IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

ALHAJJ - HAJJ APP FOR i0OS

ADNAN SHAOUT AND SHAHZEB KHAN

The Electrical & Computer Engineering Department,
The University of Michigan — Dearborn,
Dearborn, Michigan 48128, USA.

shaout@umich.edu, and shahzeb@umich.edu
(Received: 05 Nov. 2014; Accepted: 28 Sept. 2015; Published on-line: 30 Apr. 2016)

ABSTRACT: This paper introduces the AlHajj app for iOS which is an interactive guide
to Hajj, like an interactive map allowing users to walk through the process of the Hajj to
develop a better understanding of the obligations, locations, dates and Hajj activities with
the sequence they are performed in. It covers both pre and post Hajj activities. AlHajj has
a very simplistic and clean User Interface (Ul). The app is also written for maintainability
and it is free.

ABSTRAK: Kertas kerja ini memperkenalkan aplikasi AlHajj untuk iOS yang merupakan
panduan interaktif bagi ibadah Haji saperti peta interaktif yang menjelaskan pada
pengguna mengenai aktiviti-aktiviti dalam mengerjakan Haji dan ia memberi penjelasan
yang mendalam mengenai tanggungjawab, lokasi, tarikh dan aktiviti haji mengikut urutan
mereka dilakukan . Applikasi ini meliputi aktiviti sebelum dan selepas haji. AlHajj
mempunyai antaramuka pengguna yang sangat mudah dan ringkas (Ul). Aplikasi ini
mudah dislenggarakan dan ia adalah percuma.

KEYWORDS: Haijj; iOS; Software Tools; Interactive Map; Mobile App; Islam

1. INTRODUCTION

About three to four million Muslims travel to Mecca every year to perform one of the
five pillars of Islam: Hajj (pilgrimage). Hajj involves a series of obligations/rituals that have
to be fulfilled/performed over the course of five to six days. It also involves traveling
between various sacred locations [1]. Most pilgrims attend training sessions, or go over
other material to prepare them for Hajj.

There exist many works done on helping pilgrims during their holy trip to Mecca [2-
16]. In today’s mobile world, more people have started to use smart-phones to consume
information. Therefore usage of mobile apps and mobile websites for information
consumption has increased. Some mobile apps pertaining to the obligations of Hajj already
exist on the App Store, but we did not find them as interactive, informative and as organized
as we would have liked. Some of the apps that were tried were too dull, while some were
purely based on linear scrolling through all the steps of Hajj.

The idea of AlHajj is to have a more interactive guide to Hajj, allowing users to walk
through the process of the Hajj to develop a better understanding of the obligations,
locations, dates and the order in which these rituals are performed. Another feature, such
as pre-Hajj customizable checklist can also be beneficial to pilgrims, which is not found in
most of the existing Hajj apps.

This paper is organized such that it begins with discussing the state of the art and
differentiators for AlHajj in section 2. The feature list of AlHajj is covered in section 3.

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

Then it discusses the technologies used in the application in section 4. Section 5 sheds some
light on the software tools used and implementation details as well as an appendix on how
to recreate the AlHajj App for iOS. Also appendix B has the implementation Code for the
AlHajj App.The possible future enhancements are discussed in section 6. The paper ends
with a conclusion about AlHajj in section 7.

2. STATEOF THE ART

Currently a few applications exist in the App Store that aim at helping people with their
Hajj journey.

One such app is Hajj Guide [17]. This is a very basic application. It is based completely
on static text and images. It has hard to read text due to the font size and the amount of static
text on the screen. There is no interactivity whatsoever.

Another similar app is Complete Hajj Guide [18]. It too suffers from some of the same
problems as the Hajj Guide App. It doesn’t have any interactive elements either. Also, this
app costs $0.99 as opposed to AlHajj, which is free.

Hajj & Umrah [19] is another app that tries to solve the same problem. However, it has
the same problems as already discussed for the application above. The information is not
very well organized either. There are too many menus to dig through, which makes a user
feel that the information could perhaps be more streamlined. On top of all that, this app costs
$1.99 as well.

Hajj & Umrah Easy Steps [20] too is a paid app with all static content, currently priced
at $0.99. This app has a poor user interface with color combinations so bad that it will take
some effort to read information being presented to the user. Also, this app, like the afore-
mentioned apps, does not have any interactive elements.

2.1 AlHajj Differentiators (Unique Features)
2.1.1 Interactivity

AlHajj is all about interactivity. Interactivity starts from the pre-hajj preparation
checklist to the rituals that are required for Hajj. AlHajj makes users take actions and
responds accordingly. This keeps the users in the mode of continues learning and excited.
None of the previously mentioned apps exhibit this level of interactivity.

2.1.2 Pre and Post Hajj Coverage

AlHajj is a complete package. It starts with the material required to ensure that a person
is absolutely ready to depart for the journey of Hajj, and it also includes motivational
messages from the Quran and Hadeeth to ensure that pilgrims stay motivated and on the
right path even after they are done with Hajj.

2.1.3 Clean Ul

AlHajj has a very simplistic and clean User Interface (Ul). The font sizes, arrangement
and organization of the text, makes it easily readable. Also, only two colors have been used
throughout the app: black and white. This helps ensure that users are focused on the actual
material and are not distracted by anything flashy.

2.1.4 Free

e AlHajj costs nothing as compared to the other related apps in the market.
Despite the fact that AlHajj has more to offer, it is free.

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

2.1.5 Maintainability

The ability to easily edit the content in the AlHajj app is a huge plus. All the static
content of the app is organized in separate plist and text files, which makes it easy to update
any piece of static content. This too gives AlHajj an edge over other competitors.

3. ALHAJJ FEATURE LIST
The major features of AlHajj are:

a) Interactive Checklist

b) Interactive Hajj Map

c) Interactive Contact List

d) Motivational Messages (Chirps)

A brief description of each of these features is as follows:
3.1 Interactive Checklist

This is a checklist of items that need to be accomplished before departing on the journey
for Hajj. These items are mostly question like “Have you paid all your debts?” or “Have you
written your will?” The users are able to utilize a set of default checklist items. The user
can also add more items to the list to suit their needs or to fulfill the requirements specific
by their country of origin. They can mark items as done and delete the ones that do not apply
to them. Figure 1 shows screenshots of the interactive checklist.

arrier = 1:04 AM — Carrier = 1:04 AM - Gl 3708 AM —

d: Checklist t ! Add Item < Checklist
&P s your passport ready? &9 s your passport ready?

your v y?
&) s your visa ready Have you written your will? &P s you

Have you paid all your debts? Have you paid all your debts?

&9 Have you confirmed your flight? @ Have you confirmed your flight?

Have you written your will?

Have you taken the vaccination shots?

Have you bought Inram clothes? Have you bought Ihram clothes?
Do you need to keep any meds? QIWIEIR|ITIYJU] I JOJP Do you need to keep any meds?
AJS|D|FJGJH|JK]L
s Z| X/C/VIBINIM S

2123 space return

Fig. 1: Screenshots of the interactive checklist.

3.2 Interactive Hajj Map

AlHajj lets users learn about the procedures of Hajj through an interactive map that
they can walkthrough. The map lets users see what needs to be done, at what date and at
what location. It allows users to go through each location that needs to be visited in the
correct order. It also allows the user togo back to previous locations to see what they have
already done.

