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Non-invasive brain stimulation (NIBS) has been widely used as a research tool to
modulate cortical excitability of motor as well as non-motor areas, including auditory
or language-related areas. NIBS, especially transcranial magnetic stimulation (TMS) and
transcranial direct current stimulation, have also been used in clinical settings, with
however variable therapeutic outcome, highlighting the need to better understand the
mechanisms underlying NIBS techniques. TMS was initially used to address causality
between specific brain areas and related behavior, such as language production,
providing non-invasive alternatives to lesion studies. Recent literature however suggests
that the relationship is not as straightforward as originally thought, and that TMS
can show both linear and non-linear modulation of brain responses, highlighting
complex network dynamics. In particular, in the last decade, NIBS studies have
enabled further advances in our understanding of auditory processing and its underlying
functional organization. For instance, NIBS studies showed that even when only
one auditory cortex is stimulated unilaterally, bilateral modulation may result, thereby
highlighting the influence of functional connectivity between auditory cortices. Additional
neuromodulation techniques such as transcranial alternating current stimulation or
transcranial random noise stimulation have been used to target frequency-specific
neural oscillations of the auditory cortex, thereby providing further insight into modulation
of auditory functions. All these NIBS techniques offer different perspectives into the
function and organization of auditory cortex. However, further research should be carried
out to assess the mode of action and long-term effects of NIBS to optimize their use in
clinical settings.

Keywords: non-invasive brain stimulation, auditory cortex, networks dynamics, asymmetry, interhemispheric
interactions

INTRODUCTION

Non-invasive brain stimulation (NIBS) has recently seen a surge of interest to provide
understanding about the functional properties and interactions of cortical systems. With their
ability to either inhibit or enhance cortical excitability, NIBS techniques are a promising tool in
both research and clinical settings. Various types of NIBS are available: transcranial direct current
stimulation (tDCS), transcranial magnetic stimulation (TMS), transcranial alternating current
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stimulation (tACS), or transcranial random noise stimulation
(tRNS), which differ in their mode of action.

Here, we will review outcomes from NIBS studies in
the context of their application to the auditory cortex and
related systems. We will especially discuss how different NIBS
techniques provide us with different perspectives in examining
auditory processing, ranging from behavior to neural activity and
structural organization. In addition, we will review how NIBS
can be used to inform about the neural dynamics of auditory
processing at basic processing levels, such as pitch, to higher
order levels such as those involving speech. Finally, we discuss
the potential of NIBS as a treatment tool for auditory-related
disorders and highlight the need of basic research to increase our
understanding of NIBS mechanisms.

tDCS MODULATION OF THE AUDITORY
CORTEX: CHANGES IN EXCITABILITY
AND BEHAVIOR

Some of the first NIBS studies to investigate auditory processing
used tDCS and assessed its effects on behavior (Mathys et al.,
2010; Tang and Hammond, 2013; Matsushita et al., 2015). tDCS
is a technique consisting of the delivery of low, constant electric
currents transcranially on the cortical surface, thereby resulting
in the modulation of cortical excitability. Standard tDCS uses two
sponge electrodes [typically 5 cm × 5 cm or more, of opposite
polarity: positive electrode (anode) and a negative electrode
(cathode); DaSilva et al., 2011]. tDCS-induced effects depend
on stimulation parameters such as stimulation polarity (anode,
cathode) and timing of application (online, offline) and are
described in the next section.

The role of tDCS polarity was shown over the motor cortex,
with positive stimulation (anodal tDCS) increasing neuronal
excitability (Nitsche and Paulus, 2000) and negative stimulation
(cathodal tDCS) inhibiting it (Nitsche and Paulus, 2000; Nitsche
et al., 2003b; Antal et al., 2004). The mechanisms of tDCS
have been associated with long-term potentiation and long-term
depression (LTP/LTD)-like plasticity (Nitsche et al., 2008; Fritsch
et al., 2010; Monte-Silva et al., 2013). Moreover, when applied for
a critical period of time, tDCS produces after-effects on cortical
excitability which can last longer than 1 h (Bindman et al., 1964).

