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Abstract 
RNA-Seq is increasingly being used to measure human RNA 
expression on a genome-wide scale. Expression profiles can be 
interrogated to identify and functionally characterize treatment-
responsive genes. Ultimately, such controlled studies promise to 
reveal insights into molecular mechanisms of treatment effects, 
identify biomarkers, and realize personalized medicine. RNA-Seq 
Reports (RSEQREP) is a new open-source cloud-enabled framework 
that allows users to execute start-to-end gene-level RNA-Seq analysis 
on a preconfigured RSEQREP Amazon Virtual Machine Image (AMI) 
hosted by AWS or on their own Ubuntu Linux machine via a Docker 
container or installation script. The framework works with unstranded, 
stranded, and paired-end sequence FASTQ files stored locally, on 
Amazon Simple Storage Service (S3), or at the Sequence Read Archive 
(SRA). RSEQREP automatically executes a series of customizable steps 
including reference alignment, CRAM compression, reference 
alignment QC, data normalization, multivariate data visualization, 
identification of differentially expressed genes, heatmaps, co-
expressed gene clusters, enriched pathways, and a series of custom 
visualizations. The framework outputs a file collection that includes a 
dynamically generated PDF report using R, knitr, and LaTeX, as well as 
publication-ready table and figure files. A user-friendly configuration 
file handles sample metadata entry, processing, analysis, and 
reporting options. The configuration supports time series RNA-Seq 
experimental designs with at least one pre- and one post-treatment 
sample for each subject, as well as multiple treatment groups and 
specimen types. All RSEQREP analyses components are built using 
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open-source R code and R/Bioconductor packages allowing for further 
customization. As a use case, we provide RSEQREP results for a 
trivalent influenza vaccine (TIV) RNA-Seq study that collected 1 pre-TIV 
and 10 post-TIV vaccination samples (days 1-10) for 5 subjects and two 
specimen types (peripheral blood mononuclear cells and B-cells).
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Introduction
The advent of next-generation sequencing (NGS) technolo-
gies has dramatically reduced costs and thus democratized  
sequencing1. Consequently, both big research consortia and small 
laboratories now have the ability to utilize large-scale genomic 
applications such as RNA sequencing (RNA-Seq) for transcrip-
tome profiling. However, while sequencing cost is on the decline, 
the cost of data storage, analysis and interpretation is increasing1. 
Major challenges for analyses of RNA-Seq data include the need 
for a substantial informatics hardware and software infrastruc-
ture as well as a wide range of computational skills to effectively  
manage and process the data. With the plethora of published  
bioinformatics software, data formats, and human genome infor-
mation, careful bioinformatics workflow development, parameteri-
zation, reference dataset management, and execution are required 
to generate consistent, reproducible and high-quality analysis 
datasets2. Interpretation of RNA-Seq data requires special statisti-
cal and visualization techniques3,4. In addition, most of the NGS  
bioinformatics software only runs on the Linux operating  
system (OS) or is dependent on Linux tools/utilities. These  
requirements limit the ability of small labs and individual prin-
cipal investigators to analyze such data, in particular, those that  
use desktop computers running non-Linux based OS with lim-
ited IT support. Emerging information technologies, bioinfor-
matics workflow engines, and open-source analytical modules 
are presenting opportunities to reduce this burden5. Virtualization  
technologies, for example, now allow entire OS replete with all 
the necessary software packages to be archived and then instanti-
ated just about anywhere at a moment’s notice, independent of the  
hardware architecture available. For instance, all software  
components and dependencies can be encapsulated within Virtual 
Machines (VMs). A more lightweight approach to bundle soft-
ware are Docker containers. Compared to VMs, Docker contain-
ers execute processes directly on top of the kernel of a host OS, 
and thus, unlike VMs, they do not require an OS to be encap-
sulated. Furthermore, they require minimal installation effort, 
while also providing a mechanism for software version tracking, 
update, and configuration. Using virtual appliances allows users to  
choose the number and size of VMs to be provisioned and thus  
provide on-demand computational scalability. Commercial cloud 
service providers such as Amazon Web Services, Google Cloud 
Platform, and Windows Azure provide user-friendly web-based 
tools to manage VMs and associated computational resources, 
including cloud storage, networking, security, identity manage-
ment, and backup and disaster recovery. This pay-as-you go  
model eliminates upfront capital expenses by converting the 
budgeting representation of bioinformatics processing tasks and 

storage into well-defined operational costs. The open-source  
R statistical programming language in combination with the  
Bioconductor package resource provides researchers with a con-
sistent way to share and use specialized statistical methods for  
RNA-Seq analysis6,7. In combination with the R knitr package, 
analysis data sets can be processed automatically using R and  
summarized in reports by integrating formatting instructions with 
analytical components8. Together, these technologies can reduce 
analysis time and programming effort, allow more accurate esti-
mation of hardware costs, improve quality of results, and facilitate  
reproducible research by transparently documenting all steps 
including software and OS.

RNA-Seq allows snapshot measurements of the human transcrip-
tome by partially sequencing reverse-transcribed RNA transcripts 
(cDNA) expressed in cell populations or single cells of interest. 
In the context of clinical trials, the goal of transcriptomics studies  
is to identify and better understand changes in cell states on the 
gene expression level that can be attributed to a certain treat-
ment (e.g., a vaccine or drug)9,10, or changes that can predict  
individual treatment responses (e.g. the likelihood of developing 
protective levels of antibody)11,12. The number of RNA-Seq reads  
(short DNA sequence) corresponding to a transcript has been  
shown to be linearly associated with true transcript abundance 
spanning a large quantitative range13. Prior to gene expression  
quantification, processing of human RNA-Seq data requires a 
computationally intensive alignment step that maps sequence 
reads against the human reference transcriptome and/or genome 
sequence14–16. Resulting alignment metrics including genomic 
mapping locations (chromosome and position), alignment infor-
mation (insertions, deletions, and matching bases), alignment 
quality scores, among other information, are recorded in the  
form of Binary Alignment Mapping (BAM) files17. Various algo-
rithms have been developed that use this mapping information for 
determining/counting which sequence read originated from a cer-
tain gene, gene isoform, or gene exon18–22. Following gene expres-
sion quantification, key analysis steps include the detection of  
treatment-responsive genes (e.g. 4) and subsequent characteriza-
tion of these genes using pathway enrichment analysis (e.g. 23).  
Challenges prior to RNA-Seq data interpretation include  
(1) estimation of expected cost for storage and data process-
ing, (2) provisioning of computational resources for storage and 
data processing, (3) installation of Linux OS, required bioinfor-
matics software, and reference data sets, (4) suitable analytical  
methods including advanced data visualizations to summarize  
key tends in the data, and (5) automation and documentation  
of all steps to facilitate reproducible research.