While at a location they can tap the location, or the “See Details” button to view all the
details of procedures that need to be performed at that location. Once users have finished
walking through the entire process, the map asks them if they want to start over. Users can

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

always reset the map by clicking the “Reset Map” button, even when in the middle of the
walkthrough and start over. Figure 2 shows the interactive map screenshots.

arrier ¥ 105 AM - Carmier = 37 A — Carrier = 17 AM -
< Haijj Map Details £ Back Haijj Map

Day 4, 10th of Dhu'l-Hajjah

(< 1>

ol

=
B

Makkah

%Y 4

“R
N

eeeee

Fig. 2: Interactive Map Screenshots.

3.3 Interactive Contact List

This is a list of all of the important contacts that the users may need during their stay in
Saudi Arabia for Hajj. The set of default contacts include Saudi Police Department, Fire
Department, Highway Patrol, Ambulance, etc. Users can add more contacts to this list as
well to suit their personal needs and requirements. However, users are only allowed to delete
contacts that they have themselves added, and not the default ones.

Another great ability related to the interactive contacts list, is the ability to dial a phone
number from within AlHajj. The user doesn’t need to exit the app to dial a number. All the
user has to do is to tap the number that he/she wants to dial in the AlHajj contact list. The
app will then ask for confirmation, and the number will be dialed. This is a great
convenience, and will definitely come in handy if an emergency situation is encountered.
Figure 3 shows the Interactive Contact List Screenshots.

118 AM — Camer = 118 AM — Carrier = 216 AM

0
)

-
< Contacts + Add Contact < Back Contacts ==
‘SAUDI EMERGENCY CONTACTS
Police 999 Jack Police 999
Fire 998 1234567890 Fire 998
Ambulance 2997 ‘
Call
Traffic Accidents 9293 o Are you sure you want to call 3
12345678907
Highway Patrol 995 i 5
Yes
i D 3 YOUR EMERGENCY CONTACTS
Shahzeb 7346643283 Shahzeb 7346643283
4 5 6
Jack 1234567890 Jack 1234567890
8 9
(0] (&3}

Fig. 3: Interactive Contact List Screenshots.

3.4 Motivational Messages (Chirp)

AlHajj allows users to setup a time to receive motivational messages on their phone.
These messages can be Quranic quotations, a Hadeeth or anything else, aimed at boosting
the religious spirit of the users. There are three hundred and sixty six slots for these

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

messages. Each slot corresponds to a day of the year. Hence, users will receive a different
motivational message each day. Users can always go back and change the time they want to
receive these messages. They can also completely turn off these messages if they want.
Figure 4 shows motivational messages screenshots.

Fig. 4: Motivational messages screenshots.

4. SOFTWARE TOOLS USED
4.1 10S SDK, Objective C, Xcode

This is the most important and core package of tools that was needed for this app.
Applications for iOS cannot be developed without using the iOS SDK [21], which is based
on Objective-C [22]. Xcode [23] is Apple’s integrated development environment for
developing apps for mobile (i0OS) and desktop (OS X) devices.

4.2 Bitbucket/ GitX

As the codebase for this paper started to grow, it was impossible to keep track of the
changes manually. Therefore we hosted the code in a repository on Bitbucket [24]. It is free,
which allows version control using mercurial and git.

GitX [25] was also used locally. It is a client for Mac, which helps in keeping track of
all the changes on the local and remote branches of code.

5. IMPLEMENTATION DETAILS
5.1 Interactive Checklist

To implement the checklist, the Ul for the checklist view is implemented using the
storyboard. The view is sub-classed from the UlTableView class to get all the necessary
attributes of the native iOS table view. Each row of the table is an item of the
checklist.Prototype cells have been used to customize each row of the cell. Each prototype
cell has an image view embedded inside it towards the leftand a text view adjacent to it. The
image view is used to show and hide the green checkmark, which signifies the completion
of a task. The text view is used to display the actual text for the checklist item.

Table view delegate methods have been implemented to capture the behavior of tapping
a table row, which turns the checkmark on or off.Also, the swiping left on a table row will
bring up an option to delete it. Corresponding delegate methods have been implemented to
handle deletion.

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

All the items present in the list by default are populated by using a plist file present in
the code base. Items can be added or removed from it to alter the default list of items.

In order to add new items to this list, a separate add view is implemented. It is sub-
classed from UlView, instead of UlTableView, since this is a simple view and not a table
view. The Ul is implemented using the storyboard. Anything saved here is added to the
original list.

5.2 Interactive Hajj Map

To implement the interactive Hajj map, the Ul for the map view has been laid out by
using the storyboard. The view is sub-classed off of a UIView. All the image views are
positioned in the storyboard. These image viewshave been used for all locations and for
circles around them, like Mecca, Mina, etc. Images have also been used for all arrows,
representing traveling between the various locations. Text views are used to represent all
the text on the map view. The next/previous, see details and reset map buttons are
implemented using iOS native UlButton.

When the view is initialized all arrows are kept hidden, all locations are visible and
only onecircle is displayed, which is on the initial location (Migat). The entire sequence of
traveling is loaded into arrays. For example, all arrows are ordered into an array, and all
labels for each location are ordered into an array as well. When the next button is tapped,
logic is triggered to move to the next element in the various arrays. Similarly, tapping
previous button triggers logic to go to the previous element in the various arrays. This affects
what is shown and what is hidden, and thus forms the interactive map.

In order to view procedure details for a particular location, a separate detail view has
been implemented. It is sub-classed from UlView. There are about nine location points that
require reading details. However, implementing nine separate views to handle this would
have been pretty tough to maintain. Therefore, only one detail view has been implemented
with nine text files containing the details. The detail view dynamically loads one of these
nine files, based on the current location of the user.

5.3 Interactive Contact List

To implement the contact list, the Ul for the contact list view is implemented using the
storyboard. The view is sub-classed from the UlTableView class to get all the necessary
attributes of the native iOS table view. Each row of the table is an item of the contact list.
Prototype cells have been used to customize each row of the cell. Each prototype cell has
two text views. The text view on the left is used for the name of the contact, and text view
on the right is used to display the phone number for the corresponding contact.

The table view is divided into two sections to accommodate the two kinds of contacts:
default contacts and user contacts. The default contacts are stored in a static plist file that is
part of the code base. This file can be edited to alter the default contact list. Users are also
able to add their own contacts to this list. These contacts appear in a separate section on the
table view and can be deleted.

In order to add new items to this list, a separate add view is implemented. It is sub-
classed from UlView, instead of UlTableView, since this is a simple view and not a table
view. The Ul is implemented using the storyboard. Anything saved here is added to the
original list.

Table view delegate methods have been implemented to capture the behavior of tapping
a table row, which triggers a UlAlertView asking if the user wants to make a phone call to
the tapped contact. If the user taps “Yes”, a phone call is made from with the AlHajj app.

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

5.4 Motivational Messages

To implement the motivational messages, the Ul for the chirps view has been laid out
by using the storyboard. The view is sub-classed off of a UlIView. UlDatePicker has been
used for date selection, and a UISwitch has been used to turn these motivational messages
on or off. All of these motivational messages are stored in a separate plist file that is part of
the code base.

UlLocalNotifications have been used for scheduling and triggering these messages.
Sinceeach day is supposed to have its unique motivational message, it requires that three
hundred and sixty six notifications be scheduled to trigger the messages every day of the
year.

Apple does not allow more than 64 local notifications to be scheduled at a time by an
application [26], which posed a serious problem. The solution around this was to schedule
sixty notifications each time the app is launched. This schedules enough messages for the
nextcouple of months, with a single launch of the app.

Appendix A has the recreation of the AlHajj App for iOS. Appendix B has the
implementation Code for the AlHajj App.

