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Antigen presentation lies at the heart of immune recognition of infected or malignant 
cells. For this reason, important efforts have been made to predict which peptides are 
more likely to bind and be presented by the human leukocyte antigen (HLA) complex 
at the surface of cells. These predictions have become even more important with the 
advent of next-generation sequencing technologies that enable researchers and cli-
nicians to rapidly determine the sequences of pathogens (and their multiple variants) 
or identify non-synonymous genetic alterations in cancer cells. Here, we review recent 
advances in predicting HLA binding and antigen presentation in human cells. We argue 
that the very large amount of high-quality mass spectrometry data of eluted (mainly 
self) HLA ligands generated in the last few years provides unprecedented opportunities 
to improve our ability to predict antigen presentation and learn new properties of HLA 
molecules, as demonstrated in many recent studies of naturally presented HLA-I ligands. 
Although major challenges still lie on the road toward the ultimate goal of predicting 
immunogenicity, these experimental and computational developments will facilitate 
screening of putative epitopes, which may eventually help decipher the rules governing 
T cell recognition.

Keywords: human leukocyte antigen peptidomics, human leukocyte antigen ligand prediction, antigen 
presentation, T cell epitope, computational immunology

iNTRODUCTiON

Recognition of infected or malignant cells by T  cells relies on the presentation of immunogenic 
self and non-self peptides at the cell surface. Two main pathways have been identified for antigen 
presentation and processing (1–3).

In the class I pathway, intracellular proteins are degraded into small peptides by the proteasome. 
These peptides are transported into the endoplasmic reticulum by the transporter associated with 
antigen processing (TAP) protein complex. There, they can bind to human leukocyte antigen class I 
(HLA-I) molecules in complex with beta2-microglobulin (β2m). After trafficking to the cell surface, 
the complexes may be recognized by CD8 T cells. HLA-I proteins are primarily encoded by three 
genes (HLA-A, HLA-B, and HLA-C), which are widely expressed in most cell types in human. In 
addition, specialized cell types can express HLA-E, HLA-F, or HLA-G genes. HLA-A, -B, and -C 
genes (hereafter referred to as HLA-I) are the most polymorphic genes in the human genome and 
over 12,000 distinct alleles are documented in the human population (4). Humans have in general 
different combinations of HLA-I alleles and, therefore, express up to six different HLA-I proteins 
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(two for each gene). HLA-I molecules bind short peptides, mainly 
9–11 amino acids, and different HLA-I alleles have distinct bind-
ing specificities, which implies that a broad spectrum of peptides 
can be displayed across different individuals.

In the class II pathway, peptides coming from the degradation 
of phagocytosed extracellular proteins are presented on HLA-II 
molecules for recognition by CD4 T cells (5). In addition, endog-
enous proteins can be presented on HLA-II molecules when 
degraded through autophagy (6). HLA-II proteins are encoded by 
several genes (HLA-DRA, HLA-DRB1,3,4,5, HLA-DPA1, HLA-
DPB1, HLA-DQA1, HLA-DQB1) and also show a very high level 
of polymorphism in the humans (except for HLA-DRA). HLA-II 
form heterodimers (HLA-DRA/HLA-DRB1,3,4,5; HLA-DPA1/
HLA-DPB1 and HLA-DQA1/HLA-DQB1). These dimers bind 
longer peptides (12–20 amino acids) within an open-ended 
peptide-binding site. Several other steps are involved in presenta-
tion of class II epitopes, such as loading on HLA-II molecules 
catalyzed by HLA-DM, peptide exchange catalyzed by HLA-DO, 
the presence of other enzymes such as cathepsins or pH gradients 
(7–10). Unlike HLA-I, HLA-II molecules are mainly expressed 
on specific professional antigen-presenting cells (pAPCs) such as 
dendritic cells or B cells (1), and rarely also by cancer cells such 
as melanoma (11). pAPCs can also uptake exogenous antigens 
and present them on HLA-I (12). This process is called cross-
presentation, and it is crucial for priming of naïve T  cells (13, 
14). Altogether, the cellular antigen processing and presentation 
machinery ensures that the restrictive loading of either intracel-
lular (class I) or extracellular (class II) peptides of the right length 
will take place in specialized cellular compartments.

The set of peptides presented on HLA molecules is called the 
HLA peptidome, also referred to as immunopeptidome or HLA 
ligandome. The HLA peptidome is a rich and complex reper-
toire of peptides that inform T cells about abnormalities in the 
genome, transcriptome, and proteome of infected or malignant 
cells (15–17). It is constantly modulated by HLA or peptides’ 
source protein expression levels, by posttranslational modifica-
tions and by the many enzymes, chaperones, and transporters 
that comprise the antigen processing and presentation machinery 
(7, 18–20). In particular, the catalytic subunits of the constitutive 
proteasome, the immunoproteasome, and the thymic protea-
some are tightly regulated, leading to the production of distinct 
repertoires of presented peptides in different cell types and under 
different conditions (21–24).

Historically, the study and predictions of class I and class II 
T cell epitopes have mainly developed in the field of infectious 
diseases, and large datasets of peptides displayed at the surface of 
infected cells and recognized by T cells are available from HIV, 
dengue, or influenza (25, 26). In the field of cancer immunology, 
tumor-associated antigens (defined here as genes expressed in 
cancer cells and not, or very poorly, in normal cells) have received 
much attention for almost 30  years (27). For instance, T  cell 
recognizing specific epitopes of NY-ESO or MAGE-1 proteins 
can be found in melanoma patients, indicating that the immune 
system can mount a response against tumor-specific antigens 
(27–29). More recently, many evidences have been accumulated 
indicating that cancer cells express unique mutated antigens, the 
so-called neoantigens, which can be recognized by the patients’ 

own (autologous) T  cells (15, 30–35). The total number of 
somatic mutations in some tumors has been shown to correlate 
with the therapeutic efficacy of checkpoint blockade antibodies 
(36–39), suggesting that neoantigens could play an important 
role in tumor immune recognition. Moreover, several studies 
demonstrated clinical benefit mediated by the administration of 
highly enriched populations of neoantigen-reactive CD4+ and 
CD8+ T cells (34, 40) and by neoantigen-based vaccines (41, 42). 
Potential neoantigens are typically predicted first by identifying 
non-synonymous alterations from next generation sequencing 
data and second by predicting the binding to HLA molecules of 
peptides encompassing these non-synonymous genetic altera-
tions (43). For these reasons, predictions of peptides presented 
on HLA-I and HLA-II molecules have gained renewed interest 
in the field of tumor immunology. Predicted neoantigens need to 
be then experimentally validated for HLA binding and immune 
recognition in vitro (44–47).

