
	

	

	

Journal of Engineering Science and Technology Review 10 (4) (2017) 191- 198	
	

Research Article

 Neural Networks Trained with Levenberg-Marquardt-Iterated Extended Kalman
Filter for Mobile Robot Trajectory Tracking

Ben Cherif Aissa* and Chouireb Fatima

Laboratory of Telecommunications Signals and Systems, Department of Electronics, University Amar Telidji, Laghouat, Algeria

Received 4 March 2017; Accepted 17 September 2017

Abstract

This paper proposes a neural network controller using a new efficient optimisation algorithm for learning that is the
Levenberg-Marquart Iterated Extended Kalman filter LM-IEKF. The trained neural network is applied to control a
wheeled mobile robot for trajectory tracking problem. The proposed algorithm is compared to the standard extended
Kalman filter and the back-propagation algorithms. Simulation and experimental results using MATLAB 7.1 and
National Instrumentation mobile robot (starter kit 2.0) respectively show that in terms of mean squared errors, the
proposed algorithm is superior to the extended Kalman filter and back-propagation. This indicates that Levenberg-
Marquart iterated extended Kalman filter based neural networks learning could be a good alternative in the artificial
neural networks based applications for mobile robot trajectory tracking.

Keywords: Mobile robot control, Extended Kalman Filter, Levenberg-Marquardt-Iterated-EKF, neural networks controller.
__

1. Introduction

In recent years, intelligent mobile robots are the subject that
has received large attention. It is a topic of great research
concern arising from the possibility of real applications in
many areas, such as manufacturing, aerospace, civil
engineering, transportation, agriculture, military operations
exploration, help for disabled, and medical surgery and in
other areas of science and technology research [1]. These
applications require mobile robots to have the ability to track
a reference trajectory. Thus, the stable trajectory tracking
control of mobile robots has attracted significant attention
from researchers.
 There are many recent studies that addressed the
problem of mobile robot control, by suggesting kinematic-
based controllers for trajectory tracking problems, such as
linear feedback control [2], backstepping control [3][4],
time-varying feedback control [5], sliding mode control
[6][7], but these algorithms have problems with complex
trajectories, uncertainty and unlimited velocities. In response
to these complex control issues, a number of advanced
controllers have recently been proposed, typically artificial
neural networks (ANNs) [8][9][10].
 The artificial neural network, in general, is a system of
programs and data design that approximates the process of
the human brain [11]. In over the last decade, neural
networks have been used to solve the trajectory tracking
control problem for a mobile robot. Several studies have
proposed different architectures for neural networks control,
but most of these researches have not focused on the neural
network learning. The learning operation consists of finding

the optimal synaptic weights and biases of the neural
network, this can be solved with the common classical
gradient descent used in the back-propagation training
method. However, the gradient method usually behaves very
slowly and is not assured to find the global minimum of the
error function. These are the reasons for searching for the
most effective methods of neural network training.
 An effective tool for training neural networks in the last
decades is the extended Kalman filter (EKF) [12][13], which
has become popular as an algorithm for state and parameters
estimation. This is because it is easy to implement and
exhibit computationally efficient calculation which is
especially useful for nonlinear systems and practical
applications see [14]. There are many variables that affect
EKF training algorithm performances. These variables are
matrices that must be correctly initialized otherwise the EKF
training algorithm can exhibit poor performance. These
matrices are the estimation error covariance matrix (P), the
measurement covariance matrix (R), and the additional
process noise matrix (Q) [14]. the iterative version of EKF is
the iterative extended Kalman filter (IEKF), which improves
the linearization of the extended Kalman filter by
recursively, this version is powerful than the standard EKF
for neural network training [15].
 Another algorithm has a better performance for training
neural networks than EKF is Levenberg-Marquardt
algorithm see [16]. The Levenberg-Marquardt method is a
standard technique used to solve nonlinear least squares
problems [17][18].
 A modification based on an optimisation viewpoint is
done by including the Levenberg-Marquardt algorithm in the
iterated extended Kalman filter [19]. The Levenberg-
Marquardt-iterated Kalman filter is made to include a
diagonal damping matrix which could further speed up
convergence, with results that exceed the performance of the
IEKF state estimation in nonlinear systems. In the estimation

