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Purpose: Demand is increasing for clinical genomic sequencing to provide diagnoses
for patients presenting phenotypes indicative of genetic diseases, but for whom routine
genetic testing failed to yield a diagnosis. DNA-based testing using high-throughput
technologies often identifies variants with insufficient evidence to determine whether
they are disease-causal or benign, leading to categorization as variants of uncertain
significance (VUS).

Methods: We used molecular modeling and simulation to generate specific hypotheses
for the molecular effects of variants in the human glucose transporter, GLUT10
(SLC2A10). Similar to many disease-relevant membrane proteins, no experimentally
derived 3D structure exists. An atomic model was generated and used to evaluate
multiple variants, including pathogenic, benign, and VUS.

Results: These analyses yielded detailed mechanistic data, not currently predictable
from sequence, including altered protein stability, charge distribution of ligand
binding surfaces, and shifts toward or away from transport-competent conformations.
Consideration of the two major conformations of GLUT10 was important as variants
have conformation-specific effects. We generated detailed molecular hypotheses for
the functional impact of variants in GLUT10 and propose means to determine their
pathogenicity.

Conclusion: The type of workflow we present here is valuable for increasing the
throughput and resolution with which VUS effects can be assessed and interpreted.

Keywords: genetics, molecular modeling, natural variation, variant of uncertain significance, ATS

INTRODUCTION

The metabolism of simple sugars is a fundamental biologic process involving multiple protein
transporters for cellular uptake. Genetic variants in the GLUT (SLC2A) family of sugar transport
proteins have been associated with common conditions such as type-2 diabetes and coronary
heart disease, and can be causal for rare diseases. Each GLUT protein has a characteristic tissue-
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and subcellular localization-specific expression pattern (Joost
et al., 2002), contributing to the phenotypic diversity associated
with genetic variants. Understanding the molecular mechanisms
underlying disease mediated by the GLUT family is important
as clinical sequencing is uncovering novel variants of uncertain
significance (VUS). Disambiguating VUS that may contribute to
rare diseases is critical for maximizing the diagnostic yield and
benefit of genomic sequencing.

Rare loss-of-function variants in SLC2A10 (encoding
GLUT10) are causal for arterial tortuosity syndrome (ATS)
(Dawson et al., 2001). ATS is a rare connective tissue disorder
characterized by tortuosity of the aorta and middle-sized arteries,
as well as focal and widespread stenoses. Affected patients have
increased risk of arterial aneurysms and dissections and also have
connective tissue-related phenotypes overlapping TGFβ-related
disorders such as Loeys-Dietz syndrome. Recently, GLUT10
was shown to transport dehydroascorbic acid (DAA), with
this transport significantly reduced in ATS patient fibroblasts
(Nemeth et al., 2016). The mechanistic underpinning of ATS
are not completely understood, but are hypothesized to be
insufficient ascorbic acid in the endoplasmic reticulum as
an enzymatic cofactor for generating collagen- and elastin-
stabilizing hydroxylases, resulting in a destabilized extracellular
matrix (Segade, 2010). There are no gold-standard diagnostic
laboratory tests or validated biomarkers for ATS, and diagnosis
relies on clinical phenotypic findings and the identification of
biallelic pathogenic variation in SLC2A10. Hence, a diagnosis
of ATS is often hindered by the identification of VUS. Novel
methodologies to assist VUS interpretation are needed.

Molecular dynamics (MD) leverages the atomic structure
in physics-based and time-dependent simulations and have
extensive use for interpreting the relationships between protein
sequence, structure, dynamics, and function. van der Kamp
et al. (2010), Sneha and Doss (2016), and Zimmermann et al.
(2017) have applied these methods to characterize missense
VUS. While GLUT10 has no experimentally solved structure,
experimental structures for other GLUT-family proteins are
available. We leveraged information from these structures to
generate models of GLUT10 in two conformations that bookend
the ligand transport process. Using these models, 23 missense
variants in GLUT10 were characterized, predicting their effect on
structural and dynamic properties of the protein. We analyzed
each variant independently to give a detailed picture of how
genetic variation may affect the GLUT10 protein function. This
information may aid in variant interpretation and also generated
hypotheses that can be functionally tested to subsequently clarify
VUS function.

MATERIALS AND METHODS

Editorial Policies and Ethical
Considerations
This study is retrospective and analyzes the effect of genomic
variants on an encoded protein. This study does not use patient
data and conforms to institutional review boards and ethical
guidelines.

Multiple Sequence Alignment (MSA)
Paralogs of SLC2A1 and SLC2A10 were identified from the
Ensembl database and the corresponding canonical transcript
sequences downloaded from UniProt (Magrane and Consortium,
2011). Whole-family paralog and selected multi-species members
of GLUT3, 5, and 10 were aligned using Clustal-Omega (Sievers
et al., 2011) at the European Bioinformatics Institute with
default settings. GLUT10 is conserved among mammals with
78% identity to mouse and rat orthologs. It exhibits low
sequence identity among human paralogs with 24% identity to
GLUT1 (SLC2A1), 27% identity to GLUT3 (SLC2A3) and 28%
identity to GLUT5 (SLC2A5). Paralog sequences differ mostly
for loops between transmembrane (TM) helices (Augustin,
2010). Conservation at each residue was calculated by Clustal-
Omega and mapped to structural models using ConSurf
(Ashkenazy et al., 2010). Protein sequence identifiers and
experimental conformations, identified by manual literature
review of related proteins (Deng et al., 2015), are listed in
Supplementary Table S1. The MSA is available in Supplementary
Table S2.