Here, we review approaches developed for predicting antigen 
presentation in human cells, with a focus on the latest experi-
mental and computational developments to take advantage of 
in-depth and accurate mass spectrometry (MS) data of HLA 
peptidomics. Our aim is to describe the main steps of antigen 
presentation that proved to be successful in making quantitative 
predictions of antigens. The more biological aspects of antigen 
presentation and processing are covered in many other reviews 
(1–3, 8).

MAiN SOURCeS OF HLA LiGAND DATA

A cornerstone in our ability to understand and predict antigen 
presentation has been the experimental identification of specific 
peptides interacting with HLA molecules. First, from an experi-
mental point of view, HLA-I molecules do not fold stably in the 
absence of a ligand and, therefore, all biochemical, structural, 
and functional studies of HLA-I molecules rely on the avail-
ability of known HLA-I ligands. Second, all computational 
methods to predict HLA ligands at a large-scale use data-driven 
approaches based on sequence patterns identified within known 
ligands.

Two main classes of experimental assays have been developed 
to identify HLA ligands. The first class of assays consists of in vitro 
assays. For HLA-I molecules, refolding assays use conformational 
pan HLA-I antibodies to test whether the HLA-I complex is prop-
erly folded in the presence of a peptide (48–52). Peptide-rescuing 
assays consist of a photo-cleavable peptide that is stripped by UV 
radiation in the presence of another peptide (53–55). Competitive 
assays with radiolabeled peptides have been used to determine 
relative affinity (IC50) (56). Dissociation assays based on radiola-
beled β2m have been used to probe the stability of peptide–HLA-I 
complexes (57, 58). Surface plasmon resonance techniques can 
be used to measure actual Kd values (59). In vitro binding assays 
have also been used for HLA-II ligands (60–62). Compared to 
class I ligands, screening of class II ligands at high throughput is 
facilitated since HLA-II molecules have an open-ended peptide-
binding site. Therefore, peptides can be fixed on plates, which 
allow for the use of peptide microarrays (63), or directly encoded 
in different display systems such as phage or yeast display (64, 65).
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In vitro binding assays play a central role in our ability to 
identify T  cell epitopes from viral or cancer-specific antigens 
(66, 67). When used in combination with state-of-the art pre-
dictions tools, they enable rapid validation of predicted targets 
and are currently key to most neoantigen discovery approaches 
in cancer immunotherapy (30, 31, 68, 69). The main caveat of 
in vitro assays for HLA-I ligands is that the peptides have to be 
determined a priori and chemically synthesized, since both the 
C- and N-terminus of most HLA-I ligands need to be free in 
most cases. This limits the use of high-throughput and unbiased 
peptide screening technologies. Furthermore, the involvement 
of the components of the antigen-loading complex is missing in 
in vitro binding assays and, therefore, signals related to antigen 
loading in vivo cannot be captured.

The second type of experimental assays for HLA ligand iden-
tification is based on MS measurement of eluted HLA-binding 
peptides. This approach is the only methodology to compre-
hensively interrogate the repertoire of HLA ligands presented 
naturally in  vivo (16, 18, 70, 71). The best-established HLA 
peptidomics methodology is based on immunoaffinity purifica-
tion (IP) of HLA complexes from detergent solubilized lysates, 
followed by extraction and purification of the peptides. Typically, 
either anti-pan-HLA class I, anti-HLA-DR, or anti-pan-HLA 
class II monoclonal antibodies are used. The extracted peptides 
are then separated by high-pressure liquid chromatography and 
directly injected into a mass spectrometer. The resulting spectra 
obtained from the fragmentation of the peptides are compared 
with in silico generated spectra of peptides from protein sequence 
databases with MS search tools. Therefore, this search is limited to 
the available databases, usually the annotated human proteome. 
Moreover, peptides that have features that make them incompat-
ible with ionization, those that are too hydrophobic or too hydro-
philic, might not be detected with standards methods. With the 
new generation of mass spectrometers, thousands of HLA ligands 
can be identified per sample (15, 18, 72, 73). Cell lines, includ-
ing human cancer cell lines, tumors, healthy tissues, and body 
fluids such as plasma have been subjected to HLA peptidomics 
analyses (18, 70–84). However, MS-based HLA peptidomics 
approaches have limited sensitivity and require a relatively large 
amount of biological sample (~1 cm3 of tissue or 1 × 108 cells) 
(21). Furthermore, despite major improvement in the quality 
of HLA peptidomics data, one can never exclude small residual 
contaminations from co-eluted peptides or wrong annotation of 
spectra depending on the false discovery rate threshold used in 
spectral searches.

Dedicated proteogenomics computational pipelines for cus-
tomized reference databases have been developed to expand the 
search space beyond the canonical human proteome. Customizing 
references to include somatic alterations observed in tumors 
have been used for direct identification of neoantigens by MS in 
murine and human cancer cell line models (31, 35, 80, 85), B cell 
lymphomas (86), and melanoma tissues (15). Similar approaches 
were also used for other cryptic peptides resulting from uncon-
ventional coding sequences in the genome (87) and new open 
reading frames (88) (see Non-Canonical HLA-I Ligands).

Historically, the first HLA-I motifs (e.g., HLA-A02:01) were 
found by looking at peptide sequences of eluted ligands identified 