6. FUTURE ENHANCEMENTS

6.1 Geo-location

One important feature that can be added to this app is the ability to track the location
of fellow group/family members using GPS, since it is easy to get lost in a crowd of four
million people.

6.2 Audio for Arabic Du’as

It will be useful to add audio for Arabic Du’as in the app, which will open another
avenue of learning for the users.

6.3 More Visual Elements

More visual elements can be added to the app in the future, like simple images or
animations, to graphically explain some of the procedures of Hajj.

7. CONCLUSION

AlHajj is an App that has a more interactive guide to Hajj, like an interactive map
allowing users to walk through the process of the Hajj to develop a better understanding of
the obligations, locations, dates and sequence they are performed in. The App also has a
unique feature which is a pre-Hajj customizable checklist. This feature can be beneficial to
pilgrims, which is not found in most of the existing Hajj apps. Hence, AlHajj is a clear
winner when compared to the other related apps in the market today.

REFERENCES

[1] Hajj General Information [http://www.hajinformation.com/flashdaybyday.htm]

[2] Geabel A, Jastaniah K, Abu Hassan R, Aljehani R, Babadr M, Abulkhair M. (2014) Pilgrim
Smart identification using RFID technology (PSI). Marcus A. (Ed.): DUXU 2014, Part IlI,
LNCS 8519, Springer International Publishing, pp. 273-280.

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

(3]

[4]

[5]

[6]
[7]
8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]
[24]
[25]

Mohandes M, Haleem MA, Kousa M, Balakrishnan K. (2013) Pilgrim tracking and
identification using wireless sensor networks and GPS in a mobile phone. Arab J Sci Eng,
38:2135-2141.

Taileb M, Al-Ghamdi E, Al-Ghanmi N, Al-Mutari A, Al-Jadani K, Al-Ghamdi M, Al-Mutari
A. (2014) Manasek AR: A location-based augmented reality application for Hajj and Umrah.

Shumaker R and Lackey S. (Eds.): VAMR 2014, Part Il, LNCS 8526, Springer International
Publishing, pp. 134-143.

Mitchell RO, Rashid H, Dawood F, AlKhalidi A. (2013) Hajj crowd management and
navigation system people tracking and location based services via integrated mobile and RFID
systems. IEEE conference 978-1-4673-5285-7/13.

Ali MAT, Berri J, Zemerly MJ. (2008) Context aware mobile Muslim companion. CSTST

October 27-31, 2008, Cergy-Pontoise, France.

Hamhoum F, Kray C. (2012) Supporting pilgrims in navigating densely crowded religious
sites. Pervasive Ubiquity Computers, 16:1013-1023.

Muaremi A, Troster G, Seiter J, Bexheti A. (2013) Monitor and understand pilgrims: Data
collection using smart phones and wearable devices. UbiComp’13, September 8-12, 2013,
Zurich, Switzerland.

Zeki AM, Alsafi H, Nassr RM, Mantoro t. (2012) A mobile dictionary for pilgrims. The 2012

International Conference on Information Technology and e-Services.

Mohandes MA. (2012) Near field communication for pilgrim services. The 8th International
Conference on Computing Technology and Information Management (ICCM).

Malak Osman and Adnan Shaout (2015), “Overview of Mobile Help for Performing Hajj
Rituals”, the International Journal of Emerging Technology & Advanced Engineering (ISSN
2250-2459, 1SO 9001:2008 Certified Journal), Volume 5, Issue 10, October 2015.

Malak Osman and Adnan Shaout (2014), “Hajj Guide Systems - Past, Present and Future”,
the International Journal of Emerging Technology & Advanced Engineering (ISSN 2250-
2459, 1SO 9001:2008 Certified Journal), Volume 4, Issue 8, August 2014.

Ali Alao, Adnan Shaout, Malak Osman (2015), “Tawaf Counting”, the proceedings of the 3nd

International Conference on Islamic Applications in Computer Science and Technology
(IMAN 2015) 1-3 October 2015 Konya, Turkey.

Malak Osman, Adnan Shaout and M. Mohandes (2015), “Easy Hajj Applications Track &
Educate Pilgrims”, the proceedings of the 3nd International Conference on Islamic
Applications in Computer Science and Technology (IMAN 2015) 1-3 October 2015 Konya,
Turkey.

Malak Osman and Adnan Shaout (2015), “Pilgrim Communication Using Mobile Phones”,
the proceedings of the ICCTS 2015, Bandar Seri Begawan, Brunei June 2015.

Malak Osman and Adnan Shaout (2015), “Towards Developing an Intelligent Hajj Guide
System — Pilgrim Tracking and Identification Using Mobile Phones”, the proceedings of the
7th International Conference on Information Technology (ICIT2015), Amman, Jordan May
2015.

Hajj Guide App by ImranQureshi.com, 2011
[https://itunes.apple.com/us/app/hajj-guide/id473635756]

Complete Hajj Guide App by Cyber Designz, 2012
[https://itunes.apple.com/us/app/complete-hajj-quide/id560955425]

Hajj & Umrah App by AMC Apps, 2013
[https://itunes.apple.com/us/app/hajj-umrah/id471282657?mt=8]

Hajj & Umrah Easy Steps App by Pearls Productions UK, 2011
[https://itunes.apple.com/app/id400656429]
iOS SDK [https://developer.apple.com/technologies/ios/]

Objective C
[https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWit
hObjectiveC/Introduction/Introduction.html]

Xcode [https://developer.apple.com/xcode/]

Bitbucket [https://bitbucket.org/]

GitX [http://gitx.frim.nl/]

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

[26] iOS Local Notifications
[https://developer.apple.com/library/ios/documentation/Networkinglnternet/Conceptual/Rem
oteNotificationsPG/Chapters/WhatAreRemoteNotif.html]

ITUM Engineering Journal, Vol. 17, No. 1, 2016

Shaout and Khan

Appendix A: Recreating AlHajj App for iOS

Here are the steps for recreating AlHajj app for iOS.
1. Launch Xcode using Launchpad.

2. Click “Create a new Xcode project”.

3. Select “Single View Application” Template as shown in Fig. al.

noe b
+ — E8p 0Ed |
" IQAQSEw0 & «» D e
Choose a template for your new project.
nos
osiiar - e 5
Tramewors § Lorary
Master Detak OpentL Came Page Based
TS Acplcanen Apsicanon
&osx
Aogicaton 3 H
Ere P X L
{ Apsiicaton Pug n
{ System Pug-in Tatted Agplcatan ity Appicaton Lmpey Apsiicat
j{ O
| coxesdd v x
=
J 1 Single View Application
= This temptste rovides sarting peit for i a03fcaton that waes 3 Smgle view. tprovides &
5 Vi Controte 13 it e vew, 18 3 Sryboard o b e It Contaas e vt
Cancel Previows =
DOem
e —
Gonn ot b v ctios
eI 35 4 Laget slyect when
L —
oo ovens s s 28
eton meviage o 8 target coeet
Rounded Ract Button - iaceses
rne-domn evnts snd et
eton mevage 2 8 target oeet
1G] o -

Fig. al: Design template.

4. Click “Next”.
5. Fill in the name of the app.
6. Select the destination folder for the project.

7. Click “Create” as shown in Fig. a2 and a3.

noo 2
p.A tre Ebig L= |
oe

------ - sng.us|

Fig. a2: Creating a project.

