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ABSTRACT: In this paper, higher-order dispersive non-linear Schrodinger equations are
studied. Their solitary wave-series solutions with continuity of the derivatives and
specific discontinuity of the derivatives at the crest are presented. Furthermore,
convergence of the series’ solutions is also validated and discussed with the help of
graphs.

ABSTRAK: Kertas ini mengkaji persamaan Schrodinger serakan taklinear turutan tinggi.
Penyelesaian siri-gelombang tunggalnya dengan kamiran berterusan dan kamiran tak
berterusan pada maksimum telah dibentangkan. Penumpuan penyelesaian siri juga telah
diperiksa dan dibincangkan dengan bantuan graf-graf.

KEYWORDS: Schrodinger equation; solitary wave-series solution; continuity and
discontinuity of derivatives at crest

1. INTRODUCTION

It is well-known that the Schrodinger equation plays an important role in plasma
physics, quantum mechanics and wave propagation in non-linear media [1-4] . In optical
fibers propagation of short pulses is governed by the nonlinear Schrodinger equation [5].
Azzouzi et al. [6] recently presented Solitary wave solutions for high dispersive cubic-
quintic nonlinear Schrodinger equation. Li Yao et al. [7] presented solution to nonlinear
Schrodinger equation by variational principle method. The authors [8-11] discussed
different ways of solutions for nonlinear Schrodinger equations.

Currently in this paper, first solitary wave technique is applied and then the homotopy
analysis method (HAM) is employed for the series solution, which was introduced first by
Liao [12-13] . The HAM is independent of a small or large parameter and has been applied
successfully to solve nonlinear problems such as viscous flow, heat transfer, nonlinear
oscillations and Thomas Fermi atom model [14-38]. Further the HAM has certain other
advantages over the perturbation expansion method, the delta expansion method and the
Lypanov's expansion method, that HAM allows us great freedom and flexibility: (i) to
control the region of convergence; (ii) to choose the initial guess; (iii) to choose the
auxiliary linear operator.

2. MODEL SCHRODINGER EQUATIONS AND THEIR SOLITARY
WAVE-SERIES SOLUTIONS

First consider the non homogeneous linear Schrodinger equation [8] :
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Where u(t,x) is a complex valued function. For solitary wave solution, under the
transformation 77 =x—ct, u(t,x)za f (77) and F (t,x)z g(i]) , Eq. (l) reads
ia f(7)+aac® £7(n)+isf (7)= (), 2)

Where ¢ is the wave speed, @ the wave amplitude, and the prime denotes the derivative
with respect to 77. For simplicity in case of F (t,x) amplitude is choosen to be 1. Consider

+im(r,x)=F(z,x) (1)

the case that f (77) arrives its maximum at the origin. Obviously, f (77) and its derivatives
tend to zero as 77— +oo. The corresponding boundary conditions of the solitary wave
having discontinuity of derivatives at crest are

f0)=1,  fl+e)=0. 3)

We are considering only two cases of forcing function g(ﬂ) ie., g(?])=0 and

g(?]) =e¢ "7 . In order to obtain the series solution for g(i]) =0, we choose
folp)=e, “4)
L(fH)=f"-f, )

as initial approximation of f and auxiliary linear operator L satisfying
LlCe” + Ce’|=0. 6)
where Ci and C2 are arbitrary constants.

If pe[0,1] is an embedding parameter and 1, is auxiliary non zero parameter then

(1= p) tlo@. p) - £, ()= p7, Mg, p)]. @
subject to boundary conditions
90, p)=1, ¢(c, p)=0, (8)
where

2
N¢(7, p)l = ia a¢g;, ?) 4 qac? g(:; L) | i, p) )
and when p=0 and p=1,then
9(2.0)= £,(n). ¢ln.1)=f () (10)

As the embedding parameter p increases from O to 1 | ¢(77, p) varies (or deforms)
from the initial approximation f, () to the solution f (7]) . Using Taylor's theorem and
equation (10) , one obtains