Transcranial direct current stimulation polarity-specific
effects on auditory cortex are less clear. For instance, Zaehle
et al. (2011) reported increases in the amplitude of auditory
evoked potentials during a passive listening task following anodal
stimulation (1.25 mA, 11 min) over the left temporal cortex
compared with sham, but cathodal stimulation did not differ
from sham stimulation. Additional factors to take into account
when comparing tDCS applied over motor or auditory cortices
relate to the excitability state of the targeted structures. Motor
cortex is usually stimulated at rest, whereas sensory cortices are
usually stimulated during relevant tasks, which might reverse
the typical relationship between polarity of current flow and
excitability (Filmer et al., 2014).

Changes in tDCS-induced cortical excitability depend also on
the stimulation timing. In offline tDCS, stimulation is applied

at rest, usually before the task is undertaken; whereas in online
tDCS, stimulation is applied while a task is being executed. It is
also common to use a combination of online and offline tDCS.
The latter approach can have several variants, for example, tDCS
and task stimuli start at the same time (Cohen Kadosh et al., 2010;
Iuculano and Cohen Kadosh, 2013), or the task/stimuli start a
few minutes after tDCS, and can continue after tDCS has ended
(Stagg et al., 2011). Such procedure also enables to quantify the
duration of tDCS-induced effects.

In Mathys et al. (2010), offline tDCS was applied over
left and right temporal cortices in different sessions before
the administration of a pitch discrimination task. The authors
showed that anodal tDCS (2 mA, 25 min) had no effect, whereas
cathodal tDCS impaired pitch discrimination performance, with
a stronger impairment for the right temporal cortex stimulation.
By contrast, using online tDCS during a pitch discrimination
task, Tang and Hammond (2013) showed that anodal tDCS
(1 mA, 20 min) applied over the right auditory cortex impaired
performance. These authors however did not assess the effects
of cathodal tDCS nor of stimulation on the left side. Using
similar online tDCS parameters to the Tang’s study (i.e., 1 mA,
20 min), Matsushita et al. (2015) reported similar findings, such
that anodal tDCS applied over the right auditory cortex disrupted
auditory pitch learning compared to sham or left-auditory cortex
tDCS. In addition, these authors found no significant differences
between sham and cathodal tDCS (both stimulation types showed
normal learning).

The different outcomes of the Matsushita and Tang’s vs.
Mathys’ studies could be related to the stimulation timing (i.e.,
online vs. offline) relative to the task being performed or to the
use of different stimulation parameters (intensity 2 vs. 1 mA,
duration: 25 vs. 20 min). It has indeed been shown that 1-
mA intensity caused conventional polarity-specific modulation
of neural excitability (i.e., decreased for cathodal and increased
for anodal), whereas 2 mA led to increased excitability from
both stimulation polarities (Batsikadze et al., 2013). This could
possibly explain that the Matsushita/Tang’s and Mathys’ studies
showed impairment of pitch discrimination with anodal and
cathodal tDCS, respectively. Moreover, the role of stimulation
polarity for online vs. offline stimulation might underlie different
neurobiological mechanisms, and deserves further investigation.

EVIDENCE OF LATERALIZED
FUNCTIONS IN THE AUDITORY
CORTEX: EVIDENCE FROM
NEUROIMAGING AND TDCS

Another issue which is not well understood is the asymmetry
of tDCS-related effects in the auditory cortex. Neuroimaging
findings for functional asymmetries in auditory cortices have
been frequently reported, but there is still debate about their
nature and whether they are directly or indirectly related
to structural specialization (Dehaene-Lambertz et al., 2006).
For instance, the role of left vs. right auditory cortices for
processing speech or auditory stimuli was debated for some
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time (Zatorre and Gandour, 2008) and was discussed in the
context of various acoustic features such as temporal or spectral
information (Schonwiesner et al., 2005). Several authors have
argued that the left auditory cortex seems to be specialized for
rapid temporal processing, whereas the right auditory cortex
might be involved in processing of fine spectral information
(Belin et al., 1998; Zatorre and Belin, 2001; Zaehle et al.,
2004, 2009). These functional asymmetries have been related
to cortical structure of auditory cortex. For example, leftward
asymmetry was reported for Heschl’s gyrus for cortical volume
and cortical surface area (Penhune et al., 1996; Meyer et al.,
2014), which was discussed in the context of a left auditory
cortex preference for rapidly changing cues in spoken language
signals (Poeppel, 2003). The asymmetry in volume of Heschl’s
gyrus (Warrier et al., 2009) was also associated with functional
neural activity in spectral and temporal tasks (Schonwiesner
et al., 2005). Cortical thickness of Heschl’s gyrus was shown
to be increased for musicians compared to non-musicians
(Schneider et al., 2002; Bermudez et al., 2009), and also
correlated with performance in pitch processing tasks (Foster
and Zatorre, 2010). These findings highlight functional and
structural specialization of the auditory cortex for various
acoustic features, which could underlie differences between
speech and other aspects of auditory processing (Zatorre and
Gandour, 2008).