Model Generation and Evaluation
Using templates from GLUT5, homology models of GLUT10 in
two states along the transport pathway were generated using
Modeller version 9.15. We named these conformations assuming
GLUT10 localized to the plasma membrane; the channel is either
inward-facing (IF) or outward-facing (OF). When GLUT10 is
within the mitochondrial or ER membrane, the intracellular
side would be cytoplasmic and the extracellular side within
the organelle. Because experimentally derived structures are
not available for the human proteins, the OF experimentally
derived model of rat GLUT5 (4YBQ, Nomura et al., 2015;
3.27 Å resolution), and the IF model of bovine GLUT5
(4YB9, Nomura et al., 2015; 3.20 Å resolution) were used
in homology modeling using the residue equivalences from
the GLUT family MSA. We compared multiple experimental
structures (resolution range, 1.5–3.8 Å) to our model to assess
quality. We quantified structural similarity using Cα RMSD
of TM helices calculated by CE (Shindyalov and Bourne,
2001).

Models were validated using standard metrics from
multiple online servers including VADAR (Willard et al.,
2003), MolProbity (Chen et al., 2010), and DisEMBL (Linding
et al., 2003). Disorder was defined by all three DisEMBL metrics
and confirmed by cross-references with regions unresolved in
crystallographic studies. Our structural model was evaluated by
the TM-specific software, QMEANBrane (Studer et al., 2014).
We used InterProScan (Mitchell et al., 2015) version 5.15-54.0
for domain and linear motif prediction. The MESSA meta-server
(Cong and Grishin, 2012) provided six different TM helix
predictions; consensus TM prediction required prediction by at
least three predictors. An α-D-glucose structure was downloaded
from the ZINC database (Irwin et al., 2012) (ZINC03861213)
and docked to each GLUT10 model using CDOCKER (Erickson
et al., 2004) as implemented in Discovery Studio (BIOVIA,
2017).
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Modeled Variants
SLC2A10 polymorphic variants (population MAF ≥ 0.01) were
identified in ExAC (Dataset, 2015). Additional variants were
selected from ClinVar (Landrum et al., 2014) and HGMD
(Stenson et al., 2012). We grouped benign and likely benign
variants together and similarly for pathogenic and likely
pathogenic variants. Variants with conflicting annotations were
considered VUS.

Molecular Simulation
Molecular dynamics simulations were performed using the
CHARMm c36b2 all-atom force-field (Cornell et al., 1995) with
a 2fs time step. GLUT10’s long disordered loop was constrained
using harmonic restraints to limit its motion. A simplified
distance-dependent implicit environment in Discovery Studio
(BIOVIA, 2017) was used with a dielectric constant of 80 and a
pH of 7.4. Models were energy minimized for 2,000 steps using
steepest decent followed by 4,000 steps of conjugate gradient and
the SHAKE procedure. Each duplicate system was independently
heated to 300 K over 300 ps and equilibrated for 2 ns followed by
25 ns production simulation (50 ns total, for each variant). Prior
to analysis, each simulation was superposed onto the Cα atoms
of TM helices from the initial WT conformation using by CE
(Shindyalov and Bourne, 2001). Simulation data may be available
upon request.

Statistical Analysis
We measured the distances among sites of modeled variants
and used these measures to group variants into spatially defined
clusters. Spatial clustering was quantified by compactness,
defined as the geometric mean of cluster sizes, and density,
defined as the number of edges with clusters. We assessed
significance using permutation. Clusters were visualized using
a 2D network where amino acids were connected if they were
within 15 Å. We tested if the spatial relationships among
modeled variants differed from randomly distributed variants
using permutation.

Distributions were compared to one another using t-tests. All
time-dependent metrics were subsampled to 100 observations
and the median t-statistic over 10 rounds of resampling used.
We calculated principal component (PC) analysis of MD
trajectories in Cartesian space using Cα atoms of the TM
helices and their short connecting loops. For visualization, we
used Kruskal’s non-metric multidimensional scaling (MDS) as
implemented in the MASS package of R (Venables and Ripley,
2002).

The region of PC space capturing the densest 75% of data
from simulations of benign variants was used to define regions
commonly sampled. To compare variants along two PCs at once,
we used a best-fit line and residual-based cutoff that captured the
densest 60% of data from simulations of benign variants. In both
cases, a variant was designated as “altered” in the corresponding
PC if its median value was outside of the region defined by benign
variants.

Because of the distinct differences in the ends of helices H4 and
H10 between the OF and IF conformations, we chose residues

at the ends of these helices as conformational monitors. The
distance between residue pairs S124 and S436 or L101 and L413
monitor the extent of channel opening at the intracellular or
extracellular sides, respectively. These four residues also form six
angles that indicate the relative orientation of these two helices.
Correlations among structure- and dynamics-based metric were
computed using Spearman correlation and were adjusted using
the Benjamini-Hochberg procedure.

Software
We downloaded annotations for sequence-based predictive
algorithms, such as SIFT (Kumar et al., 2009) and CADD
(Kircher et al., 2014), from dbNSFP (Liu et al., 2015). We used
Discovery Studio (Eswar et al., 2006; BIOVIA, 2017) v2017 to
generate initial models. We used the bio3d (Grant et al., 2006) R
package version 2.2.4 for analysis. Molecular visualizations were
generated in PyMol (Cannone et al., 2017) version 1.8.7 and
VMD (Humphrey et al., 1996) version 1.9.3. Changes in folding
energy upon mutation were computed using FoldX (Van Durme
et al., 2011) version 4. The protein coding effect of DNA variants
was translated using CAVA (Münz et al., 2015) version 1.2.3.

RESULTS

Structural Model and Validation
An atomic model including 91% of GLUT10 amino acids
(residues 10 through 499) was generated and analyzed with
multiple algorithms for comprehensive quality evaluation. The
remaining residues form a cytoplasmic domain that lacks
sufficient experimental data for modeling. For our model, all
bond length, angle, hydrogen bond geometries, electrostatic
and VdW scores are within typical ranges; 94% of residues
were within the core Ramachandran regions and 98% within
allowed regions (Supplementary Figure S1). Quality comparison
to experimental transmembrane proteins identified unfavorable
dihedral angles and residue packing metrics within the
disordered loop (residues 315 through 395). This was expected
and the loop was restrained in simulations in order to limit
its contribution to the differences seen between variants.
Consensus sequence-based TM predictions agree with our model
(Supplementary Figure S2). Charged and hydrophilic residues
were positioned outside of the TM regions, with exceptions
internal to the ligand-transport channel. Thus, we believe our
GLUT10 model is of high quality.