by MS (89, 90). To overcome the fact that eluted peptides come 
from up to six HLA-I alleles in unmodified cell lines or tissue 
samples, two experimental approaches have been developed. The 
first approach consists of transfecting a soluble HLA allele into a 
cell line and pulling down only the soluble HLA-I molecules in 
complex with their ligands (91, 92). While it has been shown that 
the repertoire of peptides presented on transfected soluble HLA-I 
and the endogenous membranal HLA-I molecules are highly 
similar (93), the non-physiological expression level of the soluble 
HLA-I molecules and the potential different environment in the 
loading compartment could affect the overall peptide repertoire. 
Furthermore, endogenous HLA-I alleles can be shaded or natu-
rally secreted from cells in culture (94) and could contaminate the 
secreted peptidome (75). Nevertheless, this approach proved very 
powerful to identify HLA-I motifs (77, 78, 95–97). Of particular 
interest is the study by Di Marco and co-authors where the motifs 
of 15 HLA-C alleles could be determined, together with motif for 
HLA-G01:01 (75). This detailed view of HLA-C alleles binding 
specificities enabled the authors of this study to identify for the 
first time specificity determinant residues in the HLA-C-binding 
site that provide likely molecular mechanisms explaining the dif-
ferences observed between HLA-C binding motifs. The second 
experimental approach consists of using genetically modified 
cell lines that express only one allele (98, 99) and was used to 
study binding motifs of highly similar alleles, like HLA-B27:02 
to HLA-B27:09 (100). This approach was also recently used to 
screen 16 HLA-A and HLA-B alleles, and this work confirmed 
that predictors trained on MS data could improve predictions of 
naturally presented HLA-I ligands (70). One advantage of this 
approach is that theoretically all peptides come from one single 
allele (see above for potential sources of contaminations). In par-
allel, we and others introduced computational techniques based 
on motif deconvolution (72, 101) and peptide clustering (102, 
103) to accurately determine HLA-I restriction of eluted ligands 
from pooled samples without requiring to experimentally isolate 
each HLA-I allele and without relying on HLA-I ligand predictors 
(see below for a detailed description of these approaches).

Comparison of MS and In Vitro Data
Until 2012, the number of MS datasets was significantly lower 
than in vitro data (Figure 1), which partly explains why in vitro 
binding data were mainly used for training HLA-I ligand predic-
tors. However, the situation has changed quite dramatically over 
the last 4 years. Combining data from IEDB (25) together with 
recent HLA peptidomics studies (see Supplementary Material), 
we can observe that roughly 10 times more unique HLA-I ligands 
and three times more unique HLA-I–peptide interactions are 
currently available from MS studies (Figure 1, the lower number 
of interactions than peptides for MS data comes from the fact that 
several MS samples did not have HLA typing information or allele 
restriction could not be determined with motif deconvolution). 
The coverage of HLA-I alleles is also larger in HLA peptidomics 
samples compared to in vitro binding data (Figure 1). Moreover, 
all curves for MS data do not show signs of saturation, suggesting 
that these numbers are likely to further increase in the coming 
years, especially with the growing interest in HLA peptidomics 
profiling of cancer samples from patients with diverse ethnic 
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backgrounds for neoantigen discovery (15). Similar observations 
hold for HLA-II ligands, where the number of unique peptides 
identified by MS largely exceeds the number of peptides identi-
fied in in vitro assays. However, the number of HLA-II alleles with 
documented ligands is still larger for in vitro binding data. This 
likely reflects the fact that HLA-II ligands are easier to screen in 
a high-throughput way using peptide microarrays, and that allele 
restriction in HLA-II peptidomics data is still more difficult to 
determine with motif deconvolution or peptide clustering than 
for HLA-I peptidomics data.

MODeLiNG HLA-i BiNDiNG SPeCiFiCiTY
Allele-Specific Predictors
Modeling HLA-I-binding specificity has been carried out for 
almost 30 years since the first evidence of HLA-I motifs. Early 
studies used simple sequence motifs [e.g., xLxxxxxx(L/V) for 
HLA-A02:01]. However, as more data started to accumulate, it 
became clear that simple motifs were too restrictive and not quan-
titative enough. To overcome these limitations, position weight 
matrices (PWM) (equally referred to as Position Specific Scoring 
Matrices or simply scoring matrices) were introduced (104–107). 
The basic idea is to compute the frequency of each amino acid 
at each position in a set of (pre-aligned) peptides. The score of 
a new peptide can then be computed by multiplying the PWM 
entries corresponding to the sequence of the new peptide (see 
Supplementary Material). Although the idea of computing amino 
acid frequencies is relatively simple to understand, several steps 
are important when building a predictor based on PWMs. First, 
one has to consider the amino acid background distribution and 
use this distribution to renormalize the scores (see Supplementary 
Material). In most existing approaches, amino acid frequencies of 

the human proteome have been used. However, this approach may 
not be fully justified when using viral epitopes to train predictors. 
Similarly, eluted HLA-I ligands do not show the same amino acid 
distribution as human proteins and much lower frequency of 
cysteine has been reported by ourselves and others (70, 72). As 
such, the optimal choice of background distribution may depend 
on the origin (both biological and technical) of the data. Second, 
in most cases, estimating the frequency of amino acids occurring 
only a few times (or never) at a given position is highly susceptible 
to statistical noise. To address this issue, pseudo-counts are often 
used. A widely used approach is based on the BLOSUM62 matrix 
(see Supplementary Material) (105, 108, 109). Third, biases due to 
the design of specific experiments can be found in many in vitro 
datasets. For instance, if a mutagenesis was carried out at a fairly 
non-specific position in a given epitope, many sequences will 
have identical amino acids at all positions except the one used in 
the mutagenesis. One way to correct for such biases is to add a 
weight to all peptides that is inversely proportional to the number 
of highly similar sequences in the dataset (see Supplementary 
Material).

Since the last decade, most allele-specific HLA-I ligand predic-
tors use machine learning frameworks such as neural networks, 
hidden Markov Models, support vector machines, or convolu-
tional neural networks (110–114). One attractive aspect of these 
models is the ability to consider potential correlations between 
different positions within HLA-I ligands. For instance, we recently 
observed in HLA-B07:02 ligands that arginine is preferred at P3 
or at P6, but not at both positions at the same time (101). This type 
of correlation is not captured by simple PWMs. However, it is still 
unclear how frequent these correlations are for HLA-I ligands. In 
particular, although many studies reported improved predictions 
of HLA-I ligands using machine learning algorithms (112, 115), 

https://www.frontiersin.org/Immunology/
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TABLe 1 | Summary of some of the most recent or most widely used human leukocyte antigen (HLA)-I predictors with available web interface or code repository.