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

*E-mail address a.bencherif@lagh-univ.dz

ISSN: 1791-2377 © 2017 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.
doi:10.25103/jestr.104.23

Ben Cherif Aissa and Chouireb Fatima/Journal of Engineering Science and Technology Review 10 (4) (2017) 191-198

	 192

of parameters of neural networks, LM-IEKF is better than
the EKF and IEKF, with the significant advantage that it
does not need the calculation of the Jacobian of the neural
network.
 This paper presents the principle of neural network
training method based on LM-IEKF, which serves as a better
alternative to the classical methods back-propagation and
standard EKF, and proposes a mobile robot trajectory
tracking control using the LM-IEKF based neural network
training algorithm. The effectiveness and efficiency of the
proposed control approach are proved by simulation results
and experimental tests.
 The following sections are organised as follows: In
Section 2, we describe the mobile robot kinematic model,
Section 3 describes the neural network controller design. In
Section 4, we detail the neural network training methods,
whereas Section 5 and Section 6 present simulation and
experimental results respectively, and finally, the conclusion
is presented in section 7.

2. Kinematic Model of Mobile Robot

In this work, we consider a trajectory tracking control
problem of the mobile robot as shown in Fig.1.

Fig. 1. The error coordinates of WMR

 The kinematics model (or equation of motion) of a
wheeled mobile robot is given by

!x
!y
!θ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

v cos θ()
v sin θ()

w

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

(1)

 Where x and y are coordinates of the centre of mobile
robot gear, θ is the angle that represents the orientation of
the mobile robot, v and w are linear and angular velocities
of the robot.
 To consider a trajectory tracking problem, a reference
trajectory should be generated as follow:

!qr =

!xr

!yr
!θr

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

vr cos θr()
vr sin θr()

wr

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (2)

 The error coordinates represented by the world
coordinates are

qr − q =

xr − x

yr − y

θr −θ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (3)

 In the view of moving coordinates, the error coordinates
are transformed into:

xe

ye

θe

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

cos θ() sin θ() 0

sin θ() cos θ() 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

xr − x

yr − y

θr −θ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (4)

3. Neural network controller design

In this section, we propose two neural network controllers for
mobile robot trajectory tracking as shown in figure.2. We
assume that each neural network controller under
consideration consists of two inputs i.e.

xe and

!xe for linear

velocity, ye and θe for angular velocity (figure.3).

Fig. 2. Neural network controllers for Mobile Robot Trajectory Tracking

 The proposed architecture of neural network controllers is
composed of three layered static neural networks (Fig. 3).

The input layer contains two neurones, the hidden layer has
seven neurones and one neurone in the output layer.

Ben Cherif Aissa and Chouireb Fatima/Journal of Engineering Science and Technology Review 10 (4) (2017) 191-198

	 193

Fig. 3. The neural network's architecture

 The activation function used for hidden layer in both
neural controllers is tangent sigmoid function

σ x() = 1

1+ e−x
 (5)

 While pure linear function is employed in output layer
 The neural networks with the training data sets are trained
offline. During training, for each sample value, the error is
calculated between the desired output and neural network
output using the following equations.

out j() =σ
i=1

m

∑wi, j xi

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ bj

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

out k() =
j=1

n

∑wj,k out j() + bk (6)

 Where n is the number of neurones and

out j() is The

output of each neurone in hidden layer,

out k() is The output

of each neurone of output layer,

σ x() is The activation

function, m is The number of inputs,

wi, j is The weight

from input layer node i to hidden layer node j ,

wj,k : The

weight from hidden layer node j to output layer node,

bj are

the Biases of node j of hidden layer, bk are the Biases of a
node k of output layer.
 The error is then minimised using extended Kalman filter
or Levenberg-Marquardt Iterated EKF algorithms. The
algorithm minimises the error by updating the weights and
biases of the neural networks.