In this article, we summarize the RSEQREP framework we  
developed that allows researchers to address these challenges 
and to streamline the transition from a desktop environment to a  
server-based scalable cloud infrastructure using Amazon 
Web Services (AWS). Alternatively, the framework can be 
installed on a local Ubuntu machine via a RSEQREP Docker 
container or installation scripts that we provide. We exem-
plify the framework’s capabilities using RNA-Seq data gener-
ated for an influenza vaccine study that extracted RNA from 
peripheral blood mononuclear cells (PBMCs) and B-cells  
samples collected from 5 subjects prior to trivalent influenza  

            Amendments from Version 1

This version includes updates to the article in response to 
reviewer comments and software updates. We made corrections 
and improvements to the RSEQREP software (see release notes 
on GitHub for details). Revised Figure 2–Figure 5 supersede the 
corresponding previous versions so that they match the new PDF 
report (Supplemental File 1). Changes between the V2 text/figures 
and V1 text/figures are minor and they did not impact any of the 
Use Case conclusions.

See referee reports
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vaccine (TIV) vaccination and at 10 time points post TIV vaccina-
tion (days 1-10) (GEO accession: GSE45764, Dataset 1,10).

Methods
Implementation
Figure 1 provides an overview of RSEQREP software compo-
nents. The framework is organized into four main components:  
(1) reference data setup, (2) pre-processing, (3) analysis, and  
(4) reporting. The pre-processing component uses a combination 
of open-source software, shell, R, and Perl scripts and a SQLite  
relational database to process raw sequence data, quantify gene 
expression, and track storage, file check-sums, CPU, memory, 
and other runtime metrics. The analysis component is based on R 
using both custom R programs, as well as existing R/Bioconductor  
packages. The reporting component is based on R, the knitr  
R package, and LaTeX for reproducible and automatic PDF  
report and figure/table generation. All components read user- 
defined arguments from the respective tab in the RSEQREP  
configuration spreadsheet (RSEQREP/config/config.xls).

Operation
All four workflow components can be run in sequence  
via the RSEQREP/run-all.sh script or run individually to 
update results of the respective component. When running each  
individual step, the most recent version of the configuration file 
will be reloaded to ensure that any modifications to the configu-
ration will be reflected. This is particularly useful for optimizing  
results and customizing result presentation, for example, by 
removing outliers, optimizing the low-expression cut-off, or 
adjusting the color-coding range for heatmaps. In the fol-
lowing, we provide an overview of each of these steps. 
Additional information can be found in the method section  
of the RSEQREP summary report (Supplementary File S1).

Step 1) Reference Data Set-up. The RSEQREP/setup.sh script 
reads all user-specified arguments provided in the config.xls file, 
downloads all required reference data including user-specified  
versions of the human reference genome sequence and associated 
gene model information from the Ensembl database24. Input for  
pathway enrichment analysis is handled via Gene Matrix Trans-
posed (GMT) files. For GMT files, Entrez Gene IDs, Ensembl  
Gene IDs, or gene symbols are supported and will be automati-
cally mapped to the human Ensembl reference annotations. We  
recommend that users obtain reference pathway GMT files from  
the Molecular Signatures Database (MSigDB)25. The MSigDB 
import is not automated as download requires registration but 
the location of downloaded GMT file can be specified in the  
configuration file. We do provide a script (RSEQREP/source/shell/
download-gene-sets.sh) to automatically download Reactome, 
Blood Transcription Module26, and KEGG27 pathway information 
and convert this information to GMT files (note, a license may 
be required prior to downloading KEGG pathway information).  
Following the reference dataset download, an index of the 
human reference genome sequence will be created to optimize  

reference alignment searches15,16. Result files generated as part of 
this step are saved under the data output directory.

Step 2) Data Pre-processing. Based on FASTQ file input  
specifications in the config.xls, the RSEQREP/run-pre-processing.sh  
script downloads and decrypts (optional) FASTQ files hosted on 
AWS Simple Storage Service (S3) storage (https://aws.amazon.
com/s3), a local file location (Linux file path), or directly from  
Sequence Read Archive (SRA)28 via the fastq-dump utility  
that is included in the SRA toolkit. Following the down-
load, the script executes sequence data QC (FastQC), refer-
ence genome alignments (STAR16 or HISAT215 splice-aware  
aligner on stranded, unstranded, or paired-end read data as  
specified in the config.xls), reference based compression to gener-
ate storage-optimized CRAM files (SAMtools17), gene expression  
quantification (featureCounts as implemented in subread18), and 
reference genome alignment QC (RSeQC29). Additionally, the  
script tracks program arguments, program return codes, input and 
output file names, file sizes, MDS checksums, wall clock times, 
CPU times and memory consumption in a SQLite relational data-
base. Interim result files generated as part of this step are saved 
under the specified pre-processing output directory.

Step 3) Data Analysis. The RSEQREP/run-analysis.sh script  
initializes analysis datasets for the final reporting step including  
(1) TMM-normalization30 and exclusion of low-expressed 
genes, (2) principal component analysis (PCA), distance matrix  
calculations for non-metric multidimensional scaling (MDS), and  
hierarchical clustering for global multivariate analyses, (3) log2  
fold change calculations used as input for heatmap and co- 
expressed gene-cluster analyses, (4) identification of differentially  
expressed (DE) genes (edgeR31), co-expressed gene clusters  
(pvclust32), and enriched pathways (GoSeq23). Interim result  
files generated as part of this step are saved under the specified 
report output directory.

Step 4) Automatic Report Generation. The RSEQREP/run-report.sh  
script produces the final results. It runs R analyses on the inter-
mediate analysis files generated in Step 3, generates a summary 
PDF report using the knitr R package in combination with LaTeX, 
and result tables in gzipped .csv format as well as individual  
figure files in .pdf, and .png format. This script also summarizes  
key run time statistics that were collected as part of Step 2.  
Result files generated as part of this step are saved under the  
specified report output directory.