Name Training data Output Algorithm Allele coverage Access Reference

NetMHC4.0 BA BA NN S http://www.cbs.dtu.dk/services/NetMHC/ (110)
NetMHCpan4.0 BA + MS R (BA) NN Pan http://www.cbs.dtu.dk/services/NetMHCpan-4.0/ (117)
MixMHCpred MS R PWM S https://github.com/GfellerLab/MixMHCpred (72, 120)
MHCflurry BA BA NN S https://github.com/openvax/mhcflurry (113)
PickPocket BA BA PWM Pan http://www.cbs.dtu.dk/services/PickPocket/ (107)
NetMHCstabpan BS BS NN Pan http://www.cbs.dtu.dk/services/NetMHCstabpan/ (118)
NetMHCstab BS BS NN S http://www.cbs.dtu.dk/services/NetMHCstab/ (111)
NetMHCcons BA BA C S http://www.cbs.dtu.dk/services/NetMHCcons/ (181)
IEDB consensus BA R C S http://tools.iedb.org/mhci/ (182)
SMMPMBEC BA R PWM S https://github.com/ykimbiology/smmpmbec (104)
MHCnuggets BA BA NN S https://github.com/KarchinLab/mhcnuggets-2.0 (183)
ConvMHC BA R NN Pan http://jumong.kaist.ac.kr:8080/convmhc (116)
HLA-CNN BA R NN S https://github.com/uci-cbcl/HLA-bind (114)
SYFPEITHI BA + MS R PWM S http://syfpeithi.de/0-Home.htm (106)
PSSMHCpan BA BA PWM Pan https://github.com/BGI2016/PSSMHCpan (184)

Column 2, BA, binding affinity; BS, binding stability; MS, HLA peptidomics data; column 3, BA, binding affinity; R, ranking; column 4, NN, Neural network (including deep networks); 
PWM, position weight matrices; C, consensus; column 5, S, allele specific; Pan, pan-class I.
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one has to be careful before concluding that correlation patterns 
are prevalent, since improvement in prediction accuracy may 
also result from more robust regularization frameworks. Finally, 
machine learning approaches are also susceptible to overfitting 
and correcting for potential biases in training sets can be more 
challenging than with simple PWMs.

Pan-Allele Predictors
Enough experimental ligands are available for roughly 100 HLA-I 
alleles, which represents only a small fraction of the >12,000 
HLA-I alleles observed in the human population. To address 
this issue, pan-allele predictors have been introduced, where the 
input of the algorithm consists of both the sequence of the ligand 
and the sequence of the HLA-I allele (or of its binding site) (107, 
116–118). These algorithms are powerful at capturing correla-
tions between amino acids in the HLA-I-binding site and in the 
ligand. The most widely used and likely the most elaborate pan-
specific algorithm is the NetMHCpan tool (117), which includes 
several features specific for HLA-I molecules, such as combining 
peptides of different lengths in the training and incorporating 
peptide length preferences.

Table  1 summarizes some of the most common predictors, 
together with information about the algorithm that is used, the 
type of training data and the output.

Choosing the Right Training Set
While extensive work has been performed to optimize the algo-
rithms used in HLA-I predictors, less attention has been devoted 
to the choice of the training set. Prior to 2016, most approaches 
aimed at predicting binding affinity values (i.e., IC50) and, there-
fore, were trained on in vitro data mainly obtained from IEDB 
(25). Although high accuracy could be reached for many com-
mon alleles, several potential biases suggest that such data can be 
suboptimal for training predictors. In particular, it is important 
to remember that most HLA-I ligands tested in vitro for binding 
were first predicted with older versions of HLA-I ligand predictors 
[some exceptions that used random peptide libraries include Ref. 

(58)]. Unfortunately, this can induce circularity when using these 
data to retrain predictors, and such biases are difficult to detect 
and correct for. Of note, the same circularity issue can also affect 
several published MS datasets when HLA-I ligand predictors or 
motifs were used to assign allele restriction and filter noise. Here, 
we argue that high-quality MS data not filtered with existing 
predictors provide a powerful solution toward overcoming the 
potential circularity inherent to many in vitro binding data.

Using MS Data for identifying HLA-i  
Motifs and Training Predictors
Mono-allelic samples or transfected soluble HLA-I alleles have 
been used since many years to study the binding motifs of specific 
HLA-I molecules (91, 92). However, due the experimental work 
implied by such approaches, they were never applied to a large 
panel of HLA-I alleles [the largest studies consist of 16 alleles for 
mono-allelic cell lines (70) and 17 alleles for transfected soluble 
HLA-I alleles (75)]. For pooled HLA peptidomics dataset, the 
impossibility to experimentally assign allelic restriction was 
often considered as an important hurdle to use such data toward 
studying HLA-I-binding motifs.

However, in the last few years, it became clear that pooled 
HLA peptidomics data can be used to study HLA-I motifs and 
improve predictions, thereby overcoming the need of genetically 
modifying cell lines or transfecting soluble HLA-I alleles. The first 
attempt to determine HLA-I-binding motifs from pooled HLA 
peptidomics data was published in 2015 (18). A year later, we 
published the first evidence that such data can be used to improve 
predictions of HLA-I ligands (101). Since then, many studies have 
confirmed these results both for the identification of new motifs 
(72, 81, 102, 103, 119) and for improving predictions of HLA-I 
ligands by integrating MS data in the training of predictors (70, 
72, 117, 120).

As of today, two algorithms have been used for motif decon-
volution and peptide clustering of pooled HLA peptidomics data. 
One of them (MixMHCp) is based on mixture models and was 
initially developed for multiple specificity analysis in large PDZ 
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or SH3 ligand datasets obtained by phage display (121–123). In 
this framework, the idea is to let the algorithm infer K distinct 
PWMs that optimally model the eluted peptides (101). Since 
peptides identified by MS come from K different HLA-I alleles 
(K ≤ 6), it is not surprising that the motifs that optimally describe 
the data correspond precisely to the specificity of these alleles. 
The other algorithm (GibbsCluster) is based on simulated 
annealing to group the peptides into different clusters optimiz-
ing a global cost function that models how well each peptide fits 
into its respective cluster (103, 124). Somehow unexpectedly, 
both algorithms were initially developed for other purposes (i.e., 
multiple specificity analysis for MixMHCp and simultaneous 
clustering and alignments of short peptides for GibbsCluster) and 
their use for motif identification in HLA peptidomics data was 
realized only later (18, 101, 102). The two approaches have many 
conceptual similarities since the likelihood function optimized in 
MixMHCp differs only slightly from the cost function optimized 
in GibbsCluster. In practice, the two algorithms lead most of the 
time to very similar results for HLA-I peptidomics data (101) 
and nearly identical motifs as those obtained from mono-allelic 
samples or transfected soluble alleles (72) (see also examples in 
Figure S1 in Supplementary Material). In some cases, as we have 
reported, the mixture model tends to be slightly more sensitive 
to identify motifs supported by few peptides, such as those 
describing HLA-C alleles (101). Conversely, the GibbsCluster 
has several advantages, such as the ability to combine peptides of 
different lengths and the simultaneous clustering and alignment 
of the peptides (which is critical for HLA-II ligands) (102, 103). 
Both methods can be used as command line or through webserv-
ers (see http://www.mixmhcp.org and http://www.cbs.dtu.dk/
services/GibbsCluster-2.0/). The availability of these algorithms 
strongly supports the notion that allele assignment in MS data 
should not be done based on HLA-I ligand predictors, since this 
may remove all peptides that are not well modeled with existing 
predictors, and hence bias determination of motifs and prevent 
improving the predictors. It is also important to emphasize that 
accurate motif deconvolution requires a large number of peptides, 
and ideally, many samples to test the robustness of the motifs (72). 
For this reason, it is likely the combination of higher accuracy 
and throughput of MS instruments (18) together with these novel 
algorithms that enabled accurate HLA-I motifs identification in 
pooled HLA peptidomics data.

