Preventive Care in Nursing and Midwifery Journal 2017; 7(2): 33-40

Effective reduction of primary dysmenorrheal symptoms through concurrent use of n-3 fatty acids and Rosa damascena extract (RDE)

Davaneghi S¹, <u>Tarighat-Esfanjani A</u>^{2*}, Safaiyan A³, Fardiazar Z⁴

¹MSc. Faculty of Nutrition and Food Sciences, Tabriz University of Medical, Tabriz, Iran
*2PhD. Nutrition Research Center; Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
³MSc, School of Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
⁴PhD, Schools of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

*Corresponding Author: Nutrition Research Center; Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

Email: Tarighata@tbzmed.ac.ir

Received: 6 June 2017 **Accepted**: 2 Dec 2017

Abstract

Background: Primary dysmenorrhea (PD) is characterized by painful cramps of lower abdomen without abnormal pelvic pathology. PD begins some hours before or simultaneously with the onset of menstrual bleeding.

Objectives: The purpose of this study was to investigate the effects of separate and concurrent supplementation of fish oils (FO) containing n-3 fatty acids and Rosa damascena extract (RDE) on PD symptoms.

Methods: In this double blind clinical trial in 2015, through convenience sampling, 105 university students with primary menstrual pain in most recent years, without significant pathology, and moderate/severe dysmenorrhea according to visual analogue scale (VAS) were randomly assigned into one of four groups: 1. FO 1000 mg/day (n=26), 2. RDE 1000 mg/day (n=27), 3. FO and RDE concurrently, with the same dose (n=27), and 4. Control group (n=25). All measurements were performed three times, at the beginning, 30th day, and 60th day. Symptoms including nausea, vomiting, diarrhea, bloating, cramp, low back pain, headache, fatigue, anxiety, sweat, weakness, dizziness, drowsiness, and feeling cold were measured by VAS method.

Results: After 2-month treatment, supplementation with RDE significantly reduced severity of bloating (p<0.001) and sweat (p<0.001), but FO supplementation had no significant effect on PD symptoms. The concurrent use of FO and RDE significantly decreased severity of diarrhea (p=0.038), weakness (p<0.001), dizziness (p=0.003), and feeling cold (p=0.049).

Conclusion: Our results suggest that the concurrent supplementation of omega-3 fatty acids and RDE could be more effective than their separate use in decreasing PD symptoms; however, larger trials are warranted to confirm these preliminary findings.

Key words: dysmenorrhea, rosa damascena, fish oils, symptoms

Introduction

Dysmenorrhea means painful menstruation and has two types: primary and secondary [1]. Primary dysmenorrhea (PD) is characterized by painful cramps of lower abdomen without abnormal pelvic pathology. PD begins some hours before or simultaneously with the onset of bleeding and takes up to 72 hours. Secondary dysmenorrhea is defined as pelvic pain associated with pathological conditions such as endometriosis and endomiosis [1,2].

The prevalence of dysmenorrhea is estimated to be 45-90% in different countries [3]. For example, its prevalence has been reported to be 87.7%, 67% and more than 70% (59%-82%) in Turkey, Mexico and Iran, respectively [1,3].

Dysmenorrhea is a major cause of impaired quality of social activities of women at childbearing age [4], especially if it is associated with symptoms such as headache, fatigue, nausea, vomiting, diarrhea, irritability, chills, and muscle cramps. Because of dysmenorrhea complaints,

about 1% of women at childbearing age may take time off from work for three days in a month. This leads to a waste of 600 million work hours and economically 2 billion dollars annually in some communities like the USA [2, 4].

The inflammatory response initiated by the prostaglandins (PGs) and leukotrienes (LTs) results in vasoconstriction, myometrial contraction, and ischemia that cause pain, gastrointestinal symptoms such as nausea. vomiting and bloating, and headache [5]. Causes of cramps and systemic symptoms of PD may be psychological, endocrine, cervical factors, abnormally increased uterine activity, excessive synthesis and secretion of PGs. Uterine cramps are associated with 50% of cases with one or several systemic symptoms including nausea and vomiting 90%, fatigue 85%, diarrhea 60%, lower back pain 60%, and headache 45% [6].