4. Training neural networks controllers

Once the neural networks have been structured, they will be
ready to be trained. To start this process the initial weights

are chosen randomly. Then, the training or Learning begins
using the Extended Kalman filter or Levenberg-Marquardt
Iterated Extended Kalman filter.

4.1 Extended Kalman filter
The Kalman filter is an optimal estimator tool which is able
to estimate both linear and non-linear systems [19]. The
Kalman Filter can perform the estimation in the presence of
noise in the system and sensors. When the systems are
dynamic and non-linear, the use of the Extended Kalman
Filters is applied through the linearization at each time step of
the system. The discrete nonlinear system model is given by:

Xk = f Xk−1() +ζ k−1

 Yk = h Xk() + vk

 (7)

 The first equation describes the state transition

relationship, where 𝑋! is the state vector and ζ k−1 ∈Rn is
the unknown random noise.
 The second equation represents the nonlinear output
model where 𝑣! is the white Gaussian measurement noise
given by:

vk =ℵ 0, Rk() .

 The extended Kalman filter uses the Jacobian of the
(nonlinear) functions appearing in the state transition
equation, and the measurement equation, respectively

ü the Jacobian matrix of partial derivatives of the system

 f with respect to X
ü

A i, j⎡⎣ ⎤⎦

=
∂ f i⎡⎣ ⎤⎦
∂X j

X̂k−1,0() (8)

ü the Jacobian matrix of partial derivatives of

measurement h with respect to X

Ben Cherif Aissa and Chouireb Fatima/Journal of Engineering Science and Technology Review 10 (4) (2017) 191-198

	 194

H i, j⎡⎣ ⎤⎦

=
∂h i⎡⎣ ⎤⎦
∂X j

X̂k ,0() (9)

 The implementation of the extended Kalman algorithm is
as follows:

Ø the Kalman filter time update equations (or prediction)
are given by[20]:

!Xk = f X̂ k−1 , 0() (10)

 Pk
− = Ak Pk−1Ak

T +Qk−1 (11)

 Where 𝑋! represents the predicted state and 𝑃!!the
covariance matrix of the prediction error.

Ø The update equations of the Kalman filter (or
correction) are given by:

Kk = Pk

−Hk
T Hk Pk

−Hk
T + R()−1

X̂ k = X̂k

− + Kk Zk − h X̂k
− ,0() ()

Pk = I − Kk Hk()Pk

− (12)

With 𝐾! is the Kalman gain, 𝑋! is the estimated state at

time 𝑘, 𝑃! is the covariance matrix of the estimation error
and 𝑍! is the measurement.
 For neural network training, the weights w of the network
are the states the Kalman filter attempts to estimate using all
observed data. The discrete nonlinear system for neural
network training process is shown in the equations
below[21]:

 wk+1 = wk +ξk (13)

 Zk+1 = h(wk+1,uk)+ vk (14)

where h(•) is the function of the neural network, ζ k and vk
are the system and measurement artificial noises. These
noises are assumed to be white Gaussian noises with zero
mean and covariance matrices Q and R (learning rate)
respectively. Zk is the output of the neural network, uk is

the input vector and wk is the state vector which includes all
parameters of the neural network. Its dimension ns is
determined by the number of inputs m, hidden neurones n
and outputs ny :

ns = m n() + n + n ny() + ny

 (15)

 The algorithm of Kalman filter for training the neural
network is summarised[21][22] below:

State estimate propagation

 ŵk
− = ŵk−1 (16)

 Pk
− = Ak Pk−1Ak

T +Qk−1 (17)

Kalman gains matrix

Kk = Pk

−Hk
T Hk Pk

−Hk
T + Rk()−1

 (18)