Minimal system requirements
A 35 GiB Elastic Block Store (EBS) volume, i.e. storage  
immediately accessible to the OS (http://docs.aws.amazon.com/ 
AWSEC2/latest/UserGuide/EBSVolumes.html), sufficiently covers  
space for the OS, user accounts, reference data, and to process  
and analyze dataset sizes similar to that of the influenza vaccine  
case study when CRAM compression is deactivated. To  
accommodate storage for CRAM-compressed files and studies  
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Figure 1. RNA-Seq Reports (RSEQREP) implementation overview. RSEQREP provides a reproducible start-to-end analysis solution 
for RNA-Seq data by automating (1) reference dataset initialization/download, (2) RNA-Seq data processing (3) RNA-Seq analysis, and  
(4) reporting including a summary PDF report and publication-ready table and figure files. Steps can be run in a modular fashion and key 
computational metrics are tracked in a SQLite database. The software runs on a pre-configured RSEQREP AMI or on a local Ubuntu Linux 
machine. Users can customize individual steps and enter their experimental design information via an Excel configuration file.
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with larger sample sizes and/or sequence coverage, additional  
EBS volumes are required (see information on AWS set-up under 
https://aws.amazon.com/ebs/getting-started).

We found that a c3.xlarge computational Elastic Compute Cloud 
(EC2) instance type (4 vCPUs, 7.5 GiB, https://aws.amazon.com/
ec2/instance-types) is sufficient for data processing and analysis, 
but a higher memory machine (c3.4xlarge: 16 Gib for HISAT2  
and c3.8xlarge: 37 Gib for STAR) is required to successfully  
complete the indexing of the reference genome sequence as part 
of Step 1.

Installation
We provide a pre-configured RSEQREP Amazon Virtual Machine 
Image available on AWS at (https://aws.amazon.com, AMI ID:  
RSEQREP (RNA-Seq Reports) v1.0) that combines the 
Ubuntu operating system Version 16.04.2 (long-term  
support) with all additional software that is required for RSEQREP 
operation (RSEQREP/SOFTWARE.xlsx). We prepared a manual  
that provides instructions on how to set-up an AWS instance 
including mounting of EBS volumes for local storage and an 
optional Elastic IP address for machine access (RSEQREP/aws/
aws_instructions.docx). Alternatively, we provide a RSEQREP  
Docker container (https://hub.docker.com/r/emmesdock/rseqrep) 
and installation scripts that can be executed on a local Ubuntu 
machine (Version 16.04.2) to install necessary dependencies  
(RSEQREP/ubuntu/install-software.sh). In both cases, AWS and 
local set-up, prior to workflow execution, users would need to pull 
the latest RSEQREP source code from GitHub (git clone https:// 
github.com/emmesgit/RSEQREP).

Configuration
RSEQREP configuration is handled via the RSEQREP/config/ 
config.xlsx file. The first tab allows users to specify sample  
metadata. Fields include subject ID, sample ID, sampling time 
point, a flag (is_baseline) that indicates if a sample was col-
lected prior to treatment, the treatment group, specimen type (e.g.  
B-cells, PBMCs, etc.), and FASTQ sequence file location (AWS 
S3, local, SRA ID via the fastq-dump utility that is part of the 
SRA toolkit). In addition, color-coding for time points, treat-
ment groups, and specimen types can be defined. The second 
tab specifies options related to the pre-processing step. This 
tab uses a two-column key value pair format to define options. 
For example, to specify the Ensembl database version 87, users  
can set the version value via the ensembl_version key value pair 
to 74. Other options include the type of RNA-Seq data (stranded: 
yes/no) and reference alignment software (Star or Hisat2).  
Paired-end experiments can be accommodated for each  
sample by specifying two input FASTQ files. The third tab 
allows users to customize analysis and reporting components. 
Options include specification of cut-offs to define lowly-expressed 
genes, DE genes, and enriched pathways, as well as the distance  
metric and hierarchical clustering algorithm used for heatmap 
and gene clustering analysis. For further information, see descrip-
tions and examples for each of these options in the influenza  
vaccine case study configuration file (Supplementary File S2). 
We implemented the framework to dynamically adjust the report 
presentation depending on the number of subjects, time points,  
specimen types, and treatment group combinations. For exam-
ple, Venn diagrams are shown for comparisons between up to  

five sets (e.g. five time points). Larger sets are accommodated 
via UpSet plots33. The configuration file allows users to carry out  
subgroup analysis by limiting the metadata file to samples,  
treatment groups, and time points of interest.

Use case
To illustrate the capabilities of RSEQREP, we analyzed a pub-
licly available RNA-Seq dataset comprising 110 RNA-Seq 
samples: five subjects, 11 time points (pre-vaccination and 
days 1-10 post-vaccination), two specimen types (PBMCs and  
B-cells), and one treatment group (Trivalent Influenza Vaccination 
(TIV)) (GEO accession: GSE45764, Dataset 1,10). The unstranded  
single-end RNA-Seq experiment was carried out with a read 
length of 65 nt (nucleotides) and an average sequence coverage of  
12 million total mapped reads. The study was designed to obtain 
detailed information on the early temporal gene expression response 
following TIV vaccination in both PBMC and B-cells. The con-
figuration file that specifies the case study experimental design,  
SRA identifiers, data processing and analysis parameters is 
provided in Supplementary File S2. The configuration file 
allows users to reproduce RSEQREP results for this case 
study on their own RSEQREP AWS instance or Ubuntu Linux 
machine. Supplementary File S1 represents the corresponding  
RSEQREP Summary PDF report, including 134 figures and 135 
tables. In the following, we describe a subset of key findings  
(referenced supplemental tables and figures refer to the  
corresponding results in the supplemental PDF report). See  
Supplementary File S1 methods for additional information on  
pre-processing and analysis steps.