treatments including non-invasive methods such as psychotherapy, yoga, hypnotic, prescription vitamins and food supplements and aggressive treatments such as surgery, acupuncture, and medical treatments such as PG synthetize nonsteroidal inhibitors, antiinflammatory drugs (NSAIDs) and oral contraceptives have been tried to treat dysmenorrhea [4]. Among these treatment methods, the most commonly used are drugs, but given their side effects such as gastrointestinal problems and kidney failure [7,8], many people with dysmenorrhea keep looking for alternative remedies like herbal and nutritional ones. The beneficial effects of nutritional supplements such as Valerian, FO, vitamin B₁₂, Cinnamon, cumin, and wheat germ extract on symptoms of dysmenorrhea have been reported [6,9-11].

Supplementation with omega-3 fatty acids, which are found mainly in fish oil, mediates the production of less potent PGs and LTs, resulting in a reduction in the severity of myometrial contractions and uterine vasoconstriction, a decrease in the formation of inflammatory mediators, and subsequently reduced ischemia and improved blood flow [7], thereby relieving pain and probably other dysmenorrheal symptoms [12-15]. Sampalis et al evaluated the effects of omega-3 fatty acids on premenstrual syndrome and dysmenorrhea. Supplementation with omega-

3 fatty acids significantly decreased the severity of symptoms such as weight gain (p<0.01) and swelling (p<0.001) after 90 days [7]. Supplementation with omega-3 fatty acids reduced the symptom intensity of primary dysmenorrheal and the ibuprofen rescue dose [12].

Rosa damascena (RD) or damask rose is one of the most important species of the Rosacea family [16]. RD has commonly been applied in traditional medicine to treat pains of abdomen and chest, strengthen the heart, and also treat menstrual bleeding, digestion problems as well as inflammation, especially in the throat [16,17].

According to the beneficial effects of omega-3 fatty acids and RD extract in relieving menstrual pain severity, and since only a few previous studies have evaluated the effects of FO (n-3 fatty acids) on reducing some systemic symptoms of in combination dysmenorrhea with inflammatory and relaxant effects of RD (flavonoid compounds), the purpose of this study was to investigate the effects of separate and concurrent supplementation of n-3 fatty acid and Rosa damascena extract (RDE) on some of the PD symptoms.

Methods

This double blind clinical trial investigated the effects of fish oil (FO) and RDE supplementation on severity of common systemic dysmenorrhea symptoms such as nausea, vomiting, diarrhea, bloating, cramp, low back pain, headache, fatigue, anxiety, sweat, weakness, dizziness, drowsiness, and feeling cold among girls with PD. The study design was explained to female college students in dormitories in Tabriz University of Medical Sciences (Tabriz, Iran). Inclusion criteria were as follows: 1- primary menstrual pain in most recent years, without a significant pathology, 2- having moderate and severe dysmenorrhea based on visual analogue scale (VAS), 3- regular menstrual cycles (21-35 day), and 4- body mass index $(BMI)=18.5-24.9 \text{ kg/m}^2$.

The validity and reliability of VAS and IPAQ have already been approved in various studies [4-6,12,18]

Whole-counting method was used for sampling, that is, the total female students of Tabriz

University of Medical Sciences living in student dormitories were included in the study considering inclusion and exclusion criteria.

The severity of dysmenorrhea was determined on a 10-point scale [1,3]. In this method, the the scores of the pain classified as mild [1-3], moderate [4-7], and severe [8-10]. Visual analogue scale (VAS) was used to measure the severity of the symptoms.

This trial was approved by the Ethics Committee of Tabriz University of Medical Sciences, and written consent was obtained from those who were willing to participate in the study. This study is registered at the Iranian Registry of Clinical Trials (IRCT registration number: (IRCT201403105670N8) and with the code of ethic at No.92212 in the department of research and technology of Tabriz University of Medical Sciences.

The participants who agreed to take part in this study were interviewed and requested to complete questionnaires including information demographic characteristics, consumption frequency of major dietary resources of n-3 fatty acids including fish, nuts, fruit, and vegetables (time/week) by a Qualitative- Food Frequency Questionnaire (FFQ) and physical activity levels bv International Physical (PAL) Activity Questionnaire (IPAQ). These were checked only before the study, in order to match and adjust the major confounding factors in the studied groups. Some of the menstrual characteristics included pain and symptoms of dysmenorrhea [1,3,11].