State estimate update

 ŵk = ŵk
− + Kk (Zk − h(ŵk

− ,0)) (19)

Error covariance update

 Pk = (I − Kk Hk)Pk
− (20)

4.2 Iterated extended Kalman filter (IEKF)
The purpose of the iterated Kalman filter update [23] is to
repeatedly calculate the measurement Jacobian each time
linearizing about the most recent estimate X̂ k . On the other
hand, the EKF, the measurement Jacobian is linearized about
the predicted state estimate X̂ k . The iteration is initialized
by choosing

 X̂ i=0 = X̂k (21)

 Pi=0 = Pk (22)

 The implementation of iterated Extended Kalman filter
algorithm is as follows [23][15]:

Ki = Pk

−Hi
T HiPk

−Hi
T + R()−1

 (23)

X̂ i+1 = X̂ i + Ki Yk − h X̂i ,0()− Hi X̂k

− − X̂ i() () (24)

Pi = I − KiHi()Pk

− (25)

 X̂ k = X̂ i+1 (26)

 Pk = Pi (27)

 With Ki is the Kalman gain for each iteration i>0, X̂ k is

the estimated state at time k and Pk is the covariance matrix
estimate.
 For a single iteration, setting i = 0 in (23),(24) and (25)
above, we obtain the conventional EKF update formulas in
the past section

The algorithm of Iterated Extended Kalman filter for
training the neural network is summarised below with
consideration of state equations as in (13) and (14)

State estimate propagation

 ŵk
− = ŵk−1 (28)

 Pk
− = Ak Pk−1Ak

T +Qk−1 (29)

Kalman gains matrix

Ki = Pk

−Hi
T HiPk

−Hi
T + R()−1

 (30)

Ben Cherif Aissa and Chouireb Fatima/Journal of Engineering Science and Technology Review 10 (4) (2017) 191-198

	 195

State estimate update

 ŵi+1 = ŵi + Kk (Zk − h(ŵi ,0)− Hi(ŵk
− − ŵi)) (31)

Error covariance update

Pi = I − KiHi()Pk

− (32)

 ŵk = ŵi+1 (33)

 Pk = Pi
 (34)

4.3 Levenberg-Marquardt Iterated Kalman filter
4.3.1 Levenberg-Marquardt Algorithm
The LMA is used in many software applications for solving
nonlinear least squares problems. However, as for many
algorithms, the objective function of least squares problem is
then formulated as

F(ρ) = 1

2
ri

2

i=1

n

∑

 (35)

ri(x) = f xi; ρ() – yi (36)

 Where n is the total number of data considered, ri is

residual, and yi is y component of the data at

xi and

 ρ = [ρ1ρ2....ρm] the model parameters vector and m are the
total number of parameters.
 The LMA finds only a local minimum, but not
necessarily the global minimum. First Levenberg (1944) [24]
suggested algorithm with the following search scheme to
update model parameters vector: ρ = [ρ1ρ2....ρm] [17]

 (Jk
T Jk + µI)δρk = −Jk

T (rk) (37)

 (Jk
T Jk + µI)δρk = −Jk

T (y − ŷ) (38)

 Where δρk is the perturbation to the estimated

parameters, Jk is the Jacobian matrix of residuals, and µ is
a damping factor.
 Marquardt proposed update by replacing the identity
matrix I in the original equation of levenberg, with the
diagonal of Jk

T Jk resulting into Levenberg-Marquardt
algorithm [25]

 (Jk
T Jk + µdiag(Jk

T Jk))δρk = −Jk
T (y − ŷ) (39)

 ρk+1 = ρk +δρk (40)

Where large values of the algorithmic parameter µ result

in a gradient descent update and small values of µ result in a
Gauss-Newton update. If we get worse results in an
approximation, we increase the value of µ . But if the
solution is improved, we decrease the value of µ , the
Levenberg-Marquardt method approximates the Gauss-

Newton method, and the solution typically accelerates to the
local minimum.