Global gene expression patterns and DE gene time trends
PCA results revealed that most variation in gene expression based 
on standardized log

2
 counts per million across all 110 samples 

was attributable to cell type (B-cells vs. PBMCs, Figure 2). In  
addition, two extreme outliers, including one B-cell sample  
that was likely mislabel as a PBMC sample, were identified. 
These samples were added to the configuration file as outliers 
to be excluded from downstream analysis. Negative binomial  
models as implemented in the edgeR package31 were fit to iden-
tify genes that were DE compared to pre-vaccination at each of 
the post-vaccination days. UpSet plots visualizing the number and 
overlap of DE genes over time are presented in Figure 3. PBMCs  
showed overall peak DE responses at day 1 (24 hours after TIV 
vaccination) with 135 genes being DE compared to pre-treatment 
gene expression levels. Between days 1–4, PBMC DE signals  
declined followed by a broader second peak response for  
days 5–8 reaching the second highest response of 96 DE genes at 
day 6. While most DE genes in PBMCs at day 1 were unique (105 
of 135 genes (78%)), most DE genes at day 6 (64 of 96 (67%)) 
were overlapping with other DE gene responses, in particular, with  
days 5, 7, and 8. In contrast to PBMCs, B-cells did not 
exhibit a noticeable DE gene signal at day 1, but showed 
responses between days 5–8 (121–483 genes) reaching high-
est responses at day 6 (483 genes). While some DE genes were 
unique to day 6 (169 of 483 (35%)), many were shared with 
day 7 (124 genes), as well as day 7 and day 8 (72 genes). For 
both cell types, most DE genes were up-regulated from pre- 
vaccination (Figure 3, middle panel vs. right panel). Most of 
the overlap between PBMC and B-cell DE genes was observed  
at day 6, at which 62 of 96 DE PBMC genes (65%) were also 

Page 6 of 23

F1000Research 2018, 6:2162 Last updated: 05 AUG 2021

https://aws.amazon.com/ebs/getting-started
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com
https://hub.docker.com/r/emmesdock/rseqrep
https://github.com/emmesgit/RSEQREP
https://github.com/emmesgit/RSEQREP


Figure 2. Global gene expression pattern analysis to identify outliers and batch effects (influenza vaccine case study). RSEQREP 
supports multivariate visualizations, including principal component analysis (PCA) to visualize key trends in the data. The analysis uses 
standardized log2 counts per million (mapped reads) for genes that met the low expression cut off as input. As shown for the influenza 
case study, the PCA analysis indicated that PBMC (highlighted in red) and B-cell (highlighted in blue) samples differ substantially in their 
transcriptional profiles. In addition, two outliers were identified in relation to the other samples (highlighted in blue circles). Ellipses represent 
the 95% confidence interval for the bivariate mean based on the first two principal components by specimen type.

reported as DE in B-cells (Figure S38). Tables S7–S26 list  
individual DE gene results. In the following, pathway enrich-
ment analysis results for peak DE responses and a selection of  
identified co-expressed gene clusters are summarized.

Pathway enrichment analysis results
To functionally characterize DE gene responses, pathway enrich-
ment analysis as implemented in the GoSeq R package23 was 
carried out using MSigDB (Version 5.2, Dataset 2) and Blood  
Transcription Modules (Dataset 3) reference gene sets/pathways. 
Pathway enrichment analysis of the day 1 peak DE gene signal 
in PBMCs identified innate immune response signaling pathways 
including Reactome-based interferon signaling, in particular,  
interferon gamma signaling and interferon alpha/beta signaling  
(Figure 4, Table S97). Top enriched GO Biological processes 
included innate immune response, defense response to virus and 
response to type I interferon (Table S92). The top Blood Transcrip-
tion Modules indicated that day 1 PBMC DE genes were most  
preferentially enriched in monocytes (II) (M11.0) but also  
enriched in activated dendritic cells (II) (M165), and enriched in  
neutrophils (I) (M37.1) (Table S91). The day 6 PBMC DE gene  
signal was related to plasmablast and B-cell Blood Transcrip-
tion Module signatures including plasma cells, immunoglobulins 
(M156.1), plasma cells and B cells, immunoglobulins (M156.0), 
and enriched in B-cells (II) (M47.1) (Table S115). The day 6 
peak DE gene response in B-cells was enriched in several cell  
cycle-related pathways including Reactome cell cycle mitotic,  
cell cycle and DNA replication (Figure 4, Table S73). In  

addition, processes involved in protein processing such as GO  
Cellular Component endoplasmic reticulum part and endoplasmic  
reticulum (Table S69) and GO Biological Process protein  
complex assembly and intracellular protein transport (Table S68), 
as well as Reactome metabolism of proteins, post-translational 
protein modification, and asparagine N-linked glycosylation were 
identified (Figure 4, Table S73). Enrichment results based on 
Blood Transcription Modules confirmed enrichment of cell cycle-
related modules but also identified several plasma cell-related 
signatures such as plasma cells surface signature (S3), plasma 
cells and B cells, immunoglobulins (M156.0), and plasma cells, 
immunoglobulins (M156.1) (Table S67). The top most enriched 
MSigDB Immunological Signature was related to genes that were  
up-regulated at day 7 following TIV vaccination compared 
to pre-vaccination in a previous influenza vaccine study by 
Nakaya et al. (GEO accession: GSE29614, 34) (Table S70).  
Tables S50–S133 list all pathway enrichment analysis results.

Co-expressed gene cluster results
To identify robust clusters of co-expressed DE genes based on 
correlation between log

2
 fold change responses, unsupervised 

multi-scale bootstrap resampling as implemented in the pvclust 
R package32 was executed. Several known immuno-globulin 
genes had robustly correlated log

2
 fold changes across all post- 

vaccination days (day 1–10) in B-cells and PBMCs reaching peak 
mean log

2
 fold change responses between days 6 and 8 (Figure 5).  

The immunoglobulin gene cluster highlighted for PBMCs  
comprised 7 genes (5 immunoglobulin genes: IGHG1, IGHG3, 
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Figure 3. UpSet plots to summarize key differentially expressed (DE) gene time trends (influenza vaccine case study). These panels 
summarize the DE gene overlap between post-treatment days for up- or down-regulated DE genes (shown to the right in black), for up-
regulated DE genes (shown in the middle in red), and down-regulated DE genes (shown to the right in blue), respectively within specimen 
type (B-cells are shown in the top row, PBMCS in the bottom row). In each panel, the bottom left horizontal bar graph labeled SDEG Set Size 
shows the total number of DE genes per post-treatment time point. The circles in each panel’s matrix represent what would be the different 
Venn diagram sections (unique and overlapping DE genes). Connected circles indicate a certain intersection of DE genes between post-
treatment days. The top bar graph in each panel summarizes the number of DE genes for each unique or overlapping combination. In the 
top left panel, for example, the first vertical bar/column shows those DE genes that are unique to day 6 (169 DE genes). The second shows 
those DE genes that are shared only between days 6 and 7 (124 DE genes). The third are those DE genes that are shared between days 6, 
7, and 8 (72 DE genes), and so forth. As shown for the influenza case study, most of the DE genes for B-cells were detected and overlapped 
between days 5, 6, 7, or 8 while most of the DE genes for PBMCs were uniquely identified at day 1.