Comparison to Other Experimental
Protein Structures
Our GLUT10 models and experimental structures of other
GLUT family proteins were compared to one another in order
to assess model consistency (Supplementary Table S3). After
energy minimization, our IF model remained close to its bovine
GLUT5 template (4YB9; 1.51 Å RMSD) and the IF structure of
human GLUT1 (4PYP; 1.98 Å RMSD). The two IF experimental
structures were also similar to each another (1.26 Å RMSD).
Our OF model differed moderately from the rat GLUT5 template
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(2.70 Å RMSD) and the OF structure of human GLUT3
(4ZWC; 2.96 Å RMSD). The two OF experimental structures
differed less from each other (1.94 Å RMSD). In all cases,
IF models had closer agreement with IF structures, than with
OF structures, and vice versa. Comparing across additional
GLUT family experimental structures, our models had smaller
deviation from one another (2.59 Å RMSD) than the deviations
between experimental IF and OF structures (3.01–3.95 Å RMSD).
Selected superimposed structures are shown in Supplementary
Figure S3. Thus, the deviations of our models from the
experimental structures used as templates are conservative and
of a similar magnitude as observed among other experimental
structures.

Selection of Variants
To facilitate the comparison and interpretation of modeling
results for variants of uncertain significance, benign and
pathogenic variants were selected and modeled. The benign
variant set included three variants reported as benign in ClinVar,
including A106S (minor allele frequency, MAF = 0.003), A206T
(MAF = 0.101), and A385G (MAF = 0.013). Additionally, we
included L475F which is reported by ExAC (MAF = 0.012) in
the BQSRTrancheSNP99.90to99.95 and is not included in a low-
complexity or homopolymer repeat region. Ten variants were
identified as pathogenic and included R132W, S81R, G142V,
R231Q, R231H, G246E, G426W, E437K, G445E, and R105C.
Nine VUSs were also selected for characterization, including:
E48K, L85P, R132Q, F168L, R225H, R231W, Q243K, S476F, and
G489R.

Structural Organization of GLUT10 and
Variants
To better understand the role of each residue in GLUT10
function, we considered sequence conservation among human
paralogs in sequence and 3D (Figures 1A–C). Sites of
conservation are distributed throughout the sequence, but pack
between TM-helices, or make up ligand-binding sites of the
channel lining. The 12-helix architecture is organized into two
bundles of six helices – the 4th and 10th alpha helices (H4
and H10, respectively) each pass through one of these bundles
(Figure 1D). The ends of H4 and H10 make up part of the “gates”
that oppositely open on one end and close on the other.

Variants are distributed across the linear sequence, but fall into
three regions of the structure (Figures 1E,F and Supplementary
Figure S4). We considered the 3D relationships between the
variants and generated a 2D network to aid interpretation of
their relative proximity. Three groups of variants are discernable
from this analysis, including one group inside each of the two
helical bundles and a third at the IF opening. These clusters were
compact (see the section “Materials and Methods”; p = 0.091;
Supplementary Figure S5). Clusters were significantly dense after
normalizing by compactness (p = 0.023).

We extracted each helical bundle, calculated electrostatic
surfaces and revealed strong charge segregation between these
surfaces (Supplementary Figure S6). Variants within these regions
may cause region-specific likelihoods of altering protein stability,

allosteric communication, ligand affinity, or selectivity. The
channel lining is largely defined by the interaction between
these two surfaces, indicating the likely important role of charge
segregation along the channel lining.

Structural Features Affected by
Missense Variants
The surface properties of the channel lining are largely conserved
across the GLUT family. We visualized conservation of channel
lining’s electrostatic surface by comparing our model of GLUT10
to an available experimental structure of GLUT1. GLUT1
sequences were not included in developing the GLUT10 model.
The segregation of the electrostatic surface is visually apparent
(Figure 2) and consistent between these proteins despite low
sequence identity (24%). The primary ligand-binding pocket
is the most consistent feature of the channel lining. It is a
broad negatively charged region, deep within the channel, and
accessible to the exterior in both conformations. We studied the
effect of pathogenic variants on the channel lining’s electrostatic
surface. Half of the tested pathogenic variants in the channel
lining affect the electrostatic surface, while none of the tested
benign variants within the channel lining do (Figure 2G).
Additionally, VUSs in the channel lining (R132Q and Q243K)
affect the electrostatic surface in a manner more consistent
with observations of the pathogenic variants than of benign
variants.

We used our GLUT10 structural models to predict each
variant’s impact on protein stability, as measured by 11Gfold.
Because destabilization of either conformation could alter protein
function, we considered each conformation as well as the
maximum 11Gfold across conformations. Energy distributions
illustrated a significant separation between pathogenic and
benign variants (Figure 3A and Supplementary Figures S7, S8).
This separation was dependent on the protein conformation
studied. Many of the modeled VUSs destabilize GLUT10
similar to pathogenic variants. Unlike pathogenic variants, a
subset of modeled VUSs showed low destabilization, more
closely resembling benign variants (Figure 3B). Therefore,
computational assessment of variant- and conformation-specific
11Gfold differentiated pathogenic from benign variants and
could be used to rank VUS.