10

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

Checklist Development:

1. Create a new plist file called Checklist.plist to hold default items, using the file menu shown in Fig. a3.

Key Type
¥ Root Array
¥ Item 0 Dictionary
Is your passport ready? Boolean
¥ iItem 1 Dictionary
Is your visa ready? Boolean

¥item 2 Dictionary
Have you paid all your debts? Boolean NO

Vitem 3 Dictionary (1 item)
Have you confirmed your flight? Boolean NO

¥ ltem 4 Dictionary (1 item)
Have you written your will? Boolean NO

viem s Dictionary (1 item)
Have you taken the vaccination shots? Boolean NO

¥item 6 Dictionary (1 item)
Have you bought Ihram clothes? Boolean NO

Vitem 7 Dictionary (1 item)
Do you need to keep any meds? Boolean NO

Fig. a3: The file menu for the check list.

2. Create a new checklist view as a table view of prototype cells using the storyboard as shown in Fig. a4.

Checklist

Frotatypo Colle

@ Lba

Fig. a4: Prototype cells.

3. Create a new add item view with a UlTextfield and toolbar items, using the storyboard as shown in Fig. a5.

ancel Add tem save

Checklist Add View - Add Item

Fig. a5: An add item view.

4. Create a class to contain all code and logic for the checklist view.

5. Create a class to contain all code and logic for the checklist add view.

6. Connect all IBOutlets.

7. Implement view lifecycle methods (viewDidLoad, viewWill Appear, etc).
8. Implement table view delegate methods.

9. Implement methods to read from and write to the plist file.

10. Implement methods to pass data between the two views.

11

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

Hajj Map Development:
1. Create text files to store Hajj procedure details, using the file menu.
2. Create a new map view using the storyboard as shown in Fig. a6.

3. Use UllmageViews for all arrows and locations, and UIButtons for circles.

Hajj Map

**w... Day 1, Bth of Diw'l-Hajjah

% ‘Youare at Migat. see details

Fig. a6: A new map view using the storyboard.

4. Create a new detail view with a UITextView and toolbar items, using the storyboard as shown in Fig. a7.

Details Done

o
do siusmod e
st dolore magn.

modo

s aute irure dolor in

n voluptste velit ssse
atur.

Detail View - Details

Fig. a7:Creating a new detail view.

5. Create a class to contain all code and logic for the map view.

6. Create a class to contain all code and logic for the detail view.

7. Connect all IBOutlets.

8. Implement logic to load all items into arrays.

9. Implement logic to traverse back and forth between items of these arrays.

10. Implement logic to show and hide items based on the selected item in an array.

11. Implement logic to dynamically load procedure details into the detail view.

12

IIUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

Contact List Development:

1. Create a plist file called Contacts.plist to store all default contacts, using the file menu as shown in Fig. a8.

Key Type Value
¥ Root Array (5 items)
¥ ltem O Dictionary (1 item}
Police String 999
¥ ltemn 1 Dicticnary (1 item)
Fire String 998
¥ ltem 2 Dictionary (1 item)
Ambulance String 997
¥ltern 3 Dictionary (1 item)
Traffic Accidents String 993
¥ ltem 4 Dictionary (1 item}
Highway Patrol String 995

Fig. a8: The file menu for the contact list.

2. Create a new contacts view as a table view of prototype cells using the storyboard as shown in Fig. a9.

Contacts

Fig. a9: Creating a new contacts view as a table view of prototype cells.

3. Create a new add item view with UlTextFields and toolbar items, using the storyboard as shown in Fig. al0.

Add Contact Save

Contact Add View - Add Contact

Fig. a10: Creating a new add item view.
4. Create a class to contain all code and logic for the contacts view.
5. Create a class to contain all code and logic for the contact add view.
6. Connect all IBOutlets.
7. Implement view lifecycle methods (viewDidLoad, viewWill Appear, etc).
8. Implement table view delegate methods.
9. Implement methods to read from and write to the plist file.
10. Implement methods to pass data between the two views.

11. Implement method to trigger a phone call when a row is tapped.

13

IIUM Engineering Journal, Vol. 17, No. 1, 2016

Shaout and Khan

Motivational Messages Development:

1. Create a plist file called Chirps.plist to store all default chirps, using the file menu as shown in Fig all.

Key

¥ Root
Item 0
tem 1
Item 2
Item 3
Item 4
Item 5
Item &
Item 7
Item 8
Item 9
Item 10
Item 11
Item 12
Item 13
Item 14

Type
Array
String
String
String
String
String
String
String
String
String
String
String
String
String
String
Strina

Value

(368 items)

This is chirp number 0
This is chirp number 1
This is chirp number 2
This is chirp number 3
This is chirp number 4
This is chirp number 5
This is chirp number &
This is chirp number 7
This is chirp number 8
This is chirp number 9
This is chirp number 10
This is chirp number 11
This is chirp number 12
This is chirp number 13
This is chiro number 14

Fig. all: Creating a plist file called Chirps.plist to store all default chirps.

2. Create a new chirp’s view with a UlDatePicker and a UISwitch, using the storyboard as shown in Fig. al12.

ity
at the following ti

Ghirps

Chirps View - Chirps

Fig. a12: Creating a new chirp’s view with a UIDatePicker and a UISwitch.

3. Create a class to contain all code and logic for the chirps view.

4. Connect all IBOutlets.

5. Implement UIPickerView delegate methods.

6. Implement scheduling of notifications using UlLocalNotification.

7. Implement logic to enable/disable notifications based on the UISwitch’s state.

Main Menu Development:

1. Create a new main menu view with UIButtons and UlLabels, using the storyboard as shown in Fig. al3.

View Controller - Main Menu

Fig. a13: Creating a new main menu view with UlButtons and UlLabels.

2. Use Control + Drag to connect each button to the respective view.

14

ITUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

Navigation Development:

1. Control + Drag from the source Ul element to destination view element to trigger navigation from a Ul
element to a view.

2. Once you leave the mouse click on the destination you will presented with various options. Pick “modal” if
you are connecting a detail view to a parent view (e.g. Contacts view to contact adds view). Pick “push” for
regular navigation between screens.

3. Once you are done setting up all navigation, your storyboard should like Fig. al4.

@

Checklist Views

&

o

Contact Views

Main Menu

oo o I~]

‘ Chirps View
[G ver-Gine)

Fig. al4: Storyboard.

15

ITUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

Appendix B — Implementation Code for the AlHajj App

i

f/f ChecklistView.h
/f AlHajj

/i

/4 Created by Shahzeb Khan on 18/9/13.
// Copyright (c) 2813 Shahzeb Khan. ALl rights reserved

#import <UIKit/UIKit. h=

#import istAddView.h"

#Fimport stAddViewDelegate.h"
#import “CheckListCell.h"

#import “ChecklistItem.h"

@interface ChecklistView : UITableViewController =ChecklistAddViewDelegates {

NSMutableArray #checklistItems;

@property (nonatomic, retain) NSMutableArray *checklistItenms;

gend

'

/4 ChecklistView.m
// AlHajj

I

// Created by Shahzeb Khan on 18/9/13.
// Copyright (c) 2@13 Shahzeb Khan. All rights reserved.
#import "ChecklistView.h"
@interface ChecklistView ()
@end
@implementation ChecklistView
@synthesize checklistItems;
#pragma mark — View lifecycle
- (id)initWithStyle: {UITableViewStyle)style
L

self = [super initWithStyle:style];

if (self) {

// Custom initialization

return self;