Page 8 of 23

F1000Research 2018, 6:2162 Last updated: 05 AUG 2021



Figure 4. Heatmaps for visualizing pathway enrichment over time (influenza vaccine case study). Reactome pathways that were 
enriched in at least two conditions are shown. Cells are color-coded by enrichment score: -1 × log10(FDR-adjusted p-value). Cell values 
represent the number of DE genes that overlap with a certain pathway. Numbers in brackets indicate enriched pathways, i.e. pathways that 
met the specified FDR-adjusted p-value cut off. Pathways were clustered based on enrichment score. As shown for the influenza case study, 
pathways related to cell-cycle as well as protein metabolism were enriched in B-cells at day 6. Both, B-cell and PBMCs showed an enrichment 
of interferon signaling-related pathways at day 1.
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Figure 5. Co-expressed gene cluster time trends (influenza vaccine case study). RSEQREP supports unsupervised multiscale bootstrap 
resampling to identify co-expressed gene clusters based on their log2 fold change pattern over time. A subset of trends is shown for the 
influenza case study. Several co-expressed immunoglobulin genes reached peak log2 fold changes compared to pre-treatment between day 
6 and 8 while a cluster of interferon-induced antiviral (IFIT) genes showed an earlier peak in log2 fold change at day 1 in addition to a peak 
at day 8 in PBMCs.
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IGHGP, IGKC, IGKV3-11 and 2 genes not encoding for immu-
noglobulins: MZB1, and TNFRSF17) (Figure 5 bottom right). 
MZB1 is known to play a role in IgM assembly and secretion  
while TNFRSF17 is known to regulate humoral immunity  
including plasma cells. Several known interferon-inducible genes 
co-expressed in PBMCs (IFIT1, IFIT2, and IFIT3) showed an 
initial peak in log

2
 fold change response at day 1, which declined 

to pre-vaccination levels by day 4, followed by a second higher 
peak response at day 8 (Figure 5 bottom left). Time trends for all  
identified gene clusters are shown in Figures S82–S89.

Discussion
There is an increasing trend towards more open and transparent 
research including increasing demands for sharing of source code, 
software snapshots as well as enhanced scalability to facilitate 
processing of increasingly larger datasets. A plethora of open-
source software for RNA-Seq data processing and analysis has 
been developed4,35,36. The strength of the RSEQREP framework 
is its start-to-end open-source solution that combines operating  
system, bioinformatics software, reference data set-up, data  
processing, analysis, advanced data visualizations, and automatic 
reporting. The resulting RNA-Seq PDF reports can easily be  
customized, extended, and shared.

RSEQREP supports the reproducible research paradigm via its pre-
configured AMI and Docker container, open-source components, 
user-friendly configuration file, and functionality to rerun analyses 
from start-to-end or in parts. Using the RSEQREP AMI, in addi-
tion to on-demand scalable computational resources, has the benefit 
of integrating the operating system and all software installations 
as part of analysis snapshots referenced in the report, providing 
for complete transparency and full reproducibility of all compo-
nents involved. In addition, the software tracks computational  
runtime metrics (CPU and memory consumption), which can 
be used to track and estimate computational cost. Towards that  
end, we benchmarked the preprocessing step for the influenza vac-
cine case study data (110 samples) using increasingly powerful  
but also more expensive AWS EC2 instance types: c3.xlarge  
(4 vCPUs; 7.5 Gib RAM), c3.2xlarge (8 vCPUs; 15 Gib  
RAM), c3.4xlarge (16 vCPUs; 30 Gib RAM), and c3.8xlarge  
(32 vCPUs; 60 Gib RAM). We found that the c3.2xlarge  
(8 vCPUs; 15 Gib RAM) machine marks the ideal convergence  
of processing time and cost (Figure 6).

RSEQREP includes a collection of best practice analytical  
tools that we identified through extensive review of the peer-
reviewed literature. This includes TMM-normalization to 
remove systematic differences between samples30, filtering of 
lowly expressed genes to improve accuracy of fold change esti-
mates and power of DE detection, application of statistical  
methods that model read count variability using a discrete nega-
tive binomial distribution and share information across genes31,  
the use of moderated log2 counts per million for multivariate 

analyses, and adjustment for gene length bias37,38 as part of path-
way enrichment analysis23. In addition, the software provides  
several unique visualizations, including multivariate starplots for 
reference alignment QC (Figure S2), co-expressed gene cluster 
time trends (Figure 5), as well as pathway enrichment heatmaps  
(Figure 4) and radar plots (Figure S120).

RNA-Seq data processing and analysis is a constantly evolving 
field and there is no consensus on how to best analyze the data. 
For example, RSEQREP summarizes gene expression on the 
gene level - a widely used robust gene expression quantification  
approach18,19. However, methods that support expression quan-
tification on the gene-isoform level have been developed20–22. 
Depending on the research question, RNA-Seq analysis may 
include novel transcript/splice junction discovery, determina-
tion of single nucleotide polymorphism (SNPs), detection of  
RNA-editing events, and fusion genes39. In addition, several 
other popular DE gene detection algorithms such as DESeq2  
exist40. While such additional analysis choices are currently not 
implemented in RSEQREP, the key advantages of this frame-
work are that users have complete access to the source code to  
make custom updates to all workflow, analysis, and reporting  
components. In combination with scalable cloud resources this 
allows for rapid prototyping of analysis reports.