After a primary examination (n=1200 students), by using the following formula, 120 women who met the above inclusion criteria were registered to participate in the present study. A diagnosis of dysmenorrhea was made with the assistance of a gynecologist. Subjects were assigned into one of the four groups: 1) 1000 mg/day soft gel capsules fish oil (FO) containing 180 eicosapentaenoic acid (EPA), 120 mg of docosahexaenoic acid (DHA) (n=30), 2) 1000 mg/day capsules containing 200 mg of RDE (n=30), 3) 1000 mg/day FO capsules and 1000 mg/day RDE concurrently (n=30), and 4) the control group (n=30). At the beginning of the

study, the groups had no significant difference in terms of variables such as diet and physical activity. Symptoms intensity was measured by VAS [28] at the beginning, and 30th and 60th days after the

after
$$n = \frac{a\sigma^2}{\sum T_i^2} \emptyset^2 = \frac{4*531.3}{532.71} (2.5)^2 = 24.93 \cong 25$$
 interventions.

n demonstrates sample size (25) for each group a demonsterates the number of groups (4) σ demonstrates the total variance (23.05)

 T_i demonsterates the deferent mean of group i from total mean (T_{1} =11.22, T_{2} = 10.11, T_{3} = 12.96, T_{4} = 11.69, $\sum T_{i}^{2}$ =532.71)

Ø demonsterates carve characteristic (2.5)

Statistical methods

The influential variables were adjusted between the two groups (one with one-gram capsules of RDE and the other without it) in two sub-groups (one with one-gram soft gel capsule of FO and the other without it) at the 1st day before starting the experimental procedures. For quantitative data, normality was evaluated by Q-Q test, and outlier data were removed. Then, two-way repeated measures of ANCOVA was used to compare pain severity, bleeding days, and quantity of bleeding between RDE factor and FO factor. For repeated measures data at first, Mauchly's W test was checked for identity covariance matrix, and repeated measures test applied using Minitab Software, version 17. The results included four p values, the first p value was used to compare RDE and non- RDE groups, the second was p value treatment for comparing FO and non-FO groups. the third was p-value interaction for recognizing interaction effects between RDE factor and FO factor and the final p value for comparing variations at three time points of the interventions. Sidak test was used for multiple comparisons. The level of significance was set at 0.05, and all results were expressed as Mean±SEM (standard error of mean).

was set at 0.05, and all results were expressed as Mean±SEM (standard error of mean).

Results

Of the 120 girls who enrolled, 15 discontinued as subjects of the study: 3 from group 1, 4 from

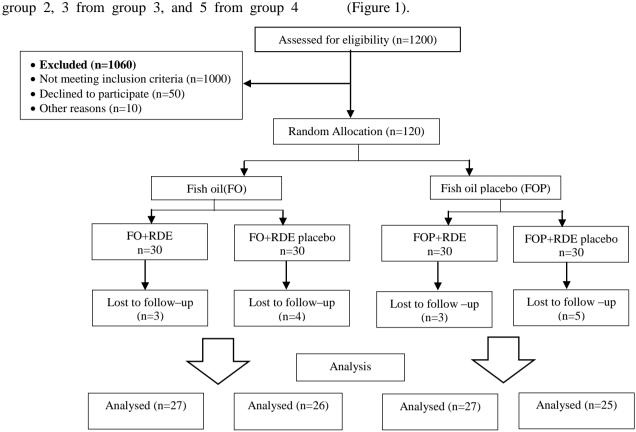


Figure1: Flow diagram of study selection and data collection process

As shown in Tables 1 and 2, no significant difference was observed for baseline characteristics including the mean pain severity score (p=0.069), BMI (p=0.880), menarche age (p=0.70), consumption frequency (time/week) of major dietary resources of n-3 fatty acids: fish (p=0.98), nuts (p=0.67), fruits (p=0.24), and vegetables (p=0.88) between groups. The mean of menstrual cycle days (p=0.12) and PAL (p=0.04) was significantly different between the study

groups. Statistical analyses were adjusted for the effect of confounding variables such as age, menarche age, BMI, menstrual cycle days, family history of dysmenorrhea, PAL, the number of analgesic drugs such as gelofen-200, gelofen-400, acetaminophen-325, acetaminophen-500, acetaminophen codeine, mefenamic acid, suppository, and frequency of fish, nuts, and fruit and vegetables consumption.