4.3.2 Levenberg-Marquardt Iterated Extended Kalman

filter
The LM-IEKF can be improved by replacing the diagonal
damping with µdiag(Jk

T Jk) in (38) and by applying this to
the following equations as in [19]

 Xk+1 = Xk − (Jk
T Jk)−1Jk

T rk (41)

 By doing so, larger steps are made in directions where the
gradient is small, further speeding up convergence, results in

X̂ i+1 = X̂k−1 + Ki

Zk − h X̂i ,0()− Hi X̂i()−
−µ I − KiHi()Pk

−Bi
−1X̂ i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (42)

Pk
− = I − Pk−1 Pk−1 +

1
µ

Bi
−1⎛

⎝⎜
⎞
⎠⎟

−1⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Pk−1 (43)

Bi = diag J J T() = diag HiRHi

T + Pk
−1() (44)

Ki = Pk

−Hi
T HiPk

−Hi
T + R()−1

 (45)

 X̂ k = X̂ i+1 (46)

 Pk = Pi
 (47)

 There are two parameters in the LM-IEKF algorithm,
which have to be set. The

 Kk
i is again to be found using the exact line search (41)

because it influences the results. The selection of the
damping parameter µ is rather difficult because it
influences the step-length too. Some discussion on this topic
can be found in [19].

4.3.3 Training neural networks with Levenberg-Marquardt

Iterated EKF
The algorithm of the Levenberg-Marquardt iterated Kalman
filter for training the neural network is summarised below:

State estimate propagation

 ŵk
− = ŵk−1 (48)

Pk
− = I − Pk−1 Pk−1 +

1
µ

Bi
−1⎛

⎝⎜
⎞
⎠⎟

−1⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Pk−1 (49)

Bi = diag J J T() = diag HiRHi

T + Pk
−1()

 (50)

Kalman gains matrix

Ki = Pk

−Hi
T HiPk

−Hi
T + R()−1

 (51)

State estimate update

Ben Cherif Aissa and Chouireb Fatima/Journal of Engineering Science and Technology Review 10 (4) (2017) 191-198

	 196

ŵi+1 = ŵk−1 + Ki

Zk − h ŵi ,0()− Hiŵi()−
−µ I − KiHi()Pk

−Bi
−1ŵi

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (52)

Error covariance update

Pi = I − KiHi()Pk

− (53)

 ŵk = ŵi+1 (54)

 Pk = Pi (55)

5. Simulation results

This section presents numerical results for trajectory
tracking control of a wheeled mobile robot using the trained
neural networks. The simulation was done under MATLAB
to demonstrate the effectiveness of the proposed training
algorithms.
 For the neural networks, we have 7 neurones in the
hidden layer, 2 neurones in the input layer and a neurone in
the output layer for each controller.

𝑛 = 7 : The number of neurons in hidden layer
𝑚 = 2: The number of neurons in input layer
𝑛𝑦 = 1 : The number of neurons in output layer

The number of training parameters is then given by:

ns = m n() + n + n ny() + ny = 29

which is the total number of weights and biases to estimate.
 The initial state and initial state and error covariance
matrix are given by:

X̂0 = ŵ0

i, j ; ŵ0
j,k ;b̂

0
j ;b̂

0
k

⎡
⎣

⎤
⎦ = randn ns,1()

P0 = 1000 eye ns,ns()

 The noises covariance matrices are given as follow:

Q = 0.001 eye ns,ns()

 R = 1000

 To obtain a good estimation of weights and biases with
Levenberg-Marquardt Iterated EKF, we train the two neural
networks for a different number of updating iterations.
Table.1 resumes the results obtained. These results show that
7 iterations have small RMS errors; this number is fixed for
all simulation and experimental results.