Using RSEQREP on published RNA-Seq data of an influenza  
vaccine study, we confirmed key transcriptional events in  
PBMCs and B-cells following TIV vaccination10. Three of five 
subjects in this study had reported previous influenza vaccinations. 
A memory response was confirmed by the RSEQREP analysis,  
which identified an early plasma cell and cell proliferation sig-
nature in B-cells with a peak 6 days following vaccination. This  
signal included cluster responses for several co-expressed immu-
noglobulin genes as well as an up-regulation of genes preferen-
tially involved in protein assembly, protein transport, ER-related  
pathways – all of which are at the core of antibody-generating cel-
lular machinery. While not as strong as for B-cells, a peak day 6 
plasma cell signature and co-expressed immunoglobulin gene 
response was also identified in PBMCs. This makes sense as  
B-cells are included in bulk PBMCs. PBMCs showed a strong 
up-regulation of an innate immune signaling responses 24 hours 
post-vaccination, in particular, responses related to interferon  
signaling. This signaling response was enriched in monocyte, 
dendritic cell, and neutrophil-specific gene expression signa-
tures indicating that it was driven by the innate immune cell 
subset within PBMCs. Several co-expressed genes in the IFIT 
gene family were significantly up-regulated at day 1. These 
genes are known to be activated following interferon sig-
naling and to exhibit antiviral activity by recognizing and  
inhibiting viral RNA41,42. This is in agreement with other studies 
that have shown that IFIT genes are up-regulated 24 hours post- 
influenza vaccination12,43.
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Figure 6. Wall clock time benchmarks for RNA-Seq pre-processing steps by AWS EC2 instance type. Metrics are based on 110 influenza 
case study RNA-Seq samples. The following instance types were used: c3.xlarge (4 vCPUs, 7.5 GiB Mem), c3.2xlarge (8 vCPUs, 15 GiB 
Mem), c3.4xlarge (16 vCPUs, 30 GiB Mem), c3.8xlarge (32 vCPUs, 60 GiB Mem). Median wall clock time is summarized as tracked in the 
RSEQREP SQLite database. The biggest relative reduction in wall clock time across processes was observed when switching from the  
4 vCPU to the 8 vCPU instance type (c3.xlarge vs. c3.2xlarge). Higher core machines (16 and 32 vCPUs) did result in further reduced 
wall clock time for completing reference alignments (HISAT2) and gene expression quantification (Subread) but the change was not as 
substantial.

Data and software availability
RSEQREP source code available from: https://github.com/ 
emmesgit/RSEQREP

Archived source code as at time of publication: DOI is https://doi.
org/10.5281/zenodo.121117144

RSEQREP Amazon Virtual Machine Image available from:  
https://aws.amazon.com, AMI ID: RSEQREP (RNA- Seq Reports) 
v1.0

RSEQREP Docker container available from: https://hub.docker.
com/r/emmesdock/rseqrep

License: Subject to various licenses, namely, the GNU Gen-
eral Public License version 3 (or later), the GNU Affero General  
Public License version 3 (or later), and the LaTeX Project  
Public License v.1.3(c).

A list of the software contained in this program, including  
the applicable licenses, can be accessed at https://github.com/
emmesgit/RSEQREP/blob/master/SOFTWARE.xlsx

Dataset 1. RNA-Seq of PBMC and B cell gene expression 
profiles in healthy humans following influenza vaccination  
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available from NCBI GEO with accession number  
GSE45764.

Dataset 2. MSigDB Version 5.2 GMT gene set files used for the 
influenza vaccine case study available from:

http://software.broadinstitute.org/gsea/msigdb/download_ 
file.jsp?filePath=/resources/msigdb/5.2/msigdb_v5.2_files_to_
download_locally.zip

For MSigDB license terms, please refer to http://software.broad-
institute.org/gsea/license_terms_list.jsp. Users are requested to  
create a login prior to data access:

http://software.broadinstitute.org/gsea/register.jsp?next=index.jsp

Dataset 3. Blood Transcription Modules GMT file used for  
the influenza vaccine case study available from:

https://www.nature.com/articles/ni.2789#supplementary-information

(Zip file 1).
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Its great to see that this is available on dockerhub and bioconductor! 
 
In my opinion, this is approvable for indexing!   
 
That said, I have one additional comment (that should not stand in the way of indexing).   
 
I like the way the perlscript for preprocessing is written, but in line 135, where it tries to fastq-
dump out of SRA when it cant find the other files, I would highly encourage you to try streaming 
out of SRA using https://github.com/ncbi/ngs rather than fastq-dump. 
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The updates to documentation and explanation provided by the authors makes it a lot easier to 
use and clearer to understand. This is a useful tool that can benefit functional genomics research.
 
Competing Interests: No competing interests were disclosed.
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Version 1

Reviewer Report 31 January 2018

https://doi.org/10.5256/f1000research.14148.r29277

© 2018 Busby B. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
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Ben Busby   
National Center for Biotechnology Information, National Library of Medicine, National Institutes of 
Health (NIH), Bethesda, MD, USA 

This work is an important example of building and advertising easy-to-implement yet powerful 
bioinformatics pipelines with established, popular algorithms.   
 
That said, in my opinion, three minor additions would make this manuscript much more robust, 
and therefore, acceptable for publications. 
 
First, the authors state that these pipelines should work on a variety of cloud architectures, but all 
they explicitly provide is an AMI for AWS use.  Containerization through Docker (not an 
endorsement) or some other containerization protocol should simply bridge this gap. 
 
Second, there are many mentions of bioconductor, but it is not clear from the manuscript whether 
this particular pipeline is available in bioconductor.  Please clarify. 
 
Third, given that the components of such pipelines are continuously evolving, there should be 
some documentation, either in the manuscript or the github repo about switching in new modules 
for mapping, differential expression, or visualization. 
 
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: An early draft version of a similar pipeline was worked on by some of the 
authors at a hackathon that I ran at the New York Genome Center.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 30 Mar 2018
Johannes Goll, The Emmes Corporation, Rockville, USA 

We thank Ben Busby for his insightful comments and suggestions to increase the 
usefulness of this software. In the following, we address each of the reviewer's comments 
highlighted in bold: 
 
First, the authors state that these pipelines should work on a variety of cloud 
architectures, but all they explicitly provide is an AMI for AWS use.  Containerization 
through Docker (not an endorsement) or some other containerization protocol should 
simply bridge this gap. 
 
To increase the software's portability, we created a public RSEQREP Docker container that 
contains all the required 3rd party software. The container image is available at 
https://hub.docker.com/r/emmesdock/rseqrep and can be accessed via the Docker utility 
using “docker pull emmesdock/rseqrep”. 
 
Second, there are many mentions of bioconductor, but it is not clear from the 
manuscript whether this particular pipeline is available in bioconductor.  Please 
clarify. 
 
RSEQREP is not available as a Bioconductor R package and includes components not written 
in R. The source code is available at https://github.com/emmesgit/RSEQREP

Third, given that the components of such pipelines are continuously evolving, 
there should be some documentation, either in the manuscript or the github 
repo about switching in new modules for mapping, differential expression, or 
visualization.