1
— (void)viewDidLoad
[super viewDidLoad];
// Uncomment the following line to preserve selection between presentations.
/f self.clearsSelectionOnViewWillAppear = NO;
/f Uncomment the following line to display an Edit button in the nawvigation bar for this view controller.
ff self.navigationItem. rightBarButtonItem = self.editButtonItem;
self.checklistItems = nil;
self.checklistItems = [[NSMutableArray alloc] init]
if {![[NSUserDefaults standardUserDefaults] boolForKey:@"loadedDefaultCheckList"]) {
[self readDefaultChecklist];
[[NSUserDefaults standardUserDefaults] setBeol:YES forKey:@"loadedDefaultCheckList"];
} else {
[seif readUserChecklist];
}
}

— (void)viewWillAppear: (BOOL)animated {

[self.tableView reloadDatal;

- (void)viewWillDisappear: (BOOL)animated {

[self writeChecklistToPlist];

- (void)didReceiveMemoryWarning
1
[super didReceiveMemoryWarning];
ff Dispose of any resources that can be recreated.
#pragma mark — Table wiew data source
- (N5Integer)numberOfSectionsInTableView: (UITableView =) tableView
1
£f Return the number of sections.
return 1
}

— (NSInteger)tableView: {UITableView *)tableView number0fRowsInSection: (NSInteger)section

/f Return the number of rows in the section.
return [self.checklistItems count];

16

ITUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

- (UITableViewCell =*)tableView:(UITableView x)tableView cellForRowAtIndexPath: (NSIndexPath =}indexPath
£

static NSString *Cellldentifier = @"CheckListCell";
CheckListCell #cell = (CheckListCell =) [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

if (cell == nil) {
cell = [[CheckListCell alloc] initWithStyle:UITableViewCellStyleDefault reuseldentifier:CellIdentifier];
+

/f Configure the cell...
ChecklistItem *item = self.checklistItems [indexPath. row];
cell.checklListItem.text = item.task;
if (item.isDone) {

cell.checkMark.image = [UIImage imageNamed:@"greenCheck.png"];
} else {

cell.checkMark.image = [UIImage imageMNamed:@"emptyCheck.png"1;

cell.selectionStyle = UITableViewCellSelectionStyleNone;

return cell;

}

// Override to suppert editing the table view.
— (void)tableView: (UITableView =)tableView commitEditingStyle:(UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:(NSIndexPath #)indexPath
£

if (editingStyle == UITableViewCellEditingStyleDelete} {
/{ Delete the row from the data source
[self.checklistItems removeObjectAtIndex:indexPath.row];
[self writeChecklistToPlist];

[tableview deleteRowsAtIndexPaths:g[indexPath] withRowAnimation:UITableViewRowanimationFade];

}
else if (editingStyle == UITableViewCellEditingStyleInsert) {

// Create a new instance of the appropriate class, imsert it into the array, and add a new row to the table view
i

¥
- {void)tableView: (UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

CheckListCell #cell = (ChecklListCell =) [self.tableView cellForRowAtIndexPath:indexPath];
[self toggleCheckMarkFarCell:celll;
[self toggleDoneAtIndex:indexPath. row];

}

#pragma mark — Navigation

// In a story board-based application, you will often want to do a little preparation before navigatien
- (void)prepareForSegue: (UIStoryboardSegue #)segue sender:(id)sender

// Get the new view controller using [segue destinationViewControllerl.

// Pass the selected object to the new view controller.

if ([seque.identifier isEqualToString:@"AddItem"]) {
UINavigationController *navigationController = segue.destinationViewController;
ChecklistAddView =checkListAddView = [[navigationController viewControllers] cbjectAtIndex:8];
checkListAddView.delegate = self;

#pragma mark — MNavigation

// In a story board-based application, you will often want to do a little preparation before navigatien
- {void}prepareForSegue: (UIStoryboardSegue *)segue sender:(id)sender

/f Get the new view controller using [seque destinationViewController]

/f Pass the selected object to the new view controller.

if ([segue.identifier isEqualTeString:@"AddItem"]) {
UINavigationController snavigationController = segue.destinationViewController;
ChecklistAddView =checkListAddView = [[navigaticnController viewControllers] objectAtIndex:@]
checkListAddView.delegate = self;

}
#pragma mark - Checklist / cell manipulation
- {void}toggleCheckMarkForCell: {CheckListCell =}cell {
if (cell.checkMark.image == [UIImage imageNamed
cell.checkMark. image = [UIImage imageNamed:@

} else {
cell.checkMark. image = [UIImage imageNamed:@'greenCheck.png"];

greenCheck.png"]) {
emptyCheck. png”];

}
- (void)toggleDoneAtIndex: (int)index {
int count = 8;
for (ChecklistItem %xitem in self.checklistItems) {
if (count == index) {
item.isDone = !item.isDone;
count++;
}

- (void)addTaskToChecklistItems: (NSString #)task {
ChecklistItem *item = [[ChecklistItem alloc] initWithTask:task andDone:N0];
[self.checklistItems addObject:item];

#pragma mark — Checklist add view delegate methods

—- {void)checklistAddViewDidCancel {

[self dismissViewControllerAnimated:YES completion:nill;

- {void)checklistAddViewControllerDidSave: (NSString =)task {

[self addTaskToChecklistItems:task];
[self writeChecklistToPlist];

[self dismissViewControllerAnimated:YES completion:nil];

17

ITUM Engineering Journal, Vol. 17, No. 1, 2016

Shaout and Khan

#pragma mark — Read / write checklist
- (void)readUserChecklist {

[self readChecklistAtPath:[self pathForUserChecklist]];

- {void) readDefaultChecklist {

[self readChecklistAtPath:[self pathForDefaultChecklist]];

—({void) readChecklistAtPath: (NSString *)path {
WSArray =array = [MSArray arrayWithContentsOfFile:path] ;

for (NSDictionary =dict in array) {
for (id key in dict)
NSString *task = key;
BOOL isDone = [[dict ebjectForKey:key] boolValue];

ChecklistItem #item = [[ChecklistItem alloc] initWithTask:task andDone:isDone];

[self.checklistItems addObject:item];

}
- (void)writeChecklistToPlist {
NSMutableArray array = [[NSMutableArray alloc] init];

for (ChecklistItem *item in self.checklistItems) {

NSMutableDictionary sdict = [[NSMutableDictionary allecl initl;

[dict setValue: [NSMumber numberWithBool:item.isDone] forKey:item.task];

[array addObject:dict];

[array writeToFile: [self pathForUserChecklist] atomically:YES];

- (N5String =)pathForUserChecklist {

WS5tring *documentsDirectory = [NSSearchPathForDirectoriesInDomains{NSDocumentDirectory, NSUserDomainMask, YES) firstObject];

return [NSString stringWithFormat:@"%&/Checklist.plist", documentsDirectoryl;

- (MN55tring *)pathFerDefaultChecklist {

return [[NSBundle mainBundle] pathForResource:@"Checkli

@end

Fig. bl: Interactive Checklist Code.

" ofType:g'plist"];

18

ITUM Engineering Journal, Vol. 17, No. 1, 2016

Shaout and Khan

"

/f MapView.h
/f AlHajj

I

/4 Created by Shahzeb Khan on 12/7/13.
// Copyright (c) 2813 Shahzeb Khan. All rights reserved.