Table.1 LMIEKF RMS training errors

ANNs 3 iterations 5 iterations 7 iterations
ANN1 0.4118 0.3581 0.2530
ANN2 0.1133 0.1070 0.1048

 In the training phase, figures 4 and 5 shows the results of
the trained neural network for an angular velocity controller

with LM-IEKF and EKF respectively, the RMS training
errors for both velocity controllers are represented in the
table. 2. These results show that the LM-IEKF has a good
performance to better estimate the parameters of neural
networks than EKF

Fig. 4. Neural network training with LM-IEKF

Fig. 5 Neural network training with EKF

Table. 2. Training RMSE
Training method 𝒗 𝒘

EKF 0.6914 0.2330
LM-IEKF 0.2530 0.1048

 Figures 6-8 shows the mobile robot trajectory tracking
for different reference trajectories: sinusoidal, lemniscate,
circular respectively, where the green line represents the
reference trajectory, the red and black are the real trajectory
with a neural network trained with EKF and LM-IEKF
respectively. These two methods are also compared with
neural networks trained with LMBP represented with a
magenta line.

Fig. 6. Tracking response of a mobile robot with NN controllers for
sinusoidal trajectory with initial position

X0 = 0;4;0⎡⎣ ⎤⎦

0 50 100 150
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

epoch

ve
loc

ity

testing data
target data

0 50 100 150
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

epoch

ve
loc

ity

testing data
target data

-10 0 10 20 30 40 50 60
-15

-10

-5

0

5

10

15

20

x(m)

y(m
)

reference trajectory
real trajectory with LMBP
real trajectory with NNEKF
real trajectory with NNLMEKF

Ben Cherif Aissa and Chouireb Fatima/Journal of Engineering Science and Technology Review 10 (4) (2017) 191-198

	 197

Fig. 7 Tracking response of a mobile robot with NN controllers for
lemniscate trajectory

X0 = 0;−4;π / 4⎡⎣ ⎤⎦

Fig. 8 Tracking response of a mobile robot with NN controllers for
Circular trajectory

X0 = 0;−5;0⎡⎣ ⎤⎦

 These results show that the robot has tracked effectively
any reference trajectory. The comparative results of each
method of training the neural network are shown in table 3,
this table represents the RMS errors in x, y and theta for
each trajectory and for each training method, the important
remark is that the robot controlled using neural network
trained with LM-IEKF has tracked the reference trajectory
with the minimum RMSE than neural network control
trained with EKF or LMBP.

Table. 3 RMS errors between reference and real trajectory

trajectory

RMS
error

Methods
EKF LM-

IEKF
LMBP

Fig .6

RMSE in
x

0.0755 0.0640 0.2469

RMSE in
y

0.3585 0.3567 0.3941

RMSE in
𝜃

0.2506 0.2491 0.2515

Fig .7

RMSE in
x

0.1971 0.1523 0.2467

RMSE in
y

0.2924 0.2849 0.5705

RMSE in
𝜃

0.6574 0.5391 0.7866

 RMSE in 0.3791 0.2939 0.3944

Fig .8 x
RMSE in

y
0.3940 0.3670 0.6616

RMSE in
𝜃

0.3153 0.2136 0.2223

 All simulation results show clearly that the LM-IEKF
training algorithm outperforms the other algorithms in
estimating optimal weights and biases of neural network
controllers.

6. Experimental results

In this section, we use experimental results to compare the
proposed Levenberg-Marquardt-IEKF method with the EKF
method for neural network training. A practical photograph
of the experimental equipment for the differential driving
mobile robot system is depicted in Figure. 11. All the
experimental results are carried out via LabVIEW 2013 in an
i3 core personal computer (PC). The vehicle used in the
experiments is the starter kit 2.0 mobile robot, manufactured
by the National Instrumentation.

Fig. 11. NI starter kit 2.0 mobile robot

 Figure11 shows the actual mobile robot following the
desired path where the initial pose for the NI mobile robot
starts at position (0, 0) meter and orientation π/2 radian and
the desired path starts at position (1,1, π/2).
 Figure12 shows that the trajectory of the real NI mobile
robot controlled by neural networks trained with the LM-
IEKF algorithm is more close to the reference trajectory than
the trajectory obtained when the neural networks are trained
with EKF algorithm.