1. 
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We agree that RNA-Seq data processing and analysis is a constantly evolving field and there 
is no consensus on how to best analyze the data. RSEQREP includes a collection of best 
practice analytical tools that we identified through extensive review of the peer-reviewed 
literature. Users have complete access to the RSEQREP source code to make custom 
updates to all workflow, analysis, and reporting components. In combination with scalable 
cloud resources this allows for rapid prototyping of analysis reports. 
 
Below are key RSEQREP programs to alter mapping, differential expression, visualizations, 
or tables: 
 
1) Read mapping is executed via “RSEQREP\source\perl\preprocess-rnaseq.pl” 
2) DE gene analysis is executed via “RSEQREP/source/r/02-sdeg-identification/init-edgeR-
glm-model.r” 
3) Integration of visualizations (R graphics) as part of the report is handled via 
“/RSEQREP/source/knitr/*figures.Rnw” files.   
4) Integration of tables (R xtable) as part of the report is handled via 
“/RSEQREP/source/knitr/*tables.Rnw” files.  

Competing Interests: No competing interests were disclosed.
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© 2018 Mahurkar A. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Anup Mahurkar   
 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA 

RSEQREP is a comprehensive RNAseq analysis pipeline for processing bulk human RNAseq data. 
The pipeline bundles a number of commonly used RNAseq analysis tools to create a single 
pipeline for end-to-end RNAseq data analysis. The pipeline includes tools such fastqc for data QC, 
STAR and Hisat for alignment, RSeQC for generating alignment stats, edgeR for differential gene 
expression, a number of R packages for clustering analysis, and GOSeq for gene set enrichment 
analysis. The output from all of these tools is then used to generate a comprehensive report that 
summarizes the data analysis. The pipeline can be downloaded locally and run in an Ubuntu VM or 
can be executed on Amazon using a prebuilt Amazon Machine Image (AMI). 
  
The article is well written with an example dataset used to illustrate the different outputs 
generated by the pipeline. This is a useful tool that will help small labs with limited bioinformatics 
expertise or computational resources run RNAseq analyses. The authors also provide 
documentation on the github repository. The configuration of the pipeline is made easy through 
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an Excel template provided in the repository. 
  
While there are other similar tools and pipelines this is one of the few that bundles everything into 
a single pipeline and could be a great tool for biologist and bioinformaticians. Following are some 
suggestions that might improve the tool: 
 

The authors have provided a number of useful visualizations including Heatmaps, UpSet 
plots, radar plots, and PCA plots, some commonly used plots in RNAseq analysis such as MA 
plots, or Volcano plots are not present. The authors could consider adding these plots to the 
package.

1. 

The generated report includes summary figures for the different analyses and tables with 
the list of genes and pathways detected through the analyses. For a large analysis like the 
time-series analysis used as an example the generated report includes over 300 pages. This 
makes it hard to navigate through the report and find things quickly. Also, it is hard to 
explore the DE results by changing log-fold cutoffs, or FDR cutoffs which could easily be 
done in a spreadsheet but not in a PDF. The authors might want to consider splitting the 
report in two parts, a PDF report with images and summary data and methods, and an 
accompanying workbook with the tables so users can explore the results.

2. 

The tool requires users to build the indexes for the database used as the reference genome. 
This typically requires a higher memory machine (16 GB for Hisat2, and 37 GB for STAR). The 
processing itself can be done with less memory. This could pose a problem for users trying 
to run this tool on a typical laptop or workstation. The authors could consider prebuilding 
some commonly used indices for human, mouse, and rat genomes so all users do not have 
to re-index. These references are relatively stable so the index may only need to be rebuilt 
once or twice a year. This will ease the burden significantly for end users.

3. 

The authors have benchmarked their tool on Amazon to identify the most optimal instance 
type (Figure 6) so users can minimize costs. The biggest performance gains seem to be 
when the machine instance is changed from 4 vCPUs to 8 vCPUs. However, if a user were to 
want to use STAR this instance type does not have sufficient RAM. To optimize, the user will 
need to either use a larger instance for the entire processing, or launch two instances, a 
larger instance for the indexing step, and a smaller instance for processing, and copy the 
indices. For this reason, having pre-built indices might alleviate this issue.

4. 

The documentation needs some improvement, particularly if the intended audience is users 
with limited computational experience. When I tried to launch the AMI on Amazon I was not 
sure what username to use to log into the running instance. Through trial and error, I 
figured out that the username was “ubuntu”. But it would be better if this were included in 
the documentation on the github repo.

5. 

Another related issue is that because the pipeline reads Excel config files the user needs to 
create the config file on the local machine and upload to the AMI. Most non-tech savvy 
users will not necessarily know how to do it easily. The documentation could point to some 
utilities that could be used to upload the edited file such as sftp.

6. 

It appears that the system is only setup for human genome analysis. While editing the 
config file it was not clear where to specify the reference genome information for other 
organisms. There is no reason the pipeline could not work for other model organisms which 
are commonly used for basic research studies. This will increase its adaption and userbase.

7. 

Once I had the AMI running I had a difficult time executing the test pipeline. I was getting 
errors about missing directories or data files. I would recommend that the authors test the 
AMI and have clearer instructions on how to download datasets and run the tools in the 

8. 
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AMI. For instance after cloning the github repo I tried running the setup script with the 
command “sh RSEQREP/setup.sh” while I was in “/home/ubuntu” and got the following 
error:

“Fatal error: cannot open file '/home/ubuntu/source/r/parse-rnaseq-configuration.r': No such file 
or directory”. 
  
I then tried moving to the RSEQREP directory to run the same command and got the error: 
  
“File does not exist! /home/ubuntu/msigdb/c2.cp.kegg.v5.2.entrez.gmt.” 
  
Based on the error message it appears that the software expects the databases to be uploaded 
before the setup script can be run but the documentation does not specify that. As a result, I was 
not able to test the VM end-to-end, but with improved testing and documentation this should be 
easy to address.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 30 Mar 2018
Johannes Goll, The Emmes Corporation, Rockville, USA 

We thank Anup Mahurkar for his insightful comments and suggestions to increase the 
usefulness of this software. In the following, we address each of the reviewer's comments 
highlighted in bold: 
 

 
Page 20 of 23

F1000Research 2018, 6:2162 Last updated: 05 AUG 2021



The authors have provided a number of useful visualizations including Heatmaps, 
UpSet plots, radar plots, and PCA plots, some commonly used plots in RNAseq analysis 
such as MA plots, or Volcano plots are not present. The authors could consider adding 
these plots to the package. 
 