Annotation of the motifs deconvolved from pooled HLA 
peptidomics data can be done in different ways. For alleles for 
which a reasonable description of the motifs is known, one can 
simply compare the motifs found in MS data to the known refer-
ences (18). Using Euclidean distance to quantify the similarity 
between the PWMs appears to provide stable results and most of 
the time the mapping is quite obvious (72, 101). If the motifs are 
not known, two approaches have been developed. One fully unsu-
pervised approach was proposed by ourselves based on cooccur-
rence of HLA-I alleles across different samples (72). In this way, 
we could identify and annotate HLA-I motifs for more than 40 
alleles, including 7 alleles that had no experimental ligands at the 
time of this study. Another semi-supervised approach that works 
well in most cases consists of comparing with motifs predicted 
from pan-allele predictors such as NetMHCpan (119).

An important limitation of motif deconvolution approaches 
comes from the fact that motifs for some alleles (especially 
HLA-C alleles) are more difficult to detect in many samples. 
Also, in the presence of highly similar motifs (e.g., HLA-A23:01 
and HLA-A24:02, or HLA-C07:01 and HLA-C07:02), the two 
motifs often cannot be split (72). Because of this, not all HLA 
peptidomics datasets are appropriate for training predictors for 
each allele expressed in the corresponding sample. This limita-
tion can be alleviated by considering large collections of HLA 
peptidomics studies and focusing on cases where the motifs are 
clearly visible and can be unambiguously annotated (72). Finally, 
it is sometimes useful to consider more motifs than the number 
of alleles in order to identify motifs for each allele (Figure S2 in 
Supplementary Material).

Figures  2–4 summarize the HLA-A, HLA-B, and HLA-C 
motifs currently available by combining motifs deconvolved from 
recent MS studies together with IEDB data (see Supplementary 
Material). As expected, the clustering based on the similarity 
between the motifs (see Supplementary Material) broadly reca-
pitulates the supertype assignment for HLA-A and HLA-B alleles 
and helps highlighting differences among alleles classified within 
the same supertypes.

Biases in MS Data
While MS data are not suffering from the potential circularity 
present in many in vitro binding data, they are not free from any 
biases. First, as already mentioned, only peptides that are part of 
the database used for spectral searches can be detected in HLA 
peptidomics data, or else, the less accurate de novo method may 
be applied. This has direct implication for cysteine-containing 
peptides. Since this amino acid can be chemically modified by 
oxidation and as such modifications are typically not included 
in standard MS searches, cysteine occurs at very low frequency 
in HLA peptidomics datasets. Attempts to correct for this bias 
when training predictors tried to renormalize PWMs based 
on observed amino acid frequencies at non-anchor positions 
(72) or expand the MS spectral search to include modified 
cysteines (70). Second, peptides that are too hydrophobic or too 
hydrophilic might be missed applying the common purification 
methods that rely on retaining peptides through hydrophobic 
interactions with the solid phase. Furthermore, some peptides 
have features that make them incompatible with ionization or 
lead to poor fragmentation. Combining fragmentation meth-
ods, such as higher-energy collision-induced dissociation and 
electron-transfer dissociation, have been shown to improve 
spectra annotation of HLA peptides (73). Despite these limita-
tions, inspection of HLA peptidomics data and comparison with 
motifs obtained from in vitro data did not reveal major differ-
ences, except for the low frequency of cysteine [slightly higher 
frequency of charged amino acids at some positions has been 
reported in some studies (101, 102)]. Third, immuno-purifica-
tion based MS data cannot distinguish between HLA-I ligands 
presented on the cell surface from those resident in the ER. This 
can be achieved by purifying HLA-I peptides from the cell sur-
face by mild acid elution (125, 126). However, in a head-to-head 
comparison, the IP method outperformed the mild acid elution 
in terms of peptide recovery (127). Last, when considering MS 
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data, it is important to remember that these peptides come from 
human proteins and that proteins or domains within proteins 
can display significant homology (especially for class II ligands 
where in addition many peptides can originate from the same 
core region). This can artificially enhance the frequency of some 
amino acids. This issue is especially important when building 
random models of MS data to infer whether amino acid frequen-
cies (either within a motif or at flanking regions) differ from 
what is expected by chance.

MODeLiNG HLA-ii-BiNDiNG SPeCiFiCiTY

Predictions of HLA-I ligands, especially with the recent incorpo-
ration of high-quality MS data in the training of predictors, have 
reached a high level of accuracy (70, 72, 117, 120). The situation 
is unfortunately not the same for HLA-II ligands, which are still 
much more difficult to predict despite the large amount of experi-
mental data acquired over the years (Figure 1). Several challenges 
arise when modeling the binding specificity of HLA-II alleles. 
First, HLA-II alleles tend to have more degenerate and less spe-
cific motifs. Second, all current approaches rely on first aligning 