Group	RDE + FOP (n=27)	FO + RDE (n=27)	FO + RDEP (n=26)	RDEP + FOP (n=25)	Pv*	
Age (year)	22.63±0.47	21.96±0.56	21.15±0.40	22.08±0.39	0.150	
BMI (kg/m ²)	21.35±0.43	20.97±0.46	21.30±0.46	21.45±0.43	0.880	
PAL (1-3)	1.15±0.09	1.40±0.13	1.46±0.11	1.60±0.13	0.040	
Menarche age (year)	13.19±0.26	13.00±0.23	13.08±0.27	13.40±0.24	0.700	
Menstrual cycle (day)	27.37±0.53	29.56±0.52	28.65±0.38	28.88±0.43	0.010	
Pain severity (VAS=0-10)	7.52±0.23	6.68±0.33	7.15±0.26	6.64±0.26	0.060	

Table 1: Mean±SE Dof baseline characteristics of study groups

FO=Fish oil; RDE= Rosa damascena extract; RDEP= Rosa damascena extract placebo; FOP=Fish oil placebo; *One Way Anova test, PAL=Physical activity level; VAS=Visual analogue scale.

Table 2: Mean±SE Dof baseline characteristics of study groups

Group	RDE + FOP (n=27)	FO + RDE (n=27)	FO + RDEP (n=26)	RDEP + FOP (n=25)	Pv	
Fish (times/wk)	0.13 ± 0.02	0.12 ± 0.01	0.12 ± 0.02	0.12 ± 0.01	0.980	
Nuts (times/wk)	0.23±0.05	0.19±0.07	0.15±0.04	0.22 ± 0.05	0.670	
Fruits (times/wk)	0.85±0.09	0.85±0.09	1.11±0.11	1.00±0.13	0.240	
Vegetables (times/wk)	0.22±0.07	0.27±0.06	0.20±0.08	0.21±0.05	0.880	

FO=Fish oil; RDE= Rosa damascena extract; RDEP= Rosa damascena extract placebo; FOP=Fish oil placebo; *One Way Anova test,

As shown in Table 2, after two months of supplementation with RDE, the severity of bloating (p<0.001) and sweat (p<0.001) significantly reduced, but FO supplementation had no significant effect on dysmenorrhea symptoms. Diarrhea (p=0.038), weakness (p<0.001), dizziness (p=0.003) and feeling cold (p=0.049) had diminished significantly following

the concurrent use of FO and RDE (table 2). Time had a significant effect on nausea (p=0.016), vomiting (p=0.038), diarrhea (p=0.043), bloating (p=0.004), cramp (p<0.001), anxiety (p<0.001), headache (p=0.002), dizziness (p=0.009), sweat (p=0.001), low back pain (p<0.001), and fatigue (p<0.001; Table 3).