Variant-specific effects on conformational dynamics were
tested using MD simulation. Each variant was simulated in
duplicate in both the IF and OF conformations. GLUT10
structure and dynamics were summarized using PCs (Figure 4;
see the section “Materials and Methods”). The first PCs tend
to describe collective motions which may be related to the
conformational change between OF and IF. Pathogenic variants
could function by changing how collective GLUT10 is when
transitioning between conformations. To track coordination
through the structure, a set of reference distances and angles
along TM helices 4 and 7 were measured during our simulations
(Figures 3C,D). For the WT protein, these measures were
negatively correlated between IF and OF conformations – the IF
must move toward the OF and vice versa – an observation that
is in agreement with a priori expectation. Certain variants were
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FIGURE 1 | Conservation across human paralogs of GLUT10. (A) Phylogenetic tree indicating the relative amino acid sequence relatedness of paralogs to each
other. (B) The per-residue conservation scores using the SLC2A family MSA and as computed by ConSurf, are shown along with a smoothed average (black line).
Regions of high conservation are distributed across the sequence. (C) Our model of IF SLC2A10 is shown colored by ConSurf conservation. While more highly
conserved regions are distributed across the sequence, they tend to coincide with the inner portions of the channel that will interact with ligands. (D) Locations of the
23 GLUT10 variants studied. Some amino acids have multiple observed alterations at the same site, such as R132W and R132Q. GLUT10 is organized into two
sub-domains or helical bundles, colored olive and tan. Each bundle is organized around H4 or H10, highlighted in teal and orange, respectively. (E) The modeled
variants are distributed throughout the GLUT10 structure as depicted on our IF model, but tend to occur on the intracellular side and within the core of each helical
bundle. (F) TM helices are numbered according to their sequential order and viewed from the intracellular side.

associated with substantial changes in the correlations among
these angles – an allosteric effect modulated by the variant.
Five variants diminished the magnitude of correlation [three

pathogenic and two VUS with Cor(d1,θ1) between −0.5 and
0.0]. Seven others altered the sign of correlation [four pathogenic
and three VUS with Cor(d1,θ1) > 0.0], decoupling the structural
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FIGURE 2 | Conservation of inner pore properties. Despite the relatively modest sequence identity across the GLUT family, structural properties, such as the
electrostatic distribution around and within the ligand-binding pocket, are conserved. We show our (A) outward-facing and (B) inward-facing GLUT10 models with
the binding pocket filled in. In the outward-facing conformation, a large cavity is accessible from the extracellular side, but the inner binding site is fully occluded.
A semi-transparent blue surface fills the solvent accessible cavity. Helix 4 (teal) and helix 10 (orange) are colored similar to previous figures. After transitioning to the
inward-facing conformation, an opposite relationship is observed. Considering the inward-facing conformation, we split the structure in half according to the two
helical bundled described above and color each interior surface by electrostatic potential (red negative, white neutral, and blue positive). Pealing the structure in half
reveals that the interior of the pore for (C,D) GLUT10 and (E,F) GLUT1 are highly similar, despite their low sequence conservation (24%) and that GLUT1 was not
used in the MSA for constructing our GLUT10 model (Supplementary Table S2). Horizontal lines and positive (+) or negative (–) annotation indicate regions where
electrostatics switch consistently between GLUT1 and GLUT10. (G) Pathogenic variants tend to alter charge segregation of the channel lining. We first selected
residue positions that make up the channel interior lining in either conformation. Each variant’s change to the electrostatic character of the channel interior was
quantified using a simple pI-based score; see the section “Materials and Methods” section. A gray line marks the maximum change possible among uncharged
amino acids.

FIGURE 3 | Many pathogenic variants destabilize the protein structure. (A) Variants of each class are clearly separated from one another by their effect on protein
folding energy. We calculated 11Gfold for each variant using our structural models of both the IF and OF conformations. Black dashed lines indicate 11G = 3 kBT,
while the gray line indicates equivalence. L475F was omitted from the scatterplot because it had a near-zero 11Gfold in both conformations. (B) Significant
differences are observed between each group of variants with known pathogenic variants exhibiting greater 11Gfold than benign variants (p = 0.031). Many VUSs
also destabilize the protein structure (p = 0.016). Known pathogenic variants were not significantly more destabilizing than VUSs (p = 0.910). (C) Variants often
disrupt communication through the structure. Residues at the ends of H4 and H10, colored as in previous figures, are used as conformational monitors. (D) For the
IF WT model as a representative example and benign variants, there is a strong negative correlation between the angle, θ1, and distance, d1. This relationship
indicates that as θ1 increases, corresponding to opening of the intracellular side, d1 decreases, corresponding to the closure of the extracellular side. Similar
relationships are observed for the opposite pattern, such as the negative correlation between the angles θ2 and θ4.

features of the IF-to-OF transition. Simulations indicate that
these variants may alter how GLUT10 moves in association with
ligand binding.

We summarized the structure- and dynamics-based
alterations induced by 23 variants modeled in this study
using MDS and clustering (Figure 5 and Supplementary
Figure S9). WT and the benign variants A106S and L475F are not
associated with alteration of any of the structure-based metrics
we have considered. They are consistently clustered together and