#import <UIKit/UIKit.h=
&import "DetailView.h"

@interface MapView ! UIViewController <UIAlertViewDelegates {

NSArray sallArrows;

NSArray *allCircles;
NSArray =allDaylLabels;
NSArray =allPositionlLabels;

IBOutlet UILabel +daylabel;
IBOutlet UILabel *positionlLabel;

IBOutlet UIButton =migatCircle;
IBOutlet UIButton =makkahCircle;
IBOutlet UIButton =minaCircle;
IBOutlet UIButton =arafatCircle;
IBOutlet UIButton s=muzdalifaCircle;

IBOutlet UIImageView #nilArrow;

IB0utlet UIImageView =migatToMakkah;
IB0utlet UIImageView =makkahToMina;
IB0utlet UIImageView =minaToArafat;
IB0utlet UIImageView =arafatToMuzdalifa;
IB0utlet UIImageView s=muzdalifaToMina;
IBOutlet UIImageView =minaToMakkah;

@property int currentIndex;

@property(nonatomic, retain) NSArray *allArrows;
@property(nonatomic, retain) NSArray #allCircles
@property(nonatomic, retain) NSArray #allDaylabels;
@property(nenatomic, retain) NSArray *allPositienlLabels;

@property(nonatomic, retain) UILabel daylabel
@property(nonatomic, retain) UILabel #positionlLabel

@property(nenatomic, retain) UIButton =migatCircle
@property(nonatomic, retain) UIButton =makkahCircle
@property(nenatomic, retain) UIButton #minaCircle;
@property(nonatomic, retain) UIButton =arafatCircle
@property(nonatomic, retain) UIButton =muzdalifaCircle;

@property(nonatomic, retain) UIImageView *nilArrow
@property(nonatomic, retain) UIImageView smiqatToMakkah;
@property(nonatomic, retain) UIImageView smakkahToMina;
@property(nonatomic, retain) UIImageView sminaToArafat;
@property(neonatomic, retain) UIImageView =arafatToMuzdalifa;
@property(nonatomic, retain) ULImageView smuzdalifaToMina
@property(nonatemic, retain) UIImageView #minaToMakkah

@end

'

/4 MapView.m
// AlHajj

I

f/ Created by Shahzeb Khan on 12/7/13.

// Copyright (c) 2813 Shahzeb Khan. All rights reserved
#import "MapView.h"

@interface MapView ()

@end

@implementation MapView

@synthesize currentIndex;

@synthesize
@synthesize
@synthesize
@synthesize

allArrows, allCircles, allDaylLabels, allPesitionlLabels

daylLabel, positionLabel;

migatCircle, makkahCircle, minaCircle, arafatCircle, muzdalifaCircle;
nilArrow, migatToMakkah, makkahToMina, minaTecArafat, arafatToMuzdalifa,

— {id)initWithNibName: (NSString =)nibNameQOrNil bundle: (NSBundle =)nibBundleQOrNil
{

self = [super initWithNibMName:nibNameOrNil bundle:nibBundledmil]

if (self

»

f/ Custom initialization

return self;

muzdalifaToMina, minaTeMakkah;

19

ITUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

- {void)viewDidLoad

[super viewDidLoad];
// Do any additional setup after loading the view

[self initializeView];

- (void)didReceiveMemoryWarning

[super didReceiveMemoryWarning];

// Dispose of any resources that can be recreated
}
- (void)initializeView {

[self collectAllArrows];
[seli hideAllArrows];

[self collectAllCircles];
[self hideAllCirclesExceptCurrent:self.migatCircle];

[self collectAllDaylabels];
[self collectAllPositionlabels];

[self showInitialDaylLabel];
[self showInitialPasitionLabel];

self.currentIndex = @;

¥
- (IBAction)seeDetails: {id)sender {

[self performSegueWithIdentifier:@"SeeDetails” sender:sender]

// In a story board-based application, you will often want to do a little preparation before navigatiecn
- {void)prepareForSegue: (UIStoryboardSegue =)segue sender:(id)sender

// Get the new view controller using [segue destinationViewController]

// Pass the selected object to the new view contreller.

if ([segue.identifier isEqualToString:@"SeeDetails"]) {
UIMavigationController snavigatienCentroller = segue.destinationViewController;
DetailView #detailView = [[navigationController viewControllers] objectAtIndex:8];

NSString *content = [self getContentForCurrentIndex:self.currentIndex];
detailView.content = content;

}
- {void)collectAllArrows {

self.allArrows = @[self.nilArrow, self.migatToMakkah, self.makkahToMina, self.minaToArafat, self.arafatToMuzdalifa,
self.muzdalifaToMina, self.minaToMakkah, self.makkahToMina, self.minaToMakkah];

)|
- ({void)hideAllArrows {

for {UIImageView *imageView in self.allArrows) {
imageView.hidden = YES;

- {woid)collectAllCircles {

self.migatCircle.tag = 8
self.makkahCircle.tag = 1;
self.minaCircle.tag = 2
self.arafatCircle.tag = 3;
self.muzdalifaCircle.tag = 4;

self.allCircles = @[self.migatCircle, self.makkahCircle, self.minaCircle, seif.arafatCircle, self.muzdalifaCircle,
self.minaCircle, self.makkahCircle, self.minaCircle, self.makkahCircle];
4

- {void)hideAllCirclesExceptCurrent; (ULButton =)currentCircle {

for (UIButton sbutton in self.allCircles) {

if (butten.tag == currentCircle.tag) {
button.hidden = NO;
}else {

button.hidden = YES;

20

ITUM Engineering Journal, Vol. 17, No. 1, 2016

Shaout and Khan

- (void)collectAllDayLabels {

NSString *labell Day 1, 7th
NSString *label2 Day 1, 7th
NSString *label3 Day 2, Bth
NSString *labeld Day 3, 9th
NSString *label5 Day 3, 9th
NSString *labelé Day 4, 18th
NSString *label? Day 4, 1@th
NEString *labell Day 5, 11th
NSString *labeld = &"Day 7, 13th

of Dhu'l-Hajj
of Dhu'l-Ha
of Dhu'l-Ha
of Dhu
of Dhu'l-Hajjah";
of Dhu'l-Hajjah";
of Dhu'l-Hajjah";
of Dhu'l-Hajjah";
of Dhu'l-Hajjah";

self.allDaylLabels = @[labell, label2, label3, label4, label5, labelb, label?, labelB, labelS];

1

— (void)collectAllPositionLabels {

NSString *labell 1 are at
NSString *label2 are at
NSString *label3) are at
NSString *label4) are at
NSString *label5 are at
NSString *label6 are at
NSString *label? are at
NSString *labelB are at
NSString *labeld 1 are at

self.allPositionLabels = @[label
¥

— (IBAction)resetMap: (id)sender {

[self initializeView];

- (IBAction)goToNextStop: (id)sender{
if (currentIndex > 7) {
[self displayAlert];
return;
}
[self showNextArrow];
[self showNextCircle];
[self showMextDaylLabel];
[self showNextPositionlabel];

self.currentIndex++;

— {(IBAction)goToPreviousStop: (id)sen
if (currentIndex == 8) { return
[self hideCurrentArrow];

[self showPreviousCircle];
[self showPreviousDaylLabell;
[self showPreviousPositionLabel]

self.currentIndex—;

- (void)showNextaArrow {

UIImageView #*nextArrow = self.al
nextArrow.hidden = NO;

- (voidyhideCurrentArrow {
UIImageView *currentArrow = sel®
currentArrow.hidden = YES;

- {void}showhextCircle {

UIButton #nextCircle = self.allC
nextCircle.hidden = NO;

[self hideCurrentCirclel;

- {void)showPreviousCircle {

UIButton *previousCircle = self.
previousCircle.hidden = NO;

[self hideCurrentCirclel;