Fish Oil Factor	Yes							No					P value*			
*RDE Factor		Yes			No			Yes			No				FO+	
Time	begin	30th day	60th day	FO	RDE	RDE	Time									
Nausea	1.40 (0.41)	2.40 (0.71)	1.72 (0.54)	3.70 (0.73)	3.11 (0.66)	1.40 (0.39)	2.00 (0.39)	1.38 (0.32)	1.07 (0.32)	2.52 (0.44)	2.72 (0.56)	2.48 (0.49)	0.685	0.175	0.846	
Vomiting	0.72 (0.40)	1.76 (0.71)	1.12 (0.45)	1.92 (0.73)	1.00 (0.43)	0.44 (0.14)	0.23 (0.84)	0.30 (0.10)	0.76 (0.53)	0.44 (0.33)	0.64 (0.29)	1.12 (0.40)	0.068	0.867	0.193	
Diarrhea	1.96 (0.53)	2.52 (0.59)	1.72 (0.46)	2.40 (0.56)	2.07 (0.48)	1.33 (0.38)	2.88 (0.62)	1.84 (0.48)	1.38 (0.31)	1.68 (0.37)	1.16 (0.33)	0.72 (0.21)	0.622	0.088	0.038	
Bloating	2.96 (0.56)	1.64 (0.35)	0.92 (0.25)	4.92 (0.59)	3.96 (0.53)	2.74 (0.43)	3.15 (0.59)	2.88 (0.68)	1.96 (0.55)	4.60 (0.44)	4.28 (0.58)	3.84 (0.55)	0.226	0.00	0.259	
Cramp	4.00 (0.36)	3.28 (0.44)	2.00 (0.30)	3.66 (0.51)	3.11 (0.56)	1.85 (0.41)	3.42 (0.54)	2.11 (0.45)	1.69 (0.45)	3.60 (0.51)	2.72 (0.54)	2.56 (0.53)	0.759	0.885	0.296	0.001
Headache	4.08 (0.51)	3.48 (0.44)	2.12 (0.30)	3.62 (0.70)	2.22 (0.44)	1.74 (0.38)	4.07 (0.65)	2.50 0.43	2.30 (0.47)	4.04 (0.61)	3.08 (0.59)	2.60 (0.57)	0.114	0.420	0.498	
Low back pain	6.28 (0.36)	5.64 (0.38)	3.64 (0.37)	6.80 (0.46)	5.88 (0.42)	3.77 (0.47)	5.88 (0.53)	4.03 (0.50)	4.07 (0.60)	5.36 (0.55)	3.68 (0.63)	3.00 (0.59)	0.348	0.166	0.269	
Anxiety	3.44 (0.47)	3.36 (0.46)	2.48 (0.38)	4.85 (0.62)	3.70 (0.62)	2.33 (0.45)	4.88 (0.59)	3.50 (0.45)	2.76 (0.44)	5.00 (0.57)	3.36 (0.66)	3.04 (0.60)	0.425	0.779	0.981	0.00
Weakness	3.80 (0.48)	3.80 (0.53)	2.56 (0.40)	4.96 (0.56)	3.74 (0.53)	2.74 (0.46)	2.74 (0.46)	4.07 (0.56)	3.50 (0.44)	4.84 (0.58)	2.88 (0.53)	2.52 (0.54)	0.514	0.828	00.00	
Fatigue	5.04 (0.31)	4.76 (0.37)	2.60 (0.35)	6.55 (0.44)	4.62 (0.61)	3.62 (0.50)	6.15 (0.60)	4.88 (0.58)	4.42 (0.52)	5.84 (0.62)	4.52 (0.56)	4.16 (0.61)	0.125	0.859	0.117	0.00
drowsiness	5.08 (0.12)	4.80 (0.43)	2.88 (0.36)	5.37 (0.58)	4.74 (0.51)	3.81 (0.46)	5.11 (0.55)	5.00 (0.57)	4.03 (0.52)	5.08 (0.62)	4.48 (0.60)	3.72 (0.67)	0.840	0.644	0.328	0.063
Dizziness	3.96 (0.44)	2.88 (0.32)	1.96 (0.41)	2.44 (0.56)	2.25 (0.44)	1.37 (0.31)	2.50 (0.53)	1.23 (0.37)	1.07 (0.35)	3.24 (0.58)	2.56 (0.55)	1.92 (0.58)	0.408	0.325	0.003	0.009
Feeling cold	4.64 (0.43)	4.08 (0.45)	2.80 (0.42)	4.11 (0.63)	4.55 (0.59)	2.88 (0.48)	3.96 (0.57)	3.15 (0.48)	2.73 (0.48)	5.24 (0.47)	5.08 (0.50)	4.12 (0.56)	0.946	0.916	0.049	0.277
Sweat	3.20 (0.60)	3.24 (0.68)	1.80 (0.44)	4.81 (0.57)	3.22 (0.43)	2.44 (0.40)	2.34 (0.46)	1.53 (0.43)	1.61 (0.46)	4.28 (0.60)	2.96 (0.55)	2.28 (0.42)	0.647	0.001	0.811	0.001

Table 3: Mean± SDE of systemic symptoms of primary dysmenorrhea in study groups

Discussion

The results of our study revealed that RDE had analgesic effects on some PD symptoms such as bloating and sweat. These results are in line with the studies of Cinnamon and Valerian on the symptoms of PD [6]. RD is a plant used as a flavoring agent in yogurt in diets of Persians and also as a laxative. Due to its side-effect-free characteristic, this plant could be a good candidate for PD management.