peptides with tools such as NN-align (128). Although these tools 
have been optimized to handle HLA-II ligands, automated align-
ment of small peptides is known to be a difficult computational 
problem. Finally, the fact that HLA-II molecules form dimers 
further increases the diversity for HLA-DP and HLA-DQ alleles 
where both members of the dimers are polymorphic. Allele-
specific HLA-II ligand predictors include NetMHCII (129), 
ProPred Singh (130), MHCPred (131), TEPITOPE (132), and 
consensus methods (133). Pan-specific class II predictors mainly 
consist of NetMHCIIpan (129). While all these predictors show 
better than random performances, their accuracy is lower than 
for HLA-I ligand predictors. This may be due to the challenges of 
determining class II motifs, as well as to the complex machinery 
of class II presentation, whose specificity is still poorly under-
stood from a quantitative and predictive point of view [see Ref. 
(7–10) for a detailed discussion of the more biological aspects of 
this process and the importance of HLA-DM and other enzymes]. 
In particular, it appears that properties such as conformational 
flexibility play a role in loading onto HLA-II molecules (134), 
and these properties are difficult to predict directly from peptide 
sequences.
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Whether similar improvement for class II predictions as 
for class I will be reached by incorporating class II peptidome 
data in the training of algorithms has not been investigated at 
a large scale. Nevertheless, it has been recognized already long 
ago that eluted ligands could provide important information 
about HLA-II-binding motifs (135). More recently, HLA-II 
peptidomics was performed in BALB/c and C57BL/6 mice and 
demonstrated that clear motifs for H-2 I-Ad and H-2 I-Ab could 
be obtained (136). A subsequent study suggested that predictors 
trained on these data perform better than NetMHCIIpan when 
repredicting the MS data (137). A similar strategy was carried 
out in transgenic DR1+ and DR15+ mice to identify the motifs 
of these two alleles (138). Recent studies also indicate that motif 
deconvolution with the GibbsCluster algorithm may work in 
pooled HLA-II peptidome datasets (21, 139), which could 
lead to refinement of HLA-II motifs and improved predictions 
in the coming years, as suggested in a recent preprint (140). 
However, the results are still more challenging to interpret and 
some motifs predicted by GibbsCluster are difficult to annotate, 
while the motifs for some alleles are sometimes not detected 
(21, 139, 141).

iNveSTiGATiNG OTHeR PROPeRTieS OF 
HLA–PePTiDe iNTeRACTiONS

Many other important properties of HLA-I molecules beyond 
the 9-mer-binding motifs themselves can be studied through the 
analysis of HLA peptidomics data.

Peptide Length Distribution
Arguably, the most important information beyond the binding 
motifs that can be extracted from MS data is the characterization 
of peptide length distributions. Many studies have demonstrated 
high heterogeneity of peptide length distributions between dif-
ferent alleles, with alleles such as HLA-B51:01 displaying high 
frequency of 8-mers (only slightly smaller than 9-mers) and very 
few longer peptide, while others such as HLA-A01:01 show high 
frequency of longer (≥12 amino acids) peptides, which can still 
be recognized by T cells (15, 70, 97, 103, 142). Structurally, most 
longer peptides are known to form bulges, with anchor residues 
conserved at the second and last positions of the peptides. Some 
patterns emerged from analysis of peptide length distributions. 
For instance, HLA-I alleles with anchor residues at middle 
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positions (e.g., HLA-B08:01, HLA-B14:01, HLA-B14:02, HLA-
B37:01) displayed peptide length distributions peaked at 9-mers, 
which is consistent with the fact that the middle anchor residue 
needs to be structurally conserved in the presence of an anchor 
at such positions (101). The study by Trolle and co-authors (97) 
demonstrated that peptide length distributions observed in MS 
data for five alleles could not be simply explained by differences 
in binding affinity, suggesting that the pool of peptides available 
for loading in the ER is skewed toward 9-mers. This likely implies 
that predictors trained on MS data will differ from those predict-
ing binding affinity when comparing peptides of different lengths. 
In a recent preprint (143), we performed a large-scale analysis of 
peptide length distributions across 85 HLA-I alleles and could 
identify clusters of HLA-I molecules based on the similarity of 
their peptide length distributions. Peptide length distribution 
has been incorporated into the latest versions of NetMHC and 
NetMHCpan, by adding one additional input node encoding 

for peptide length in the neural networks (110, 117), and into 
MixMHCpred by directly fitting distributions observed in MS 
data (143).

As observed in our recent paper (21), peptide length distribu-
tion can also be affected by different treatments such as INFγ 
likely due to modulating the activity of catalytic subunits of 
the proteasome, and these aspects are not captured by existing 
predictors.

C- And N-Terminal extensions
Human leukocyte antigen peptidomics data have been instru-
mental in exploring non-canonical binding modes in HLA-I 
ligands. In particular, several recent studies have used MS data to 
study C- and N-terminal extensions in HLA-I ligands. Although 
such extensions had been identified long ago [first crystal struc-
ture in 1994 (144), PDB:2CLR, followed by another structure in 
2009 (145), PDB:3GIV], their prevalence had remained unclear. 
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In 2016, HLA peptidomics profiling and X-ray crystallography 
were combined to explore C-terminal extensions in HLA-A02:01 
and demonstrated that such extensions were especially common 
among peptides originating from pathogens (146). This was 
followed by additional work that better described the struc-
tural mechanisms and cellular origin of such extensions (147). 
N-terminal extensions have been identified in HLA-B57:01 (148) 
and HLA-B58:01 (149). More recently, we have demonstrated that 
C-terminal extension occur in a substantial fraction of HLA-I 
molecules and can be recognized by CD8 T cells (120). Our work 
further enabled us to identify both sequence and structural fea-
tures predictive of such extensions. In particular, it appeared that 
C-terminal extensions are especially frequent in alleles displaying 
specificity for positively charged residues at the last anchor posi-
tion (e.g., HLA-A03:01, HLA-A31:01, HLA-A68:01). While MS 
data potentially provide a rich source of information about C- and 
N-terminal extensions, identifying these extensions by looking at 
the sequence of the peptides can be challenging, especially when 
the residue at the extension has similar specificity as the anchor 
residue (i.e., same residues at P9 and P10 for putative C-terminal 
extensions, same residues a P2 and P3 for putative N-terminal 
extensions). Our work suggests that many ambiguous cases may 
actually follow the bulging conformation (120).

Posttranslationally Modified HLA-i 
Ligands
Posttranslationally modified peptides have been identified by MS 
analysis of eluted ligands (15, 150–152). These include mainly 
phosphorylated peptides, which can be recognized by T  cells 
(153–155). Phosphorylation was observed to occur mainly at 
position 4 (15), suggesting that it does not impact too much 
the binding to the HLA-I molecules. Existing HLA-I ligand 
predictors do not include phosphorylated peptides, although the 
increasingly larger MS datasets of phosphorylated HLA-I ligands 
suggest that predictions of phosphorylated HLAI ligands may 
soon become feasible. As for now, one approach is to treat the 
phosphorylated residue as its unmodified counterpart and use 
available predictors to predict such ligands.