Fig. 12. Tracking response of NI mobile robot with an NN controller

-15 -10 -5 0 5 10 15
-20

-15

-10

-5

0

5

10

15

20

25

x(m)

y(
m

)

reference trajectory
real trajectory with LMBP
real trajectory with NNEKF
real trajectory with NNLMEKF

-15 -10 -5 0 5 10 15
-5

0

5

10

15

20

25

30

x(m)

y(
m

)

reference trajectory
real trajectory with LMBP
real trajectory with NNEKF
real trajectory with NNLMEKF

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x(m)

y(
m

)

reference trajectory
real trajectory with NNEKF
real trajectory with NNLMEKF

Ben Cherif Aissa and Chouireb Fatima/Journal of Engineering Science and Technology Review 10 (4) (2017) 191-198

	 198

 Table 4 represent the experimental RMSE of coordinates
(x,y) and the orientation. This result shows that the neural
network trained with LM-IEKF has better performance to
estimate the parameters of the neural network than the
extended Kalman filter.

Table 4 Experimental RMS errors

method RMSE in x RMSE in y RMSE in
theta

EKF 0.2463 0.3912 0.5554
LM-IEKF 0.1828 0.2457 0.4371

7. Conclusion

In this study, we design a neural network feedback controller
for unicycle-type nonholonomic mobile robots. The

proposed controller consists of two neural networks, each
one has two inputs (position errors of wheels) and one
output corresponding to each velocity. They are trained off-
line with a standard extended Kalman filter and Levenberg-
Marquardt Iterated-EKF. We found that a neural network
trained with the proposed Levenberg-Marquardt-Iterated
EKF shows better results than the NN trained with the EKF
algorithm. Simulation and experimental results demonstrate
the efficiency and the effectiveness of neural networks
controllers trained with the Marquardt-Iterated-EKF
algorithm for the mobile robot trajectory tracking problem.

This is an Open Access article distributed under the terms of the
Creative Commons Attribution Licence

References

[1] Z. Hendzel and M. Trojnacki, “Neural Network Control of a Four-

Wheeled Mobile Robot Subject to Wheel Slip,” Adv. Intell. Syst.
Comput., vol. 317, pp. 473–482, 2015.

[2] G. Oriolo, A. De Luca, and M. Vendittelli, “WMR control via
dynamic feedback linearization: design, implementation, and
experimental validation,” Control Syst. Technol. IEEE Trans., vol.
10, no. 6, pp. 835–852, 2002.

[3] R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile
robot: backstepping kinematics into dynamics,” in Decision and
Control, 1995., Proceedings of the 34th IEEE Conference on, 1995,
vol. 4, pp. 3805–3810.

[4] D. Chwa, “Tracking Control of Differential-Drive Wheeled Mobile
Robots Using a Backstepping-Like Feedback Linearization,” Syst.
Man Cybern. Part A Syst. Humans, IEEE Trans., vol. 40, no. 6, pp.
1285–1295, 2010.

[5] C. Samson, “Control of Chained Systems Application to Path
Following and Time-Varying Point-Stabilization of Mobile
Robots,” IEEE Trans. Automat. Contr., vol. 40, no. 1, pp. 64–77,
1995.

[6] J.-M. Yang and J.-H. Kim, “Sliding mode control for trajectory
tracking of nonholonomic wheeled mobile robots,” Robot. Autom.
IEEE Trans., vol. 15, no. 3, pp. 578–587, 1999.

[7] D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled
mobile robots in polar coordinates,” IEEE Trans. Control Syst.
Technol., vol. 12, no. 4, pp. 637–644, 2004.

