 with GENCODE gene annotation v19 by
hisat2. The gene expression were then quantified by StringTie
(Pertea et al., 2015) with default options and combined in R
programming software with ballgown package.

Data Integration and Re-coding by
Autoencoder
Autoencoder is a dimensionality reduction method based on
artificial neural network, which consists of input, hidden, and
output layers. The data integration analysis by Autoencoder
was implemented in R programming software with package
ANN2. To better capture properties that reflect the variation of
patients’ prognosis, a classic autoencoder with 3 hidden layers
was applied (500, 100, and 500 nodes, respectively), of which the
100-node bottleneck layer was used to represent new features
for further analysis. We then selected 35 survival-associated
features (log-rank test, P-value < 0.05) from the 100 new
features.

For a given layer, a specific activation function was assigned,
and the output x’ was given by a composite function of x, which
was composed of all these activation functions from each layer,
and could be expressed as:

γ = fi (x) = tanh
(

Wi.x+ bi
)

x′ = F1→k (x) = f1 . . . fk−1fk (x) ,

where k represents to the number of layers.
We measured the error with function the Pseudo-Huber loss

function, which ensures that derivatives are continuous for all
degrees, that is:

L
(

x, x
′
)

=

n
∑

k=1



δ2

√

1+ (
xk − x

′

k

δ
)2− 1





where n stands for the dimension of the input data. As can be seen
in Supplementary Figure S1, the output data from reconstructed
layer was compared with the raw input data with Pseudo-Huber
loss function.

The Autoencoder was trained using the gradient descent
algorithm with 10 epochs, a batch size of 32, and a learning rate
of 1e-6. The parameters of L1 and L2 regularization were set to
0.0001 and 0.001.

Gene Expression Data Normalization
For the RMA-based gene expression data bymicroarray platform,
we transformed the expression value as Z-score for each gene.
For the gene expression data of RNA-seq, we firstly calculated the
fractions of the genes that had a FPKM value over the threshold
we set, which can be seen in the Supplementary Table S5

(We selected several possible thresholds, e.g., 0.01, 0.05, 0.1,
0.5, 1). We then applied an alternative method, instead of

adding an arbitrary value, we calculated the minimal value
for each sample which is not zero, and then set all values
below maximum of these minimums (which is 3.7e-05) to
the minimum of these minimums (which is 1.60e-07) in all
samples, and then transformed by logarithm with base-2. Like
the gene expression data by microarray platform, the gene
expression values were also transformed to Z-scores in similar
manner.

CNA Data Annotation
The segmented copy number regions with segment means
were available at the TARGET website (https://ocg.cancer.
gov/programs/target/data-matrix). We merged the segmented
CNAs from the 380 samples, and annotated the genes in
the CNAs by GISTIC2.0 (Mermel et al., 2011), which is
implemented in GenePattern (Reich et al., 2006), a webserver
publicly available for researchers (https://software.broadinstitute.
org/cancer/software/genepattern/). The rows and columns of the
CNA matrix represent the genes and samples, respectively. Each
element of the CNA matrix was normalized as log2 (segmented
copy number)−1.

Feature and Model Selection
To integrate the multi-omics data, we applied three methods:
autoencoder-based deep learning, iCluster and PCA, and then
we compared the labels identified by these three approaches.
Unlike iCluster, autoencoder-based deep learning and PCA were
not clustering algorithms, thus the other two were followed
by k-means clustering. Taking together, these three methods
were able to integrate multi-omics data and were evaluated
by the association between classification labels and patients’
prognosis.

Machine learning classifiers such as SVM, Naïve Bayes,
and logistic regression are supervised learning algorithms. The
classification labels used for these machine learning classifiers
were only determined by autoencoder-based deep learning
followed by K-means clustering, not by the other methods.
After obtaining the labels from K-means clustering, we need
to examine the robustness of this sample stratification. We
then built two supervised models based on the gene expression
and CNA data, respectively, and predicted the classes for
samples from both internal and external validation sets. The
machine-learning classification models were then used to test its
robustness in validation sets.