with the VUS F168L, which was also not associated with changes
in these metrics. The benign variant A385G is associated with
altered hydrophobicity and stability, leading to its clustering with
other pathogenic variants and VUSs that alter these properties.
However, it is more similar to WT and other benign variants
than any pathogenic variants are. Pathogenic variants tended
to cluster together. These structure-based annotations provide
detailed hypothesis-generating information for the interpretation
of variants.
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FIGURE 4 | Variants alter conformational dynamics. The conformational dynamics within our MD trajectories of GLUT10 were evaluated using PCA. (A) The median
PC1 coordinate of each variant from each initial conformation is shown. Specific variants shifted the inward-facing (IF) dynamics in the negative direction further than
was observed in any of the simulations of benign variants or the WT, while there is no clear separation between types of variants from the outward-facing (OF)
dynamics. Black lines indicate the bounds of the densest 75% of WT and benign simulations, and a blue gradient is used to highlight this same region; see the
section “Materials and Methods.” Variants whose median values are outside of this area are considered altered in the PC motion. (B) We visualized the IF PC1 in 3D
by placing a cone at each residue that is proportional to its magnitude and direction. Small motions are omitted for clarity. The positive direction of IF PC1 indicates
motion of the intracellular sides of H1, H3, and H4 away from the C-terminal bundle with shifting of H5 upward toward the extracellular side and motion of the
extracellular sides of H8 and H10 away from the N-terminal bundle. These motions coincide with some of the transitions toward the OF conformation. (C) We
visualized the OF PC1 in the same way. The dominant feature of this motion is movement of the extracellular sides of H5, H7, and H8. These motions coincide with
some of the transitions toward the IF conformation. The motions apparent in (D–F) PC2 and (G–I) PC3 of each conformation are visualized in the same way. For each
PC, we identified a line of discrimination that separated regions of PC space occupied by WT and benign variants from regions dominated by pathogenic variants.

DISCUSSION

While the functional importance of GLUT10 (SLC2A10) and
its causal link in the rare monogenic disorder, ATS, are well
established, additional resources to aid VUS interpretation for
GLUT10 are needed. There is currently no experimentally

derived structural model for GLUT10 from which additional
studies could be designed. Here, we describe the first protein
modeling study of GLUT10. Sufficient structural data on other
GLUT family proteins existed to enable us to generate GLUT10
protein model predictions for two conformations. We applied
detailed computational evaluation of genetic variants to better
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FIGURE 5 | Structure-based metrics discriminate pathogenic from benign variants and provide mechanistic hypothesis of altered function. (A) The most informative
structure-based metrics presented in previous figures were discretized and compared to commonly used genomics-based predictive algorithms (see the section
“Materials and Methods”). Metrics from both perspectives effectively discriminate between pathogenic and benign variants. However, structure-based metrics
provide mechanistic hypotheses for how the protein is altered by each variant. Additionally, they indicate more variable effects for VUSs than genomics-based
predictors. (B) We visualized the similarity of variants to one another using MDS.

understand the underlying mechanisms of known pathogenic
variants and which VUSs may affect the protein in similar
ways. Using these models in unbiased simulations, we assessed
alterations in protein structure and dynamics. The primary aims
of this study were to evaluate the ability to inform pathogenicity
of VUSs using protein model-based predictions in the context
of known pathogenic and benign variants and to generate
hypotheses of functional effects that could be tested in subsequent
lab-based studies.

Atomic structural modeling enables in silico evaluation
of variant impact at a resolution difficult to obtain using
experimental methods, particularly for membrane proteins.
Molecular modeling and simulation methods may provide
insights for cases where genomic testing results are negative or
inconclusive. However, these methods are not commonly applied
in translational settings for multiple reasons. High-resolution
experimental models are not always available. Constructing
in silico atomic models is time consuming and not always
amenable to clinical timelines. The multiple degrees of freedom
in molecular simulations present a challenge of false discovery –
the concern that observed difference are coincidence of sampling,
the identified changes are not mechanistically relevant, or the
findings may not be robust and reproducible. Likewise, there are
likely many biologically real ways of altering a protein that are
not sufficient to result in disease. Distinguishing disease-relevant
alterations from among the many potential alterations to protein
dynamics is a major research challenge. The alterations identified
by simulation are challenging to validate in biological systems,
to determine how specific or sensitive computations tests are
for determining pathogenicity. Finally, the necessary expertise

is not often found in the translational clinical settings to carry
out these modeling studies. Continued evaluation of variants and
refinements of such models may allow for these techniques to
contribute more directly to the evidence supporting or refuting
variant pathogenicity, but currently in silico protein modeling is
not included in the variant interpretation guidelines as functional
evidence (Richards et al., 2015). We believe that molecular
modeling holds tremendous value for the clinical interpretation
of missense variants identified from high-throughput sequencing
studies. As we show in this study, specific hypotheses can be
generated for the molecular effects of variants. This is valuable
for better understanding the underlying mechanisms of known
pathogenic variants, but also for the interpretation of VUS.

We addressed several of the above challenges in VUS
interpretation by focusing on summary metrics such as geometric
distances and PCs. We believe this approach is more robust
and reproducible compared to analyses that focus exclusively on
alteration of specific interactions as there are likely multiple ways
to alter protein dynamics. The molecular modeling of variants in
GLUT10 gave valuable information for planning how to address
the physiologic effects of each. For example, our analysis of
the VUS E48K showed that it specifically shifted the protein
conformation away from WT as quantified by PC2. In our model,
E48 is on the OF side of the protein and nearby in space to
D468. The charge repulsion from this pair in the WT may
balance stability between the IF and OF conformations. E48K
appears to stabilize one conformation, likely leading to loss of
function. The pathogenic variant E437K is positioned at the IF
of the protein and E437 interacts closely in space with three
arginine residues: R130, R132, and R296. E437K likely disrupts
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these interactions, leading to our prediction of alteration in PC1.
R132 is also the site of pathogenic variants, both of which alter
PC2. Similar to E48K, E437K shifts the protein conformation
to favor one side of the transport process. However, E437K was
also predicted to destabilize the protein structure, alter allosteric
communication, and is a charge-alteration within the channel
lining. Therefore, there is greater evidence supporting E437K
as a loss-of-function variant, compared to E48K. However, a
specific hypothesis with similar features at the molecular level
is shared between the pathogenic E437K and VUS E48K. This
underscores the fact there are molecular alterations that affect
the protein shared between pathogenic variants and VUS. When
the overlap is partial, it is challenging to distinguish those that
are disease-causal from among them. Establishing a specific and
testable mechanistic hypothesis by which a VUS may affect the
protein similarly to a pathogenic variant, as we have provided an
example for here, demonstrates the value of molecular modeling
for variant interpretation. Thus, molecular modeling provides
a rationale for prioritizing experiments to confirm whether or
not E48K is a loss-of-function variant, and also mechanisms for
interpreting those experiments.