- {void)hideCurrentCircle {

UIButton *currentCircle = self.a
currentCircle.hidden = YES;

Migat,";
Makkah

Arafat,”;
Muzdalifah,";
Mina,™;
Makkah,";
Mina,";
Makkah,";

1, label2, label3, label4, label5, label&, label?,

der{

+

lArrows [self. currentIndex+1];

-allarrows [self.currentIndex];

ircles[self.currentIndex+1];

allCircles[self.currentIndex-1];

11Circles [self. currentIndex];

label8, label8];

21

ITUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

{void)showInitialDayLabel {

NSS5tring »label = self.allDaylLabels[8];
self.dayLabel.text = label;

{void)showhextDaylLabel {
NSString *label = self.allDaylabels[self.currentIndex+1];
self.daylabel.text = label;
- {void)showPreviousDayLabel {
NSString *label = self.allDaylabels[self.currentIndex-11;
self.daylLabel.text = label;
— (void)showhNextPositionLabel {

NSString #label = self.allPositionLabels[self.currentIndex+1]
self.positionlabel.text = label;

{void)showPreviousPositionlabel {

NSString =label = self.allPositionlLabels[self.currentIndex-1];
self.positionlabel.text = label;

{void)showInitialPositionLabel {

NSString *label = self.allPositionLabels[0];
self.positionlabel.text = label;

(N55tring *)getContentForCurrentIndex: (int)index {

NSStringx path = [[NSBundle mainBundle] pathForResource: [NSString stringWithFormat:@"%d", index] ofType:@"txt"];
return [NSString stringWithContentsOfFile:path encoding:NSUTF85tringEncoding error:NULL];

(void)displayAlert {

UIAlertView =alert = [[UIAlertView alloc] initWithTitl
messag
delegate:self cancelButtonTitle:

"Hajj Complete™
"You have covered the entire Hajj procedure. Would you like to start owver?”
"Cancel® otherButtonTitles:@"Yes", nill;

[alert showl;

{void)alertView: (UIAlertView x)alertView clickedButtonAtIndex: (NSInteger)buttonIndex {

if (buttonIndex == 1) {
[self initializeView];
13

@end

Fig. b2: Interactive Map Code.

22

ITUM Engineering Journal, Vol. 17, No. 1, 2016

Shaout and Khan

i

// ContactsView.h
// AlHajj

FFg

// Created by Shahzeb Khan on 11/3/13.
// Copyright (c) 2013 Shahzeb Khan. ALl rights reserved.

#import <=UIKit/UIKit.h>

#import "ContactCell.h”

#import “ContactItem.h"

#import "ContactAdd w.h™
#import "ContactAddViewDelegate.h"

@interface ContactsView : UITableViewController <UIAlertViewDelegate, ContactAddViewDelegates {

NSMutableArray *userContacts;
MSArray sdefaultContacts;
NSString scurrentNumber;

}

@property (nonat retain} NSMutableArray #userContacts;
@property (nonatom

ic, retain) NSArray =defaultContacts;
@preperty {nonatomic, retain} NSString #currentNumber

@end

e

/{ ContactsView.m
/4 AlHajj

i

/¢ Created by Shahzeb Khan on 11/3/13.
// Copyright (c) 2813 Shahzeb Khan. All rights reserved.
#import "ContactsView.h"
@interface ContactsView ()
@end
@implementation ContactsView
@synthesize userContacts, defaultContacts, currentMumber;
#pragma mark — View lifecycle
- {id)initWith5tyle:{UITableViewStyle)style
1

self = [super initWithStyle:style];

if (self) {

// Custom initialization

return self;

}
- (void)viewDidLoad

[super viewDidLoad];

//f Uncomment the following line to preserve selection between presentations.

/# self.clearsSelectionOnViewWillAppear = NO;

/f Uncomment the following line to display an Edit button in the navigation
// self.navigationItem.rightBarButtonItem = self.editButtonItem;

self.userContacts = nil;
self.userContacts = [[NSMutableArray alloc] init];

[self readContacts];
[self readUserContactlist];
}
- {void)viewWillAppear: (BOOL)animated {

[self.tableView reloadDatal;

- {void)didReceiveMemoryWarning
1

[super didReceiveMemoryWarning];
/f Dispose of any resources that can be recreated.

bar for this view controller.

23

ITUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

#pragma mark — Alert view delegate methods
- (void)alertView: (UIAlertView *)alertView clickedButtonAtIndex: (NSInteger)buttonIndex {

if (buttonIndex == 1) {
// Dial cached number

} else
// Empty cached number
self.currentNumber = nil;

}

#pragma mark — Table view data source

- [NSInteger)number0OfSectionsInTableView: (UITableView =) tableView
{

/f Return the number of sections.
return 2;

}
- [NSInteger)tableView:{UITableView =)tableView numberOfRowsInSection: (NSInteger)section
{

// Return the number of rows in the section.

if (section == @) {
return [self.defaultContacts count];

Rigtse £
NSLog (@"COUNT: %d™, [self.userContacts count]);
return [self.userContacts count];

}
— (UITableViewCell *)tableView: {UITableView *)tableView cellForRowAtIndexPath: (NSIndexPath =)indexPath

static NSString; #CellIdentifier = @'ContactCell”;

ContactCell #cell = (ContactCell *) [tableView dequeueReusableCellWithIdentifier:Cellldentifier forIndexPath:indexPath];

if {cell == nil) {
cell = [[ContactCell alloc] initWithStyle:UITableViewCellStyleDefault reuseldentifier:Cellldentifier]

Configure the cell...

if (indexPath.section == @) {
NSDictionary *dict = self.defaultContacts[indexPath.row];
name = dict.allKeys[@];
number = [dict valueForKey:namel;

} else {
ContactItem %dict = self.userContacts[indexPath. row]
name = dict.name;
number = dict.number

}

cell.name.text = name;
cell.number.text = number;

return cell;

- (void)tableView: (UITableView *)tableView didSelectRowAtIndexPath: (NSIndexPath *)indexPath {

NSString *name;
NSString snumber;

if {indexPath.section == 8} {
NSDictionary *dict = self.defaultContacts[indexPath. row];
name = dict.allKeys[@];
number = [dict valueForKey:name];

} else {
ContactItem #dict = self.userContacts[indexPath. row];
name = dict.name;
number = dict.number;

// Cache the number inte an instance wvariable to dial later
self.currentNumber = number;

UTAlertView #alert = [[UIAlertView alloc] initWithTitle:g"Call"
message: [NSString stringWithFormat:@"Are you sure you want to call %@?", number]

delegate:self
cancelButtonTitle ancel”
otherButtonTitles es®, nill;

[alert showl;

/4 Override to suppert editing the table view.
— (void)tableView: (UITableView *)tableView commitEditingStyle: (UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:(NSIndexPath #)indexPath
{
if (editingStyle == UITableViewCellEditingStyleDelete} {
// Delete the row from the data source
[self.userContacts removeObjectAtIndex:indexPath.rowl;
[self writeContactsToPlist];

[tableView deleteRowsAtIndexPaths:E[indexPath] withRowAnimation:UITableViewRowAnimationFade];

¥
else if (editingStyle == UITableViewCellEditingStyleInsert) {
/# Create a new instance of the appropriate class, insert it into the array, and add a new row to the table view

24

ITUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

- (BOOL)tableView: (UITableView *)tableView canEditRowAtIndexPath:(NSIndexPath =)indexPath {
if {indexPath.section == {

return NO;
} else {
return YES;