Relatively few NIBS studies have examined asymmetries
in the auditory cortex. As already mentioned above, several
tDCS studies showed more impairment when stimulation was
applied over the right compared to the left auditory cortex,
in accordance with a prominent role for the right auditory
cortex in pitch discrimination. In addition, Heimrath et al.
(2014) showed impairment for anodal tDCS applied over the
left but not the right auditory cortex for auditory temporal
information processing. These tDCS findings are in line with the
neuroimaging literature, since they demonstrate dissociable roles
of the left and right auditory cortices for processing different type
of auditory information.

These findings also highlight the need to use neuroimaging
to guide NIBS applications. This consideration is especially
relevant since variations in stimulus patterns (spectral and
temporal) or the use of differently structured tonal patterns may
differentially recruit primary and non-primary auditory cortical
regions (Patterson et al., 2002), affecting cortical excitability
and connectivity, and therefore impacting on NIBS outcomes.
Most critically, combining NIBS with neuroimaging enables the
physiological effects of the stimulation to be documented and
measured, thereby allowing the researcher to determine which
neural systems have been altered by the stimulation and in what
way they have been modulated.

In addition, the combination of NIBS and neuroimaging
enables one to assess individual differences in structural and
functional organization of auditory networks, and might help
to reduce the relatively high inter-subject variability of NIBS-
induced changes on behavior (i.e., impairment or facilitation,
or strength of the modulation). Future studies should therefore
systematically assess functional organization and connectivity in
order to better understand changes induced by tDCS, or any

other stimulation, at a whole-brain (i.e., interconnected local and
remote areas to auditory cortex) and at individual levels.

TMS OF THE AUDITORY CORTEX:
MODULATION OF BEHAVIOR

Transcranial magnetic stimulation uses magnetic fields to
induce electrical current in spatially restricted cortical regions.
Compared with tDCS, TMS provides a better spatial resolution;
when used over the motor cortex, it also allows the quantification
of motor-evoked potentials (MEPs), a measure of the excitability
of the motor system, which tDCS does not. TMS has however
some disadvantages, such as evoked facial muscle twitches
and loud clicking noise which may introduce confounding
effects when applied over the auditory cortex, especially at high
stimulation frequencies, and therefore need to be accounted for.

Similar to tDCS, TMS can have inhibitory or excitatory effects
on cortical excitability, but different from tDCS, this feature is not
polarity-related but rather frequency-related. Studies using TMS
on the motor or visual cortices have shown that low-frequency
TMS (1 Hz) decreases motor and visual cortical excitability (Chen
et al., 1997; Boroojerdi et al., 2002) and high frequency TMS
(>1 Hz) increases it (Pascual-Leone et al., 1994).

In addition to the frequency of stimulation, TMS effects
depend also on the duration and the pattern of stimulation.
For instance, single-pulse TMS delivers a single magnetic pulse
and its effect is transient, whereas repetitive TMS (rTMS)
delivers repeated single magnetic pulses and is able to modulate
cortical activity beyond the stimulation period (Pascual-Leone
et al., 1998; Klomjai et al., 2015). Paired-pulse TMS methods
consist in delivering two consecutive pulses with a short inter-
stimulus interval (ISI) of a few milliseconds (1–4 ms) or a long
ISI (5–100 ms), and have been used to examine, respectively,
intracortical inhibition or excitation (Munchau et al., 2002). The
two TMS pulses can also be delivered over each hemisphere to
examine inter-hemispheric inhibition (or transcallosal inhibition;
Ferbert et al., 1992).

More recently, theta burst stimulation (TBS) methods have
been developed based on experimental neurophysiology for
inducing LTD- or LTP-like effects depending on the pattern
of stimulation (Huang et al., 2005; Grossheinrich et al., 2009).
TBS consists of short bursts at 50-Hz stimulation frequency
and repeated at 5-Hz frequency (“theta frequency”), and
neuropharmacological studies suggest that its response depends
on NMDA receptor activity (Huang et al., 2007; Teo et al.,
2007). Interest in using such high-frequency bursts comes from
evidence of TBS application on the motor cortex, showing bi-
directional and long-lasting changes on cortical excitability, such
that intermittent 50-Hz bursts (iTBS) increased and continuous
50-Hz bursts (cTBS) decreased cortical excitability for up to an
hour (Huang et al., 2005).