The models we have made in this work are a first step toward a
molecular and mechanistic understanding of genetic variation in
GLUT10. Our predictions could be validated using experimental
tests. Altered folding could be assessed using protein abundance
in cellular membranes by isolating the membranes and running
targeted mass spectroscopy. A simpler, but still challenging
approach would be to quantify changes in circular dichroism
spectra, which has advanced in recent years for membrane
proteins (Miles and Wallace, 2016). Our predicted alterations
in PCs could be assayed by directed labeling techniques and
nuclear magnetic resonance spectroscopy (McDermott, 2009).
Alternatively, they could be assessed by introducing cysteine
mutations at carefully selected sites and differential crosslinking
as measured by mass spectroscopy. Our predictions of altered
channel lining as well as the overall function of GLUT10
could be assessed by ability to bind and transport glucose or
DAA. Membranes containing GLUT10 could be synthesized
and used to make vesicles that could pump glucose of DAA
inside (Tian et al., 2017) with differential uptake indicative of
altered protein function. While functional follow-up is beyond
the scope of the current study, we have demonstrated the
potential for molecular modeling of GLUT10 variant and of
variants identified by high-throughput sequencing in general,
to inform clinical interpretation and prioritization of functional
tests.

Additional techniques are available for testing specific
hypotheses in silico; initiating molecular modeling from
hypothesis-driven research is likely to generate clearer findings
within a pre-determined scope. For example, to specifically test
how variants affect the ease with which GLUT10 transitions
between OF and IF, a series of targeted simulations could be
made that guide the simulation between the two conformations
and differences in the transition paths or energies analyzed. To
more directly test the hypothesis that ligand passage through the
channel is affected by a variant, a series of steered simulations
could be made that guide ligand through the channel. Therefore,

the scope and resolution of modeling studies are broad and can
be tailored to address specific hypotheses.

Changes to the native structures like those investigated here
are one of the many modes by which a variant could alter protein
function. For example, a variant could affect interactions with
other molecules without destabilizing the native structure. These
additional modes of alteration emphasize the need for more
sensitive and comprehensive tools for the functional and context-
specific interpretation of genetic variants. Currently, molecular
modeling is not necessarily ready to be a clinical diagnostic
tool – it depends on the resolution of available data and the
extent of relevant physiologic details captured by the model.
In many cases, modeling is a means of reducing the unsolved
case rate by directing further testing downstream of genomic
results through a more detailed molecular understanding of
the effects of genomic alterations. We believe that molecular
modeling will become an increasingly important consideration
when attempting to interpret the clinical relevance of novel
variants.

CONCLUSION

We have demonstrated the potential for molecular modeling to
bring improved understanding of the functional consequences of
genomic variants discovered using high-throughput sequencing,
in the membrane protein GLUT10. We have highlighted some
of the critical considerations in the translation of molecular
modeling and simulation to the interpretation of clinically
observed VUSs. These include the necessity of considering
multiple functional conformations of the protein as a variant may
affect each differently. We believe the integration of this type of
information into the interpretation of VUS will become a critical
aspect of Precision Medicine.

AUTHOR CONTRIBUTIONS

MZ designed the study, carried out analyses, generated figures,
and wrote the paper. RU designed the study, wrote the paper,
and contributed to review. MC and EK contributed to clinical
assessment, writing, and review. GO contributed to writing
and review. EK contributed to clinical assessment, writing, and
review.

FUNDING

We thank the Mayo Clinic Center for Individualized Medicine
for funding. RU was supported by Grants from NIDDK: National
Institute of Diabetes and Digestive and Kidney Diseases – RO1
52913, P30 084567, P50CA102701, and the Mayo Foundation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2018.
00276/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 9 July 2018 | Volume 9 | Article 276

https://www.frontiersin.org/articles/10.3389/fgene.2018.00276/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2018.00276/full#supplementary-material
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00276 July 23, 2018 Time: 15:52 # 10

Zimmermann et al. Structural Analysis of SLC2A10 Variants

REFERENCES
Ashkenazy, H., Erez, E., Martz, E., Pupko, T., and Ben-Tal, N. (2010). ConSurf 2010:

calculating evolutionary conservation in sequence and structure of proteins
and nucleic acids. Nucleic Acids Res. 38, W529–W533. doi: 10.1093/nar/
gkq399

Augustin, R. (2010). The protein family of glucose transport facilitators: it’s
not only about glucose after all. IUBMB Life 62, 315–333. doi: 10.1002/
iub.315

BIOVIA (2017). Dassault Systèmes BIOVIA, Discovery Studio Modeling
Environment, Release 2017. San Diego: Dassault Systèmes.

Cannone, G., Visentin, S., Palud, A., Henneke, G., and Spagnolo, L. (2017).
The PyMOL Molecular Graphics System. Version 1.5.0.3. New York, NY:
Schrödinger, LLC.