— (NSString *)tableView: (UITableView +)tableView titleForHeaderInSection: (NSInteger)section {

ey {

if {section ==
Saudi Emergency Contacts™;

return
} else {
return @'Your Emergency Contacts";

}
#pragma mark — Mavigation

// In a story board-based applicatien, you will often want to do a little preparation before navigation
- (void)prepareForSegue: (UIStoryboardSegue *)segue sender:(id)sender

/f Get the new view controller using [segue destinationViewController].
// Pass the selected object to the new view controller.
if ([segue.identifier isEqualToString:@"AddContact"]) {
UINavigationController xnavigationCeontroller = segue.destinationViewController;
ContactAddView xcontactAddView = [[navigationController viewControllers] objectAtIndex:@];
contactAddView.delegate = self;
¥
#pragma mark — Checklist add view delegate methods
- (void)contactAddViewDidCancel {

[self dismissViewControllerAnimated:YES completion:nil];

- (void}contactAddViewControllerDidSaveName: (NSString =)name andMumber:(NSString #)number {

ContactItem =item = [[ContactItem alloc] initWithMName:name andNumber:number];
[self.userContacts addObject:item];

[self writeContactsToPlist];

[self dismissViewControllerAnimated:YES completion:nil];

}
#pragma mark — Read / write checklist
- (void)readUserContactlist {

[self readUserContactsAtPath: [self pathForUserContactlist]];

—(void) readUserContactsAtPath: (NS5tring *)path {
NSArray #array = [NSArray arrayWithCententsOfFile:path] ;
for (NSDictionary =dict in array) {
for {id key in dict) {
NSString *name = key;
NS5tring *number = [dict objectForKey:keyl;
NSLog (@"NAME AND MUMBER: %@, %2", name, number);
ContactItem #item = [[ContactItem alloc] initWithMame:name andNumber:number]
[self.userContacts addObject:item];
b
— (void)writeContactsToPlist {
NSMutableArray =array = [[NSMutableArray alloc] init];
for (ContactItem #item in self.userContacts) {
NSMutableDictionary #dict = [[NSMutableDictionary allec] inmit]

[dict setValue:item.number forKey:item.name];
[array addObject:dict];

[array writeToFile: [self pathForUserContactlist] atomically:YES];

}

— (NSString #)pathForUserContactlist {
NSString xdocumentsDirectory = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES) firstObject];
return [NSString stringWithFormat:@"%@/Contacts.plist", documentsDirectory];

- [void) readContacts {

self.defaultContacts = [NSArray arrayWithContents0fFile:[self pathForContactlist]];

— [NSString =)pathFerContactlist {

return [[NSBundle mainBundle] pathForResource:@"Contacts" ofType:@"plist”];

@end

Fig. b3: Interactive Contact List Default.

25

ITUM Engineering Journal, Vol. 17, No. 1, 2016

Shaout and Khan

ChirpsView.h
AlHajj

Created by Shahzeb Khan on 11/12/13.
Copyright (c) 20813 Shahzeb Khan. All rights reserved.

#import <UIKit/ULKit.h=

@interface ChirpsView : UIViewController {

1

MNSArray =chirps;

IBDutlet UIDatePicker xpicker;
IBQutlet UISwitch =agree;

@property(nonatomic, retain) NSArray *chirps;
@property(nonatomic, retain) UIDatePicker =*picker;
@property(nonatomic, retain) UISwitch =agree;

@end

ChirpsView.m
AlHaj j

Created by Shahzeb Khan on 11/12/13.
Copyright (c) 2013 Shahzeb Khan. All rights reserved.

#import "ChirpsView.h"

@interface ChirpsView ()

@end

@implementation ChirpsView

@synthesize picker, agree, chirps;

- (id)initWithNibName: (NSString =)nibNameOrNil bundle: (NSBundle =)nibBundleOrNil
1

1

self = [super initWithNibMame:nibMameOrNil bundle:nibBundleOmil]
if (self) {

// Custom initialization
}

return self;

- {void)viewDidLoad
1

[super viewDidLoad];
/f Do any additional setup after loading the view.

- {void)didReceiveMemoryWarning

[super didReceiveMemoryWarning];
//{ Dispose of any resources that can be recreated.

- (void)viewNillDisappear:(BOOL)animated {

}

NSLog(@"DAY#: %d", [self getDayOfYearl);

[self loadChirps];
[self scheduleChirps];

- (void)viewNillAppear: (BOOL)animated {

¥

[self populateScheduledChirpsTimeInPicker];
[self populateAgreeState];

- {void)populateScheduledChirpsTimeInPicker {

NSDate #savedDate = [[NSUserDefaults standardUserDefaults] valueForKey:@"scheduledChirpsTime"];

NSLog (@"DATE: %@", savedDate);
if (savedDate) {
self.picker.date = savedDate;
} else {
self.picker.date = [NSDate datel;

26

ITUM Engineering Journal, Vol. 17, No. 1, 2016 Shaout and Khan

- {void)scheduleChirps {

// Cancel all local notifications
[[uIApplication sharedApplicaticon] cancelAllLocalNotifications];

// Save state of the agree switch
[[NSUserDefaults standardUserDefaults] setBool:self.agree.on forKey:g"agree'];

// Remove scheduled chirps time if agree switch is off

if (!self.agree.on)
[[NSUserDefaults standardUserDefaults] setObject:nil forKey
return;

scheduledChirpsTime"];
b

// Build date components

NSCalendar *calendar = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar]

HWSDateComponents +components = [[NSCalendar currentCalendar] components: MNSCalendarUnitMinute | NSCalendarUnitHour
NSCalendarUnitDay | NSCalendarUnitMonth | NSCalendarUnitYear fromDate:self.picker.date];

[components setSecond:@8];

HSDate *date = [calendar dateFromComponents:components];

// Build day component for incrementing date
NSDateCemponents #dayComponent = [[NSDateComponents alloc] init];
dayCompenent.day = 1;

// Build local notification
UIlocalNotification *localMotif = [[UILocalNotification alloc] init];

int dayOfYear = [self getDayDfYear]

for (int i=8; i<=6@8; i++} {
localNotif. fireDate = date;
localNotif.alertBody = self.chirps[day0fyear];
localNotif.alertAction = @"Action™;

NSLog(@"ALERT BODY: %@", localNotif.alertBody)

// Schedule local notification
[[UIApplication sharedApplication] schedulelocalNotification:localNotif];

// Increment date by one calendar day
date = [calendar dateByfAddingComponents:dayComponent toDate:date options:0];

// Increment day of year
if (dayOfYear == 367) {
day0fYear = @8;
} else {
day0f¥ear++;
}

+

// Save scheduled chirps time
[[NSUserDefaults standardUserDefaults] setObject:localMNotif.fireDate forKey:@"scheduledChirpsTime"];

NSLog (@"NOTIF: %g", [[UIApplication sharedApplication] scheduledlocalNotifications]);

- (NSUInteger)getDayOfyear {

MSCalendar *gregorian = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar]
NSUInteger dayOfYear = [gregorian ordinality0fUnit:NSDayCalendarUnit inUnit:NSYearCalendarUnit forDate: [NSDate date]l;

return day0OfYear;

- {void)}loadChirps {

self.chirps = [NSArray arrayWithContentsOfFile: [self getChirpsPlistPath]];
¥

— (NS5tring *)getChirpsPlistPath {

return [[NSBundle mainBundle] pathForResource:@"Chirps" ofType:@"plis

@end

Fig. b4: Motivational Messages Code.

27