The Volcano and MA plots can be found on page Figures 20-23 in the case study report 
(Supplementary File S1). 
 
The generated report includes summary figures for the different analyses and tables 
with the list of genes and pathways detected through the analyses. For a large 
analysis like the time-series analysis used as an example the generated report 
includes over 300 pages. This makes it hard to navigate through the report and find 
things quickly. Also, it is hard to explore the DE results by changing log-fold cutoffs, or 
FDR cutoffs which could easily be done in a spreadsheet but not in a PDF. The authors 
might want to consider splitting the report in two parts, a PDF report with images and 
summary data and methods, and an accompanying workbook with the tables so users 
can explore the results. 
 
We recommend that users navigate to the figure and table listings at the beginning of the 
PDF report to find content of interest or use the PDF search option. RSEQREP provides user-
friendly configuration options via a spreadsheet (see for example Supplementary File S2) 
including FDR and fold change cut offs that can be adjusted prior to generating reports. In 
addition to the PDF report, RSEQREP outputs all tables including DE gene lists in comma-
separated values (CSV) format which then can be used within Excel or other spreadsheet 
software to dynamically filter DE gene lists. 
 
The tool requires users to build the indexes for the database used as the reference 
genome. This typically requires a higher memory machine (16 GB for Hisat2, and 37 GB 
for STAR). The processing itself can be done with less memory. This could pose a 
problem for users trying to run this tool on a typical laptop or workstation. The 
authors could consider prebuilding some commonly used indices for human, mouse, 
and rat genomes so all users do not have to re-index. These references are relatively 
stable so the index may only need to be rebuilt once or twice a year. This will ease the 
burden significantly for end users. 
 
We agree that a pre-built index would be more computational effective. However, we 
consider generating the index a part of the start-to-end analysis and, as a critical step to 
support reproducible research, indexing software, genome, and genome annotation 
versions are fully captured. This approach provides also the most flexibility to the users who 
can specify any Ensembl version including associated annotations and reference genome 
assembly during the initialization phase (see for example Supplementary File S2). A process 
to manually maintain genome indices would quickly become out of date. 
 
The authors have benchmarked their tool on Amazon to identify the most optimal 
instance type (Figure 6) so users can minimize costs. The biggest performance gains 
seem to be when the machine instance is changed from 4 vCPUs to 8 vCPUs. However, 
if a user were to want to use STAR this instance type does not have sufficient RAM. To 
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optimize, the user will need to either use a larger instance for the entire processing, 
or launch two instances, a larger instance for the indexing step, and a smaller 
instance for processing, and copy the indices. For this reason, having pre-built indices 
might alleviate this issue. 
 
Since we completed our computational benchmarks, newer AWS EC2 instance types have 
become available. Most notably the r4.X and x1e.X instance types, which are more than 
capable of providing enough memory for indexing with 4 or 8 vCPUs. 
 
The documentation needs some improvement, particularly if the intended audience is 
users with limited computational experience. When I tried to launch the AMI on 
Amazon I was not sure what username to use to log into the running instance. 
Through trial and error, I figured out that the username was “ubuntu”. But it would be 
better if this were included in the documentation on the github repo. 
 
We have updated our README file on GitHub (https://github.com/emmesgit/RSEQREP). We 
added detailed information about the AMI, installation, execution, and troubleshooting. This 
includes details on which user name and password to use to login into the AMI. 
 
Another related issue is that because the pipeline reads Excel config files the user 
needs to create the config file on the local machine and upload to the AMI. Most non-
tech savvy users will not necessarily know how to do it easily. The documentation 
could point to some utilities that could be used to upload the edited file such as sftp. 
  
We provide the Amazon AMI preconfigured with the X2GO remote Desktop software. This 
allows users to connect to the instance using a user-friendly desktop environment. We have 
updated our README file on GitHub (https://github.com/emmesgit/RSEQREP) to include 
information about this. Additionally, the instance comes pre-configured with the Libre Office 
software which contains an Excel editor. 
 
It appears that the system is only setup for human genome analysis. While editing the 
config file it was not clear where to specify the reference genome information for 
other organisms. There is no reason the pipeline could not work for other model 
organisms which are commonly used for basic research studies. This will increase its 
adaption and userbase. 
  
We purposefully designed the software to support human clinical research studies. While at 
this time, it supports only RNA-Seq analysis of human clinical samples, we may add support 
to expand on this in the future. We do encourage users to modify the existing source code 
for their own purposes including adaptations to support RNA-Seq analyses for other model 
organisms. 
  
Once I had the AMI running I had a difficult time executing the test pipeline. I was 
getting errors about missing directories or data files. I would recommend that the 
authors test the AMI and have clearer instructions on how to download datasets and 
run the tools in the AMI. For instance after cloning the github repo I tried running the 
setup script with the command “sh RSEQREP/setup.sh” while I was in “/home/ubuntu” 
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and got the following error:“Fatal error: cannot open file 
'/home/ubuntu/source/r/parse-rnaseq-configuration.r': No such file or directory”. 
  
I then tried moving to the RSEQREP directory to run the same command and got the 
error: 
  
“File does not exist! /home/ubuntu/msigdb/c2.cp.kegg.v5.2.entrez.gmt.” 
  
Based on the error message it appears that the software expects the databases to be 
uploaded before the setup script can be run but the documentation does not specify 
that. As a result, I was not able to test the VM end-to-end, but with improved testing 
and documentation this should be easy to address. 
 
We have updated our README file on GitHub (https://github.com/emmesgit/RSEQREP). We 
added detailed information about using the AMI, installation, execution, and 
troubleshooting. We also updated the run-* scripts to be executed anywhere on the file 
system. Prior to running RSEQREP, most suitable gene set datasets (GTM files) for the 
pathway enrichment analysis (e.g. Reactome pathways, KEGG pathways, MSigDB pathways, 
etc.) need to be identified and downloaded by the user and added to the RSEQREP 
configuration file. To make it easier for users, we provide programs to download certain 
gene sets files (see our README file on GitHub page for further documentation).  

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 23 of 23

F1000Research 2018, 6:2162 Last updated: 05 AUG 2021

https://github.com/emmesgit/RSEQREP
mailto:research@f1000.com