Features for the models, including Naïve Bayes, logistic
regression and SVM, were selected by a backward elimination
manner. For each gene or CNA, the importance was evaluated
by the ANOVA F-value. 10-fold cross-validation with 10-time
repeat was conducted to evaluate the predictive ability of the
selected features (genes or CNAs). The feature combinations
with highest average predictive accuracy were selected. The
features for XGBoost were selected by its internal algorithm.
Given the features, receiver operating characteristic (ROC)
curve was plotted for each model, and the one with highest
area under the curve (AUC) was selected as the prediction
model.
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Statistical Analysis
The statistical analyzing methods such as Cox proportional
hazards (Cox-PH) analysis, principal component analysis, K-
means clustering, integrative clustering and student-t test were
implemented in R programming software with version 3.5.0. In
addition, we determined the optimal number of clusters on three
metrics: C index for the prognostic differences, Silhouette index
and Calinski–Harabasz criterion (Supplementary Table S4). The
overrepresentation enrichment analysis (OEA) was implemented
in WebGestalt (Wang et al., 2017) (http://www.webgestalt.org/
option.php) with a functional database named Hallmark50
(Liberzon et al., 2015).

RESULTS

Data Collection and Pre-processing For
Integrative Analysis
We collected 407 high-risk neuroblastoma samples from
TARGET project (Ma et al., 2018), including 217 samples
with gene expression data and 380 samples with copy number
alterations (CNA). The neuroblastoma patients were treated
according to Children’s Oncology Group (COG) risk-group
assignment. Among the obtained tumor samples, 190 had both
gene expression and CNA data, which were used as training
data in this study. Multi-omics data in the training data were
integrated to discover a prognostic stratification of the high-risk
neuroblastoma. The remaining 190 samples with only CNA data
were used as an internal validation data to test the robustness
of classification. In addition, we also collected RNA sequencing
data of 176 high-risk neuroblastoma samples from SEQC project,

which was used as an external validation data to further test the
robustness.

As illustrated in Figure 1, prior to multi-omics integration,
prognosis-associated genes were selected from both gene
expression and CNA data of the 190 NB samples based on
the univariate Cox proportional hazards (Cox-PH) regression
analysis. Finally, 2,218 aberrantly expressed genes and 497 copy
number altered genes were associated with the prognosis of high-
risk neuroblastoma [P-value < 0.05 for event-free survival (EFS)
or overall survival (OS)], which were used for integrative analysis
later on.

Identification of Prognostic Subtypes in
High-Risk Neuroblastoma
To identify the prognostic subtypes in high-risk neuroblastoma,
we stacked the two matrices of gene expression and CNA by the
190 overlapping samples in TARGET project, and transformed
the initial prognostic features into 100 new features according
to Autoencoder, a five-layer neural network with three hidden
layers (500, 100, and 500 nodes). The two-omics data were
integrated and represented by the 100 new features obtained from
the bottleneck layer of the autoencoder. We then conducted a
univariate Cox-PH regression on each of the 100 new features
and identified 35 features significantly (P < 0.05) associated
with EFS or OS. Subsequently, K-means clustering analysis
was performed on the 35 new features with clustering number
ranging from 2 to 6 (Figure 1). We determined the optimal
number of clusters based on three metrics: C index for the
prognostic differences, Silhouette index and Calinski–Harabasz
criterion, which consistently supported our choice of 2 as

FIGURE 1 | Overview workflow for the identification of prognostic subtypes by Autoencoder-based multi-omics data integration in high-risk neuroblastoma.
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FIGURE 2 | The Kaplan–Meier curves for EFS or OS of two identified subtypes by three multi-omics integration algorithms, Autoencoder (A,B), PCA (C,D), and

iCluster (E,F).
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the number of clusters (Supplementary Table S4). Finally, we
clustered the samples into two subtypes, which were defined as
G1 and G2.

We next assessed the prognostic difference between these two
subgroups by univariate Cox-PH regression, and observed that
the G1 exhibited worse prognosis than G2 (P-value < 0.0001
for both EFS and OS, Figures 2A,B), indicating that G1 was
an ultra-high-risk subtype. Moreover, the concordance index
(C-index), which measures the fraction of all pairs of cases
whose predicted survival times are ordered correctly, was also
calculated. Expectedly, our classification also generated high C-
index (0.74 ± 0.08 for EFS and 0.71 ± 0.08 for OS). The result
indicated that our classification revealed two prognostic subtypes
in high-risk neuroblastoma.