HLA-ii Molecules
Fewer studies used MS data to investigate properties of HLA-II 
molecules other than the actual-binding motifs. Studies reported 
broad peptide length distributions peaked around 15-mers (15, 21, 
139, 156, 157), but it is still unclear to what extent distinct alleles 
show distinct peptide length distributions. Other properties of 
HLA-II molecules that could be studied based on MS data include 
the cellular origin of class II peptides (156, 158, 159) and the 
impact of different biological processes such as autophagy (160). 
MS studies also indicated preference for proline at the second and 
second to last position of peptides degraded in the endolysosomal 
pathway (156, 161), and preference for lysine at the C-terminus 
and for aspartate at the N-terminally flanking residue of class II 
epitopes degraded in the cytosolic pathway (156). Along these 
lines, many studies support the idea that presentation of class 
II peptides is not only driven by the binding specificity to the 
HLA-II molecules but also involves some (still uncharacterized) 

specificity in the processing machinery, flanking regions (162), or 
presentation hotspots in the human proteome (159).

Considering the increasingly higher quality and throughput 
of class II HLA peptidomics data (15, 21, 86, 138, 139), we 
anticipate that analysis of HLA-II peptidomes will further enable 
researchers to investigate new properties of HLA-II molecules. 
For instance, it will be interesting to see whether the presence 
of bulging class II ligands, as recently reported from an analysis 
of in vitro binding data (163), can be confirmed in large-scale 
unbiased MS data.

ANTiGeN PReSeNTATiON—BeYOND 
BiNDiNG TO HLA

integrating Cleavage Site and TAP 
Transport Predictions, Signals from 
Flanking Regions and Other Proteomic 
information
Mass spectrometry-based HLA peptidomics analysis can reveal 
crucial information about the rules underlying the biogenesis of 
the HLA peptidome, including signatures of cleavage site speci-
ficity, influence of source protein expression or other patterns 
characterizing naturally presented HLA ligands. Predictions of 
cleavage sites have been available since many years and have been 
used to narrow-down the list of predicted HLA-I ligands (164). 
Although some improvement has been observed, cleavage site 
predictions have only a limited effect on prediction accuracy of 
naturally presented HLA ligands. For this reason, it is not widely 
used in many existing pipelines for neoantigen predictions from 
exome sequencing data, for instance. Predictions of TAP transport 
has also been integrated with affinity and cleavage site predictions 
to model antigen presentation (165–167). Interrogation of prop-
erties of thousands of HLA-I ligands source-proteins has revealed 
that the proteome is not randomly sampled. Several biological 
determinants correlate with presentation, such as level of transla-
tion (71), expression, and turnover rate (18) and selective regions 
of the human proteome (71). Specific amino acid signals in 
flanking regions of naturally presented HLA-I ligands, like lower 
frequency of proline, have also been demonstrated (70). While 
binding to HLA still appears to be the most selective step of class 
I antigen presentation, integrating these additional features into 
a single predictor further improves the accuracy of predictions of 
naturally presented peptides (70, 71).

Presentation Hotspots
After deep interrogation of HLA peptidomics large scale data, 
we and others have recently suggested that HLA ligands are not 
randomly distributed along the protein sequences but are located 
within “hotspots” (15, 71), which fit proteasomal cleavage, 
peptide processing, and HLA-binding rules (168). Recently, we 
envisioned that these hotspots reflect regions of proteins with 
enhanced proteasomal or endosomal peptide production prior 
to HLA loading and may, therefore, provide complementary 
information to HLA-binding predictions (159). To this end, we 
collected a large dataset of MS detected HLA class I and class 
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II ligands from different cancer and healthy tissues and variety 
of cell lines. We used this dataset to score potential neoantigens 
based on how well their un-mutated source proteins are naturally 
presented. In a proof of concept study, we tested this hypothesis 
with published data (33) and could show that MS-based features 
improved the prioritization of confirmed neoepitopes (159). 
Large scale databases of HLA peptidomics data capture the global 
nature of the in vivo peptidome averaged over many HLA alleles 
and, therefore, reflect the propensity of peptides to be presented, 
which can complement binding-affinity predictions.

FUTURe PeRSPeCTiveS

expanding the Description of HLA Motifs
Accurate and unbiased binding motifs are available for a bit more 
than 100 HLA-I alleles (Figures 1–4). This is only a tiny fraction 
of the >12,000 HLA-I alleles listed in IMGT/HLA database (4). 
For this reason, much has still to be learned about the specificity 
of HLA-I molecules. We anticipate that the ability to deconvolve 
HLA-I motifs from pooled HLA peptidomics data will play an 
important role to expand our understanding of HLA-I-binding 
specificities. This is especially promising in light of the current 
interest in using MS to identify neoantigens in cancer patients. 
However, even with the current efforts in HLA peptidomics, 
extrapolation of the curves in Figure 1 suggests that experimen-
tally determined HLA-I ligands will remain available for only 
a small fractions of HLA-I alleles in the coming years. For this 
reason, development of pan-specific HLA-I ligand predictors 
leveraging high-quality MS data available for a few (~100) alleles 
to model the binding specificity of other alleles are expected to 
play an important role in broadening the scope of HLA-I ligand 
predictions to rarer alleles without document ligands (117). 
Accurate and in-depth HLA peptidomics data will also likely play 
an important role in improving our understanding and descrip-
tion of HLA-II motifs. Use of HLA-II gene-specific antibodies 
(i.e., pan-DR, pan-DP, or pan-DQ) may facilitate accurate motif 
deconvolution in such datasets.

Better Understanding of Antigen 
Presentation
While binding to HLA molecules is the most specific and best 
quantitatively characterized step of the antigen presentation 
process, it is likely that some additional filtering comes from 
cleavage in the proteasome, transport with TAP, and loading in 
the ER. As mentioned earlier, several recent studies suggest that 
including these additional parameters further improves predic-
tion accuracy (70, 71, 159, 166). One of the challenges there is to 
disentangle real biological signals from potential technical biases 
in MS data. Despite this caveat, it is likely that accumulating very 
large datasets of naturally presented HLA-I ligands is the only way 
to improve the accuracy of models of antigen presentation that 
go beyond the binding to HLA molecules. In addition, it could 
provide new information about how the HLA peptidome can 
be remodeled in response to extracellular signals, such as IFNγ 
stimulation (19, 21). We, therefore, envision that screening how 
inhibition or activation of components of the antigen processing 

and presentation affect the nature of naturally presented HLA 
ligands on a large scale may reveal their role in shaping the HLA 
peptidome.