Chen, V. B., Arendall, W. B. III, Headd, J. J., Keedy, D. A., Immormino, R. M.,
Kapral, G. J., et al. (2010). MolProbity: all-atom structure validation for
macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66(Pt 1),
12–21. doi: 10.1107/S0907444909042073

Cong, Q., and Grishin, N. V. (2012). MESSA: MEta-Server for protein sequence
analysis. BMC Biol. 10:82. doi: 10.1186/1741-7007-10-82

Cornell, W. D., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer,
D. C., et al. (1995). A second generation force field for the simulation
of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117,
5179–5197. doi: 10.1021/ja00124a002

Dataset (2015). Exome Aggregation Consortium (ExAC). Available at: http://exac.
broadinstitute.org

Dawson, P. A., Mychaleckyj, J. C., Fossey, S. C., Mihic, S. J., Craddock, A. L.,
and Bowden, D. W. (2001). Sequence and functional analysis of GLUT10:
a glucose transporter in the type 2 diabetes-linked region of chromosome
20q12-13.1. Mol. Genet. Metab. 74, 186–199. doi: 10.1006/mgme.2001.
3212

Deng, D., Sun, P., Yan, C., Ke, M., Jiang, X., Xiong, L., et al. (2015). Molecular
basis of ligand recognition and transport by glucose transporters. Nature 526,
391–396. doi: 10.1038/nature14655

Erickson, J. A., Jalaie, M., Robertson, D. H., Lewis, R. A., and Vieth, M. (2004).
Lessons in molecular recognition: the effects of ligand and protein flexibility
on molecular docking accuracy. J. Med. Chem. 47, 45–55. doi: 10.1021/jm03
0209y

Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan, M. S., Eramian, D., Shen,
M. Y., et al. (2006). Comparative protein structure modeling using modeller.
Curr. Protoc. Bioinformatics 15, 5.6.1–5.6.30. doi: 10.1002/0471250953.
bi0506s15

Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., and
Caves, L. S. (2006). Bio3d: an R package for the comparative analysis of
protein structures. Bioinformatics 22, 2695–2696. doi: 10.1093/bioinformatics/
btl461

Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular
dynamics. J. Mol. Graph. 14, 33–38. Epub 1996/02/01. doi: 10.1016/0263-
7855(96)00018-5

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and Coleman, R. G. (2012).
ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52,
1757–1768. doi: 10.1021/ci3001277

Joost, H. G., Bell, G. I., Best, J. D., Birnbaum, M. J., Charron, M. J., Chen, Y. T., et al.
(2002). Nomenclature of the GLUT/SLC2A family of sugar/polyol transport
facilitators. Am. J. Physiol. Endocrinol. Metab. 282, E974–E976. doi: 10.1152/
ajpendo.00407.2001

Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., and Shendure, J.
(2014). A general framework for estimating the relative pathogenicity
of human genetic variants. Nat. Genet. 46, 310–315. doi: 10.1038/ng.
2892

Kumar, P., Henikoff, S., and Ng, P. C. (2009). Predicting the effects of coding non-
synonymous variants on protein function using the SIFT algorithm.Nat. Protoc.
4, 1073–1081. doi: 10.1038/nprot.2009.86

Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M.,
et al. (2014). ClinVar: public archive of relationships among sequence variation
and human phenotype. Nucleic Acids Res. 42, D980–D985. doi: 10.1093/nar/
gkt1113

Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., and Russell, R. B. (2003).
Protein disorder prediction: implications for structural proteomics. Structure
11, 1453–1459. doi: 10.1016/j.str.2003.10.002

Liu, X., Wu, C., Li, C., and Boerwinkle, E. (2015). dbNSFP v3.0: a one-stop database
of functional predictions and annotations for human non-synonymous
and splice site SNVs. Hum. Mutat. 37, 235–241. doi: 10.1002/humu.
22932

Magrane, M., and Consortium, U. (2011). UniProt knowledgebase: a hub
of integrated protein data. Database 2011:bar009. doi: 10.1093/database/
bar009

McDermott, A. (2009). Structure and dynamics of membrane proteins by magic
angle spinning solid-state NMR. Annu. Rev. Biophys. 38, 385–403. doi: 10.1146/
annurev.biophys.050708.133719

Miles, A. J., and Wallace, B. A. (2016). Circular dichroism spectroscopy of
membrane proteins. Chem. Soc. Rev. 45, 4859–4872. doi: 10.1039/c5cs0
0084j

Mitchell, A., Chang, H. Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R.,
et al. (2015). The interpro protein families database: the classification resource
after 15 years. Nucleic Acids Res. 43, D213–D221. doi: 10.1093/nar/gku
1243

Münz, M., Ruark, E., Renwick, A., Ramsay, E., Clarke, M., Mahamdallie, S.,
et al. (2015). CSN and CAVA: variant annotation tools for rapid, robust next-
generation sequencing analysis in the clinic. CSHL preprint server. Genome
Med. 7:76. doi: 10.1101/016808

Nemeth, C. E., Marcolongo, P., Gamberucci, A., Fulceri, R., Benedetti, A.,
Zoppi, N., et al. (2016). Glucose transporter type 10-lacking in arterial tortuosity
syndrome-facilitates dehydroascorbic acid transport. FEBS Lett. 590, 1630–
1640. doi: 10.1002/1873-3468.12204

Nomura, N., Verdon, G., Kang, H. J., Shimamura, T., Nomura, Y., Sonoda, Y.,
et al. (2015). Structure and mechanism of the mammalian fructose transporter
GLUT5. Nature 526, 397–401. doi: 10.1038/nature14909

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015).
Standards and guidelines for the interpretation of sequence variants: a joint
consensus recommendation of the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology. Genet. Med. 17,
405–424. doi: 10.1038/gim.2015.30

Segade, F. (2010). Glucose transporter 10 and arterial tortuosity syndrome: the
vitamin C connection. FEBS Lett. 584, 2990–2994. doi: 10.1016/j.febslet.2010.
06.011

Shindyalov, I. N., and Bourne, P. E. (2001). A database and tools for 3-
D protein structure comparison and alignment using the combinatorial
extension (CE) algorithm. Nucleic Acids Res. 29, 228–229. doi: 10.1093/nar/29.
1.228

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al.
(2011). Fast, scalable generation of high-quality protein multiple sequence
alignments using clustal omega. Mol. Syst. Biol. 7:539. doi: 10.1038/msb.20
11.75

Sneha, P., and Doss, C. G. (2016). Molecular dynamics: new frontier in
personalized medicine. Adv. Protein Chem. Struct. Biol. 102, 181–224.
doi: 10.1016/bs.apcsb.2015.09.004