Autoencoder-Based Multi-Omics
Integration Outperforms Alternative
Approaches
In addition to Autoencoder-based multi-omics integration,
principal component analysis (PCA) and integrative clustering
analysis (iCluster) were also incorporated to evaluate
the performance of multi-omics integration approaches
(Supplementary Table S1). Similar to the 100 new features
by Autoencoder, PCA transformed the inital features into
100 principal components, and Cox-PH was applied to select
prognostic principal components. As a result, 14 principal
components were remained. Unlike PCA and Autoencoder,
the iCluster analysis did not have to transform the initial
prognostic features into new features, but placed cases into
groups based on both gene expression patterns and copy number
status.

In the training data, we found that the classification by
Autoencoder had better performance than the other two

approaches (Figures 2C–F), among which iCluster achieved high
C-index and significant log-rank P-value, but it was still less
significant as compared with the model using Autoencoder,
and the PCA-based classification showed poor performance,
especially failing to give significant log-rank P value for EFS
(P = 0.068). In addition, as compared with the DGscore
method (P-value= 0.006), Autoencoder-based classification also
achieved higher statistical significance (P = 5.66e-6 for EFS and
P = 1.28e-5 for OS). The result indicated that Autoencoder-
based multi-omics integration outperformed these alternative
approaches.

TABLE 1 | Performance of four classifiers using the training dataset.

Feature

selection +

classifier

Feature

type

Feature

number

AUC Average

accuracy

Average

AUC

ANOVA +

SVM

GE 56 0.9962 0.7553 0.8446

CNA 30 0.6586 0.5937 0.5159

ANOVA +

naïve bayes

GE 46 0.9299 0.6755 0.8291

CNA 24 0.6019 0.5234 0.5506

ANOVA +

logistic

regression

GE 44 0.9703 0.7059 0.6053

CNA 15 0.6782 0.6135 0.5699

Xgboost GE 64 0.9602 0.7338 0.8025

CNA 30 0.954 0.6559 0.6317

GE, gene expression; CAN, copy number alteration; ANOVA, analysis of variance; SVM,

support vector machine; AUC, area under the curve; Average accuracy, average of the

accuracies from 10-fold cross-validation. Average AUC, average of the AUC values from

10-fold cross-validation.

FIGURE 3 | Receiver operating characteristic (ROC) curve for four classifiers, including logistic regression, Naïve Bayes, SVM, and XGBoost, that predict the subtypes

of samples from two independent datasets, (A) gene expression data from SEQC external validation cohort, and (B) CNA data from TARGET internal validation cohort.
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FIGURE 4 | The Kaplan–Meier curves for EFS or OS of two predicted subtypes for the high-risk tumors from SEQC external validation cohort (A,B) and TARGET

internal validation (C,D) cohort.

Prognostic Subtypes Are Validated in Two
Validation Datasets
To demonstrate the robustness of the classification at predicting
prognosis, we built two supervised classification models based
on gene expression and CNA data separately to predict the
classification labels for samples from both internal and external
validation datasets, respectively.

After obtaining the labels from K-means clustering, we first
built two supervised models based on the gene expression and
CNA data, respectively. Each omics data was normalized as

Z-score to avoid platform differences. For the internal validation,
we used the remaining 190 samples with only CNA data from
the TARGET project which didn’t overlap with the samples
with gene expression data. Meanwhile, the 176 SEQC high-risk
neuroblastoma samples with gene expression data was used as
external validation.

Four models, including SVM, naïve Bayes, logistic regression,
and XGBoost, were built to select the best model for classification
prediction. Based on ten-fold cross-validation in the training
dataset, SVM exhibited high capability of predicting classification
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TABLE 2 | Hallmark gene sets identified by OEA (FDR < 0.05).