)

o(n.p)=f,(n)+> 1. (1) p". (11)

m=1

in which
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)BT (12)
m!  dp

p=0

Clearly, the convergence of the series (11) depends upon M,. Assume that m, is
selected such that the series (11) is convergent at p =1 , then due to equation (10) we
have

)= 1,0+ £,7) (13)

m=1
For the mth order deformation problem, we differentiate equations (7) and (8)
m—times w.r.t p and then setting p =0 and finally dividing it by m! the mth—order
deformation equation for m =1 is given by

Llf, ()= 2, £ @)]=nR, @), (14)
[,(0)=0, f,(+e)=0, (15)
where

R, (7) =iaf, ,+aac’f,  +iyf, . (16)

To obtain the solution of above equation up to first few order of approximations, the
symbolic computation software MATHEMATICA is used. The series solution up to first
few order of approximations is

]

45 105 105
Flm] = ue'?’+51'1.auz'7’hln+ ? azue'”hlir,u H a*enl N+ E a®e " hl N+

zzS5a e h1*y  7ae?hlly
+
32765 262144

45 315
? a’cf e ?nl? aH+

45
_5ac tE"’hln:t'r,H ? 1al czue"”hlzar,u

105

a gl lr'whlsl:w,w a l:ilr'?’hl?l:w,w

zzta’ cfehnltn 135
i - T a’ ctenlt cxin +e0na’ et e nl? cxin +

32768
1575 4 4 0 4 s IETE 5 4 w5 os 2a35a’cteWnlfaly
—a c e 'hl ' a n+ a coe 'hl o n+ +
3z 5lz aloz
435 &' ot h1t of 75
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2205 1155a’ cf e ¥nl? ol
20 S e nlt agr,l+ al u:sua'”hl?agr,w i -
3z 256 al1oz
3675 33075
H atc® e nlt a*'r,l +1z6da ¢ eh1® u:x*'r,l + oE af cf e hlf ot N+

17)

when g(n) =e¢" then solitary wave series solution having discontinuity of derivatives
at crest up to first few order of approximations is
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21 35 15
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(18)
For continuity of derivatives at crest the boundary conditions are

£0)=1,£10)=0. f(+eo)=0. (19)
Taking the initial guess
fyln)=2e7"—e, (20)

the solitary wave series solution, having continuity of derivatives at crest, using Egs.
(5), (19) and (20), up to first few order of approximations are, when g(i]) =0,

z0

Flu] = - 42 +diae?hl-diaehl+ = atet Tt

20 160 180 80 a0

e e nlt- — ia' ety T iafenl - — ate ity — ateThlts
4 64 64 64

= ia et hl® - I ia e hlt . e et Thf . e nlfmsact et Thlas

g0 g0 320
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320 540 A0 A0
e Mnlta s S aatct et hlter —— natctenlta- &t cte 'l a s
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e2))
when g(7)=e”" .
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Consider the nonlinear Schrodinger equation [8] :

2
; oul(r, x) ra 0%u(r, x)
ox ot’

+ 8‘u(t,x)‘2u(t,x)+ i}u(t,x) =0,

(22)

(23)

where u(t,x) is a complex valued function. For solitary wave solution Eq. (23)

reduces to

iaf )+ aac’® ")+ éelaf () af (n)+ipf (7)=0,

(24)

Under certain assumptions, as in the solution of Eq. (1), the solitary wave-series
solution up to first few order of approximations at M, =-1/4 , is of the form, when

discontinuity of derivatives at crest,
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+ +—
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when continuity of derivatives at crest,

(25)
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The nonlinear Schrodinger equation as considered by Xu L. and
.au(t,x) 1 a u(t, x)
i +

ox 2 'BT tx‘

where u (z, x) is a complex valued function.

tx+l€

(26)
Zhang J. [10] :

9, .o aur, x)ﬂ.?uz([’x)(—)“gt’x):o, 27)

Under certain assumptions, as in the solution of Eq. (1), the solitary wave-series

solution up to first few order of approximations at n, =—1/4 of
when discontinuity of derivatives at crest,

Eq.(27) is of the form,
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When continuity of derivatives at crest,
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Sun et al. [11]

2
; owl(r,x) N 0%y (r, x

0.5) Oy e =0

where y/(t, x) is a complex valued function.