Stenson, P. D., Ball, E. V., Mort, M., Phillips, A. D., Shaw, K., and Cooper, D. N.
(2012). The human gene mutation database (HGMD) and its exploitation in
the fields of personalized genomics and molecular evolution. Curr. Protoc.
Bioinformatics 39, 1.13.1–1.13.20. doi: 10.1002/0471250953.bi0113s39

Studer, G., Biasini, M., and Schwede, T. (2014). Assessing the local structural quality
of transmembrane protein models using statistical potentials (QMEANBrane).
Bioinformatics 30, i505–i511. doi: 10.1093/bioinformatics/btu457

Tian, X., Ye, M., Cao, Y., and Wang, C. (2017). Losartan improves palmitate-
induced insulin resistance in 3T3-L1 adipocytes through upregulation of src
phosphorylation. Exp. Clin. Endocrinol. Diabetes 125, 136–140. doi: 10.1055/s-
0042-120709

van der Kamp, M. W., Schaeffer, R. D., Jonsson, A. L., Scouras, A. D., Simms,
A. M., Toofanny, R. D., et al. (2010). Dynameomics: a comprehensive database
of protein dynamics. Structure 18, 423–435. doi: 10.1016/j.str.2010.01.012

Van Durme, J., Delgado, J., Stricher, F., Serrano, L., Schymkowitz, J., and
Rousseau, F. (2011). A graphical interface for the foldx forcefield. Bioinformatics
27, 1711–1712. doi: 10.1093/bioinformatics/btr254

Frontiers in Genetics | www.frontiersin.org 10 July 2018 | Volume 9 | Article 276

https://doi.org/10.1093/nar/gkq399
https://doi.org/10.1093/nar/gkq399
https://doi.org/10.1002/iub.315
https://doi.org/10.1002/iub.315
https://doi.org/10.1107/S0907444909042073
https://doi.org/10.1186/1741-7007-10-82
https://doi.org/10.1021/ja00124a002
http://exac.broadinstitute.org
http://exac.broadinstitute.org
https://doi.org/10.1006/mgme.2001.3212
https://doi.org/10.1006/mgme.2001.3212
https://doi.org/10.1038/nature14655
https://doi.org/10.1021/jm030209y
https://doi.org/10.1021/jm030209y
https://doi.org/10.1002/0471250953.bi0506s15
https://doi.org/10.1002/0471250953.bi0506s15
https://doi.org/10.1093/bioinformatics/btl461
https://doi.org/10.1093/bioinformatics/btl461
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1021/ci3001277
https://doi.org/10.1152/ajpendo.00407.2001
https://doi.org/10.1152/ajpendo.00407.2001
https://doi.org/10.1038/ng.2892
https://doi.org/10.1038/ng.2892
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1093/nar/gkt1113
https://doi.org/10.1093/nar/gkt1113
https://doi.org/10.1016/j.str.2003.10.002
https://doi.org/10.1002/humu.22932
https://doi.org/10.1002/humu.22932
https://doi.org/10.1093/database/bar009
https://doi.org/10.1093/database/bar009
https://doi.org/10.1146/annurev.biophys.050708.133719
https://doi.org/10.1146/annurev.biophys.050708.133719
https://doi.org/10.1039/c5cs00084j
https://doi.org/10.1039/c5cs00084j
https://doi.org/10.1093/nar/gku1243
https://doi.org/10.1093/nar/gku1243
https://doi.org/10.1101/016808
https://doi.org/10.1002/1873-3468.12204
https://doi.org/10.1038/nature14909
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1016/j.febslet.2010.06.011
https://doi.org/10.1016/j.febslet.2010.06.011
https://doi.org/10.1093/nar/29.1.228
https://doi.org/10.1093/nar/29.1.228
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1016/bs.apcsb.2015.09.004
https://doi.org/10.1002/0471250953.bi0113s39
https://doi.org/10.1093/bioinformatics/btu457
https://doi.org/10.1055/s-0042-120709
https://doi.org/10.1055/s-0042-120709
https://doi.org/10.1016/j.str.2010.01.012
https://doi.org/10.1093/bioinformatics/btr254
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00276 July 23, 2018 Time: 15:52 # 11

Zimmermann et al. Structural Analysis of SLC2A10 Variants

Venables, W. N., and Ripley, B. D. (2002). Modern Applied Statistics with S. 4th
Edn. New York, NY: Springer. doi: 10.1007/978-0-387-21706-2

Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., Sykes, B. D.,
et al. (2003). VADAR: a web server for quantitative evaluation of protein
structure quality. Nucleic Acids Res. 31, 3316–3319. doi: 10.1093/nar/gk
g565

Zimmermann, M. T., Urrutia, R., Oliver, G. R., Blackburn, P. R., Cousin, M. A.,
Bozeck, N. J., et al. (2017). Molecular modeling and molecular dynamic
simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm
for interpretation of variants obtained by next generation sequencing. PLoS One
12:e0170822. doi: 10.1371/journal.pone.0170822

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Zimmermann, Urrutia, Cousin, Oliver and Klee. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 11 July 2018 | Volume 9 | Article 276

https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.1093/nar/gkg565
https://doi.org/10.1093/nar/gkg565
https://doi.org/10.1371/journal.pone.0170822
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Assessing Human Genetic Variations in Glucose Transporter SLC2A10 and Their Role in Altering Structural and Functional Properties
	Introduction
	Materials and Methods
	Editorial Policies and Ethical Considerations
	Multiple Sequence Alignment (MSA)
	Model Generation and Evaluation
	Modeled Variants
	Molecular Simulation
	Statistical Analysis
	Software

	Results
	Structural Model and Validation
	Comparison to Other Experimental Protein Structures
	Selection of Variants
	Structural Organization of GLUT10 and Variants
	Structural Features Affected by Missense Variants

	Discussion
	Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References