Non-Canonical HLA-i Ligands
Increasing evidences also suggest that non-canonical and cryptic 
peptides contribute to the HLA peptidome and expand the range 
of putative T  cell epitopes. Laumont et  al. have constructed 
a reference database of stop-to-stop translation products of 
six open reading frames of expressed RNAs and revealed that 
about 10% of the peptidome derive from presumably noncod-
ing genomic sequences or exonic out-of-frame translation (87). 
Liepe et al. have reported that around 30% of the peptidome is 
derived from non-contiguous peptides spliced by the proteasome 
(169). Unexpectedly, spliced peptides displayed significantly 
lower predicted affinity than the normal peptides identified in 
the same samples (169) and did not show the expected HLA-I 
motifs. A very large database that is about two orders of mag-
nitude larger than the typical protein-coding database was used 
to incorporate theoretical spliced products (169). Searching such 
large databases, especially in order to identify HLA peptides that 
have no enzymatic restrictions, may lead to improper control 
of false positives (170). In a recent preprint (171), we proposed 
an alternative, more conservative, approach to identify spliced 
peptides among HLA-I ligands based on de novo interpretation 
of high-quality spectra, suggesting that the number of such 
peptides may have been overestimated in the original study. 
The exact amount of spliced HLA-I ligands is still a matter of 
debate, and further studies will be needed to precisely estimate 
the fraction of spliced peptides actually displayed on HLA-I 
molecules. However, these potential issues suggest that putative 
spliced peptides may not all be appropriate for training HLA-I 
ligand predictors. Exploring non-canonical HLA ligands derived 
from translation of non-conventional regions in our genome or 
posttranslation events such as splicing is like finding a needle in 
a haystack. In silico predictions of such potential HLA ligands 
with existing tools may, therefore, lead to in-controlled numbers 
of false-positives, since the non-canonical space is theoretically 
orders of magnitude larger than the current canonical protein 
space. Hence, intensive proteogenomics based investigation of 
acquired HLA peptidomics data will likely play a central role in 
this endeavor and will require advanced computational tools and 
statistics to properly control for false positives.

Toward Predictions of immunogenicity
Recent years have witnessed an unprecedented growth of in-depth 
and accurate MS data (Figure 1) that significantly enhanced our 
ability to predict antigen presentation. Unfortunately, these data 
cannot inform us about the most critical step in immune recog-
nition, namely, the recognition of presented antigens by T cells. 
Much less is known there, and it is for instance, a disappointing 
fact that most predicted neoantigens from mutations found 
by exome sequencing of tumors are not recognized by T  cells, 
although many resulting peptides do bind to HLA-I molecules. 
While direct identification of mutated peptides presented on the 
surface of cancer cells will likely improve the fraction of truly 
immunogenic epitopes (101), it is likely that many mutated 
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peptides seen by MS will still not be immunogenic. Moreover, 
although binding affinity has been demonstrated to be useful 
for enriching pools of peptide in immunogenic epitopes (espe-
cially for class I), many known immunogenic epitopes display 
low-binding affinity, suggesting that they would be missed by 
approaches based on affinity predictions only. This is especially 
true for class II epitopes, where clear evidences indicate that 
different enzymes, peptide exchange mediates by HLA-DM or 
HLA-DO, pH gradients and peptide conformational flexibility 
play a role in selecting immunodominant epitopes (8–10, 134). 
Unfortunately, currently, very little of this biological knowledge 
about class II antigen presentation could be used to improve 
predictions of class II epitopes.

Work by Calis et al. (172) suggested that some amino acids at 
non-anchor positions confer increased immunogenicity to HLA-I 
ligands. More recently, it has been observed that dissimilarity to 
self among mutated peptides predicted to have similar binding 
affinity as their wild-type counterpart can further help predicting 
immunogenic epitopes (173). Differences between the affinity of 
the wild-type and the mutated peptide, as well as stability of the 
MHC-I peptide interaction were also suggested to narrow down 
the list of immunogenic epitopes (174). Unfortunately, datasets 
of true immunogenic peptides from cancer or infectious diseases 
are still restricted to a few 100 peptides, limiting the power of 
machine learning approaches to infer properties of immunogenic 
epitopes (175, 176). This is likely the main bottleneck toward our 
understanding of the determinants of immunogenicity. Therefore, 
recent high-throughput methods for screening T cells using for 
instance DNA barcoded multimers have the potential to provide 
critical information about the differences between immunogenic 
and non-immunogenic peptides (46). Importantly, most of 
these approaches require to select a  priori the HLA ligands to 
be screened [with the exception of a recent phage display system 
(177)]. Therefore, improved prediction of HLA ligands and anti-
gen presentation will likely play an important role in optimizing 
the set of ligands currently tested for immunogenicity.

CONCLUSiON

The first HLA-I motifs were described almost 30  years ago by 
looking at sequences obtained from MS analysis of eluted MHC-I 
ligands (89, 90). Since then, much has been learned about HLA-I 
and HLA-II molecules through the analysis of their ligands. In 
human, this has resulted in a detailed description of HLA-I alleles 

binding specificities for the most common alleles and culminated 
with the development of pan-allele predictors. Recent years have 
witnessed an explosion of new high-quality data generated by MS 
about HLA-I ligands. Combined with advances in algorithms to 
analyze such data, this has led to refinement of known HLA-I 
motifs, discovery of new HLA-I motifs, characterization of peptide 
length distributions, analysis of N- and C-terminal extensions, 
characterization of antigen processing signals in flanking regions, 
analysis of the interplay between gene/protein expression, protein 
localization and peptide presentation, and evidences for presen-
tation hotspots in the human proteome. For HLA-II ligands, MS 
studies have been recently used to study HLA-II motifs, suggest-
ing that similar improvements may be observed there as well (21, 
138–140). Moreover, the current interest in neoantigen discovery 
will likely result in many more HLA peptidomics datasets from 
donors with diverse HLA backgrounds and different pathogen-
eses. This will provide unique opportunities to further improve 
our understanding of the rules of antigen presentation. To this 
end, it will be crucial that raw MS data are made publicly available, 
and that the reporting of HLA peptidomics data will comply with 
the recent minimal information about an Immuno-Peptidomics 
Experiment (MIAIPE) guidelines (178). Databases such as IEDB 
(25), PRIDE (179), or the SysteMHC Atlas (180) play a key role 
in this process, and it is our hope that soon all journals publish-
ing HLA peptidomics studies will require deposition of the raw 
MS data in PRIDE and unfiltered lists of peptides in appropriate 
databases, or at least accessible in supplementary datasets.
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