Status Gene set Description P-value FDR

Up HALLMARK_MYC_TARGETS_V2 MYC

targets,

variant 2

9.81E-07 4.9E-05

Down HALLMARK_INTERFERON_

ALPHA_RESPONSE

Interferon-

alpha

response

5.14E-03 5.76E-01

labels for 176 samples from the external validation set using
gene expression data (See features in Supplementary Table S2),
while XGBoost achieved higher performance on the CNA
data than other models (Figure 3, Table 1, and see features in
Supplementary Table S3). For the gene expression data from
SEQC project, we achieved good C-indices (0.69 ± 0.08 for
EFS and 0.74 ± 0.08 for OS) and log-rank P values (< 0.0001)
between the two subtypes (Figures 4A,B). For the CNV data
from TARGET internal validation cohort, the classification had
C-indices over 0.64 and low log-rank P values (P < 0.05,
Figures 4C,D). The validation of the classification in both
internal and external datasets further demonstrated that the two
subtypes indeed had different outcomes.

Functional Analysis of the Prognostic
Subtypes in High-Risk NB
We used t-test for differential gene expression between the two
subtypes of both training and validation datasets. At the FDR
< 0.05 for both datasets, we obtained 302 upregulated and
851 downregulated genes in the subtype G1. Overrepresentation
enrichment analysis (OEA) was then performed on the two
gene sets (Table 2). We identified MYC target genes, including
FARSA, SLC29A2, PLK1, WDR74, RRP9, and IMP4, were
upregulated in G1 subtype (FDR < 0.05). Interestingly, MYCN
amplification (MNA) was observed to present higher frequency
in G1 than G2 (P = 0.054, 35 vs. 26% in training data, and P
< 0.005, 77 vs. 44% in the validation data), indicating that our
classification was associated with MNA to a certain extent, but
some samples without MNA also had poor survival. However,
we did not identify significant down-regulated pathways in G1
subtype. Alternatively, interferon-alpha response pathway was
down-regulated in G1 (P-value < 0.05), which is a common
defect in human cancers (Critchley-Thorne et al., 2009). In
detail, the genes in interferon-alpha response pathway, such as
CMTR1, NUB1, and STAT2, were consistently down-regulated
in G1 subtype. The result indicated that interferon-alpha may
be a potential immunotherapy strategy for the ultra-high risk
neuroblastoma.

DISCUSSION

Recently, with the development of high-throughput technologies,
such as DNA microarray, next generation sequencing, and mass
spectrum-based proteomics, huge amounts of omics data are
produced andmade available publicly. However, high production

of multi-omics data also raises requirements to comprehensively
analyze different levels of omics data.

In the present study, we have adopted a deep learning-based
algorithm, Autoencoder, to integrate copy number alterations
and gene expression data to identify two prognostic subtypes,
defined as G1 and G2, in high-risk neuroblastoma. The subtype
G1 exhibits worse prognosis thanG2 in both EFS andOS (P-value
< 0.0001). The Autoencoder-based classification also generates
high C-index (0.74 ± 0.08 for EFS and 0.71 ± 0.08 for OS).
The performance comparison of Autoencoder with PCA and
iCluster demonstrates that our Autoencoder-based classification
is superior to the two alternative approaches. Moreover, the
result of Autoencoder-based classification is also more significant
than DGscore method. To demonstrate the robustness of
the classification, we build two supervised classifiers for the
independent CNA and gene expression datasets, respectively.
For both of the datasets, we achieve good C-indices and
significant log-rank P-values (P < 0.05). We thus conclude that
Autoencoder-based classification outperforms other approaches,
and we speculate that the unique advantage of the Autoencoder,
which can capture the core features relevant to the prognosis,
have contributed to this.

High-risk neuroblastoma is an aggressive disease. To our
knowledge, the present study is the first to apply deep learning
approach to distinguish ultra-high-risk subgroup from the high-
risk neuroblastoma, with validation in independent datasets. The
integrative classification of the high-risk neuroblastomamay help
clinicians develop personalized treatment programs, and better
predict patients’ prognosis.

CONCLUSION

Prognostic subtypes identified by deep learning-based
multi-omics integration could not only improve our
understanding of molecular mechanism, but also help the
clinicians make decisions.
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