[8] M. Peña-cabrera, H. Gómez, and V. Lomas, “Fuzzy Logic for
omnidirectional mobile platform control based in FPGA and
Bluetooth communication,” vol. 13, no. 6, pp. 1907–1914, 2014.

[9] T. Dierks and S. Jagannathan, “Asymptotic Adaptive Neural
Network Tracking Control of Nonholonomic Mobile Robot
Formations,” J. Intell. Robot. Syst., vol. 56, no. 1–2, pp. 153–176,
2009.

[10] J. Ye, “Tracking control for nonholonomic mobile robots:
Integrating the analog neural network into the backstepping
technique,” Neurocomputing, vol. 71, no. 16–18, pp. 3373–3378,
2008.

[11] L. C. Jain, M. Seera, C. P. Lim, and P. Balasubramaniam, “A
review of online learning in supervised neural networks,” Neural
Comput. Appl., vol. 25, no. 3–4, pp. 491–509, 2014.

[12] A. N. Chernodub, “Training Neural Networks for Classification
Using the Extended Kalman Filter : A Comparative Study,” vol. 23,
no. 2, pp. 96–103, 2014.

[13] A. Saptoro, “Extended and unscented kalman filters for artificial

neural network modelling of a nonlinear dynamical system,” Theor.
Found. Chem. Eng., vol. 46, no. 3, pp. 274–278, 2012.

[14] F. Heimes, “Extended Kalman Filter Neural Network Training:
Experimental Results and Algorithm Improvements,” pp. 1639–
1644, 1998.

[15] D. B. and E. W. S. Gannot, “Iterative and Sequential Kalman Filter-
Based,” IEEE Trans. Speech Audio Process., vol. 6, no. 4, pp. 373–
385, 1998.

[16] P. Deossa, J. Pati??o, J. Espinosa, and F. Valencia, “A comparison
of Extended Kalman Filter and Levenberg-Marquardt methods for
neural network training,” 2011 IEEE 9th Lat. Am. Robot. Symp.
IEEE Colomb. Conf. Autom. Control. LARC 2011 - Conf. Proc.,
2011.

[17] Z. V. P. Murthy, “Nonlinear Regression: Levenberg- Marquardt
Method,” pp. 4–6, 2014.

[18] R. Toushmalani, Z. Parsa, and A. Esmaeili, “Comparison result of
inversion of gravity data of a fault by Cuckoo Optimization and
Levenberg-Marquardt methods,” Res. J. Pharm. Biol. Chem. Sci.,
vol. 5, no. 1, pp. 418–427, 2014.

[19] M. A. Skoglund, G. Hendeby, and D. Axehill, “Extended Kalman
filter modifications based on an optimization view point,” in
Information Fusion (Fusion), 2015 18th International Conference
on, 2015, pp. 1856–1861.

[20] J. J. Kappl, “Estimation Kalman Filtering,” Ieee Trans. Aerosp.
Electron. Syst., no. 1, pp. 79–84, 1971.

[21] X. Wang and Y. Huang, “Convergence study in extended Kalman
filter-based training of recurrent neural networks,” IEEE Trans.
Neural Networks, vol. 22, no. 4, pp. 588–600, 2011.

[22] K.-W. Wong, C.-S. Leung, and S.-J. Chang, “Use of periodic and
monotonic activation functions in multilayer feedforward neural
networks trained by extended Kalman filter algorithm,” IEE Proc. -
Vision, Image, Signal Process., vol. 149, no. 4, p. 217, 2002.

[23] B. M. Bell and F. W. Cathey, “The iterated Kalman filter update as
a Gauss-Newton method,” IEEE Trans. Automat. Contr., vol. 38,
no. 2, pp. 1991–1994, 1993.

[24] K. Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares,” Q. Appl. Math., vol. 2, pp. 164–168,
1944.

[25] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of
Nonlinear Parameters,” Journal of the Society for Industrial and
Applied Mathematics, vol. 11, no. 2. pp. 431–441, 1963.