(30)

Under certain assumptions, as in the solution of Eq. (1), the solitary wave-series
solution up to first few order of approximations at 1, =—1 of Eq.(30) is of the form, when

discontinuity of derivatives at crest,
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when continuity of derivatives at crest,
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The equation considered by Azzouzi et al. [6] is

oE(t, B, I*Elr, )
EEZ 2 —’%%ﬂﬁllf(hz)iz’f(m)*

B, 0*Elt, .
+z%%—z%|E(hz]4E(r,z)= 0.

By °Elr.2)
6 o

(32)

(33)

The solutions in this case at My =-3/4 are, when discontinuity of derivatives at crest,
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when continuity of derivatives at crest,
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3. CONVERGENCE OF THE SERIES SOLUTIONS

Clearly Egs. 17, 18, 21, 22, 25, 26, 28, 29, 31, 32, 34 and 35 contains the auxiliary
parameters M,, M,, MN;, N, and m, which gives the convergence region and rate of

approximation for the homotopy analysis method. For this purpose, the M -curves are
plotted for f for different order of approximations. Figures 1 to 12 are plotted for the

solutions given in Eqs. 17, 18, 21, 22, 25, 26, 28, 29, 31, 32, 34 and 35, respectively. It is
obvious from Fig. 1 that the range for the admissible value for 1, is —0.2<m, <0. Figure
2 shows that the range for the admissible value for m, is —0.52<m, <0 . Figure 3
depicts that the range for the admissible value for m, is —0.2<m, <0.

Figure 4 indicates that the range for the admissible value for 1, is —0.8<m, <-04.
Figure 5 shows that the range for the admissible value for m, is —0.3<m, <0. Figure 6
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describes that the range for the admissible value for 1, is —0.3<n, <0. Figure 7 shows
that the range for the admissible value for 1, is —0.3 <m, <0. Figure 8 indicates that the
range for the admissible value for m, is —0.3<m, <0. Figure 9 shows that the range for
the admissible value for n, is —1.7<mn, <-0.5. Figure 10 shows that the range for the
admissible value for n, is —1.2<mn, <-0.7. Figure 11 describes that the range for the
admissible value for Mg is —0.7<mn, <-0.6. Figure 12 shows that the range for the
admissible value for ng is —1.2<mn5 <-0.9. These all prescribed values of n,, M,, M5,
N, and m; in their respective intervals shows region of convergence for their respective

series solutions.
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Fig. 2 hj-curve for discontinuity of derivative at the crest. for the
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Fig. 3 hij-curve for continuity of derivative at the crest, for the
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Fig. 5 hg-curve for discontinuity of derivative at the crest, for the
f(n)at a =0.01, 7y = 0.001, ¢ = 0.01, e = 0.01, a = 1.
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Fig. 6 Rio-curve for continuity of derivative at the crest, for the
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Fig. 8 hz-curve for continuity of derivative at the crest. for the
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v =0.01.
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Fig. 11 hs-curve for discontinuity of derivative at the crest. for the
fln) at 3, =0.01, 3, =0.01, 3, =0.01. v, = 0.01, 7, = 0.01,
c=1,a=1
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c=1,a=1.
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4. CONCLUSION

In this paper, solitary waves-series solutions are obtained with and without continuity
of the first derivative at crest. The auxiliary linear operator in all the cases is same. The
initial guess in all the cases of discontinuity of the derivative at the crest are same and for
the cases having continuity of the derivative at the crest are similar. In all the cases series

solutions are obtained by taking the values of homotopy parameters M,, M,, N5, N, and

N, from their interval of convergence. The advantage of this method over the other

methods is that it itself provides us a convenient way to control the convergence of the
approximation series, which shows the flexibility and potential of this method to apply it
to nonlinear problems in engineering and science.
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