To the best of our knowledge, only a few studies have been conducted on the effect of RD on the pain severity of dysmenorrheal. They have not evaluated its effects on PD symptoms. For example, Tseng et al. showed a significant positive effect of rose tea consumption on relieving pain severity, stress, and anxiety of dysmenorrhea [19]. The effects of RDE can be attributed to its compounds including flavonoid, geraniol, eugenol, terpene, and saponin [16, 20 and 21]. Studies have confirmed the anti-inflammatory effects of its flavonoid compounds on the metabolism of AA in the enzymatic

peroxidation reactions [17]. Due to their antiinflammatory properties, and by decreasing PGs in blood flow, these compounds have a positive impact on the reduction of pain and the severity of the symptoms.

A plethora of studies have been conducted on the health benefits of FO and its components in the literature; however, very few studies have examined the effect of these substances on PD symptoms. Positive effects of omega-3 fatty acid supplementation in relieving pain dysmenorrhea have been shown in several studies [7, 12, 22]. Wu et al suggested that the conversion of linoleic acid to gamma linoleic acid in subjects with dysmenorrhea was slower when they received omega-3 fatty acid supplements [22]. The omega-3 fatty acids present in FO possess anti-inflammatory activities that might relieve the symptoms of PD, presumably by influencing the metabolism of prostaglandins (PGs) and other factors involved in pain and inflammation [23]. Sampalis et al showed the positive effect of supplementation with omega-3 fatty acids on relieving some dysmenorrhea symptoms including abdominal pain, weight gain, and swelling [7]; our results were not in accord with these findings. In this study, concurrent supplementation of RDE and omega-3 fatty acids had a positive effect on relieving some symptoms of dysmenorrhea such as diarrhea, weakness, dizziness, and feeling cold. This was in agreement with the increasing evidence on the effects of n-3 fatty acid supplementation in combination with vitamins B₁₂, E (antioxidant effect) [16]. Although no studies have evaluated the effect of RD on dysmenorrheal symptoms, it seems antioxidant compounds of RDE reduced PG due to their anti-inflammatory effects, and fish oil improved blood flow. thereby improving symptoms. Nevertheless, detailed studies are warranted to explain the precise mechanisms of this interaction.

The strengths of this study include controlling for the potential confounding factors of age, BMI, menarche age, and intakes of major dietary sources of n-3 fatty acids and phytochemicals. PALs of the subjects were significantly different across the groups that may impact the results. The limitations of this study are as follows. We did not repeat the measurement of the level of physical activity at the end of the study, nor did we evaluate the side effects of supplements. Further studies with a wider range of age, BMI, and inclusion of subjects from different population groups could provide more accurate, accountable, and generalizable results.

In conclusion, based on our results, the supplementation of RDE had positive effects on bloating and sweat in PD patients, but the concurrent use of omega-3 fatty acids and RDE as nutritional supplements was more effective in relieving some systemic symptoms of PD although the mechanisms are yet to be discovered.

Acknowledgments

This study was funded by Tabriz University of Medical Sciences. The authors wish to thank all the patients who participated in this study.

Conflict of interest: The authors declare that there is no conflict of interst associated with this study.

Funding:

This study was funded by Tabriz University of Medical Sciences

References

- 1. Ortiz MI. Primary dysmenorrhea among Mexican university students:prevalence,impact and treatment. European J of Obstetrics & Gynecology and Reproductive Biology. 2010; 152(1): 73-7.
- 2. Doty E, Attaran M. Managing Primary Dysmenorrhea. J Pediatr Adolesc Gynecol. 2006; 19(5): 341-4.
- 3.Hashemzadeh M, Keramat A, Molla AL, Ghiasi A, Mottaghi Z. Prevalence of dysmenorrhea and its related factors in young girls in iran: a systematic review and meta-analysis. Payesh. 2017: 16(3): 325-34. [In Persian]
- 4. Haidari F, Akrami A, Sarhadi M, Mohammad Shahi M. Prevalence and severity of primary dysmenorrhea and its relation to anthropometric parameters. Hayat. 2011; 17(1):70-7. [In Persian]
- 5. Harel Z, Biro FM, Kottenhahn RK, Rosenthal SL. Supplementation with omega-3 polyunsaturated fatty acids in the management of dysmenorrhea in adolescent. Am J Obstet Gynecol. 1996; 174(4): 1335-8.
- 6. Mirabi P, Dolatian M, Mojab F, Namdari M. Effects of Valerian on Bleeding and Systemic Manifestations of Menstruation. Journal of Medicinal Plants. 2012; 4(44): 155-163. [In Persian]
- 7. Sampalis F, Bunea R, Pelland MF, Kowalski O, Duguet N, Dupuis S. Evaluation of the effects of Neptune krill oil on the premenstrual syndrome and dysmenorrhea. Altern med rev. 2003; 8(2): 171-9.
- 8. Dawood MY. Primary Dysmenorrhea: Advances in Pathogenesis and Management. J of Obstet& Gynecol. 2006; 108(2): 428-41.
- 9. Fjerbæk A, Knudsen UB. Endometriosis, dysmenorrhea and diet—What is the evidence?. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2007; 132(2): 140-7.
- 10. Fujiwara T. Diet during adolescence is a trigger for subsequent development of dysmenorrhea in young women. International J of food sciences and nutrition. 2007; 58(6): 437-44.

- 11. Atallahi M, Amir Ali Akbari S, Mojab F, Alavi Majd H. Effects of Wheat Germ Extract on the Severity and Systemic Symptoms of Primary Dysmenorrhea: A Randomized Controlled Clinical Trial. Iran Red Crescent Med J. 2014; 16(8): e19503.
- 12. Rahbar N, Asgharzadeh N, Ghorbani R. Effect of omega-3 fatty acids on intensity of primary dysmenorrhea. International Journal of Gynecology & Obstetrics. 2012; 117(1): 45-7.
- 13. Damghanian M, Mortazavi F, mottaghi Z, Keramat A. Systematic review of the methods of relieving primary dysmenorrhea in Iran. Journal of Nursing and Midwifery, Mashhad. 2011; 10(3,4): 32-46. [In Persian]
- 14. Hansen SO, Knudsen UB. Endometriosis, dysmenorrhoea and diet. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2013; 169(2): 162-71.
- 15. Deutch B, Jørgensen EB, Hansen JC. Menstrual discomfort in Danish women reduced by dietary supplements of omega-3 PUFA and B 12 (fish oil or seal oil capsules). Nutrition Research. 2000; 20(5): 621-31.
- 16. Boskabady MH, Shafei MN, Saberi Z, Amini S. Pharmacological effects of Rosa damascena. Iran J Basic Med Sci. 2011; 14(4): 295-307.
- 17. Baydar NG, Baydar H. Phenolic compounds, antiradical activity and antioxidant capacity of oilbearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products. 2013; 41: 375-80.

- 18. Emdadi S, Hazavehei SMM, Soltanian AR, Bashirian S, Heideri Moghadam R. Physical Activity Status and Related Factors among Middle-Aged Women in West of Iran, Hamadan: A Cross-Sectional Study. Global Journal of Health Science. 2016; 8(10): 151-159.
- 19. Tseng YF, Chen CH, Yang YH. Rose tea for relief of primary dysmenorrhea in adolescents: a randomized controlled trial in Taiwan. Journal of Midwifery & Women's Health. 2005; 50(5): e51-e7.
- 20. Jafari M, Zarban A, Pham S, Wang T. Rosa damascena decreased mortality in adult Drosophila. Journal of medicinal food. 2008; 11(1): 9-13.
- 21. Gholamhoseinian A, Fallah H. Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on α -glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. Phytomedicine. 2009; 16(10): 935-41.
- 22. Wu CC, Huang MY, Kapoor R, Chen CH, Huang YS. Metabolism of omega-6 polyunsaturated fatty acids in women with dysmenorrhea. Asia Pac J Clin Nutr. 2008; 17(S1): 216-9.
- 23. Shapiro H. Could n-3 polyunsaturated fatty acids reduce pathological pain by direct actions on the nervous system?. Prostaglandins, leukotrienes and essential fatty acids. 2003; 68(3): 219-24.