The effects of TMS parameters (frequency, duration, and
pattern of bursts) on non-motor areas, such as language or
auditory cortices are however still unclear. For example, Andoh
et al. (2008) compared the effects of iTBS and 1-Hz rTMS applied
over the temporoparietal area on an auditory discrimination
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task using words in native or foreign languages. The authors
reported for both stimulation type decreases in response time,
suggesting behavioral facilitation. A difference between the two
stimulation types was found however for the discrimination of
foreign words which was higher for iTBS compared with 1-Hz
rTMS. The authors hypothesized frequency-dependent changes
related to differences in local and remote functional connectivity
with the targeted temporoparietal cortex.

Such facilitatory effects on language processing after rTMS
applied over the temporoparietal cortex have been reproduced
for other stimulation frequencies such as 10 or 20 Hz (Sparing
et al., 2001). Differences however exist across studies regarding
rTMS stimulation frequencies. For instance, Sparing et al. (2001)
showed that low-frequency (1 Hz) rTMS applied over the
left temporoparietal area had no effect on picture naming,
whereas Andoh et al. showed facilitatory effects on a word
discrimination task (Andoh et al., 2006, 2008; Andoh and
Paus, 2011). Outcome variability between these studies could be
related to many factors: methodological such as the procedure
used to localize brain targets or the type of language task
being performed. Andoh et al. (2006, 2008) and Andoh and
Paus (2011) used a neuronavigation procedure to individually
localize brain targets based on anatomical and functional data
acquired using fMRI, whereas Sparing et al. (2001) defined
“standard” brain targets using the 10-20 International System.
In addition, although both Sparing’s and Andoh’s studies applied
rTMS to investigate semantic processing, Sparing et al. (2001)
used visual modalities, whereas Andoh et al. used auditory
modalities. Differences in task modalities (visual vs. auditory)
may underlie different functional organization and connectivity
of the language pathway, and might differently be modulated by
TMS. To overcome such issues, there is increasing interest in
combining neuroimaging and TMS to investigate how functional
organization and connectivity in the language pathway vary in
relation to the type of modality being used.

TMS COMBINED WITH NEUROIMAGING:
EVIDENCE OF ASYMMETRY AND
INTERHEMISPHERIC AUDITORY
INTERACTIONS

To date, only a few studies have used functional neuroimaging
to map TMS-induced effects, especially in the auditory cortex.
These studies showed that after TMS applied over the auditory
cortex, functional interactions occur at a large-scale level,
reaching brain areas in the contralateral hemisphere (Andoh
and Zatorre, 2013; Andoh et al., 2015). For instance, Andoh
and Zatorre (2013) were the first to show that rTMS applied
over the right auditory cortex when participants performed a
melody discrimination task increased task-related neural activity
in the contralateral left auditory cortex. These findings were
not found for TMS applied over the left auditory cortex,
suggesting specificity of the right auditory cortex for the auditory
task being performed. The authors also showed that after
TMS applied over the right auditory cortex, the increased

activity in the contralateral left auditory cortex was related to
increased interhemispheric functional connectivity between both
auditory cortices. In other words, individuals with a strong
functional connectivity between auditory cortices also showed
increased activity in the contralateral (left) auditory cortex
(Andoh and Zatorre, 2011). Moreover, the authors highlighted
directionality in auditory information transfer, i.e., from the right
to the left auditory cortex, likely demonstrating some auditory
compensatory processes that are set up after TMS applied over
the right auditory cortex. Such findings could also help to
explain inter-subject variability reported in NIBS studies in basic
and clinical research (Hartwigsen et al., 2013), since the degree
of interhemispheric connectivity could be a predictor of TMS
outcome.

Such interhemispheric interaction mechanisms have also
been shown for brain areas involved in language comprehension.
Andoh and Paus (2011) showed that rTMS applied over
the left temporoparietal area before participants performed
an auditory language comprehension task induced changes
in neural activity in the right temporoparietal area. Such
interhemispheric interaction processes are comparable to
functional reorganization associated with recovery from
language disorders (Saur et al., 2006; Hartwigsen et al., 2013).
Following stroke, the brain undergoes massive plastic changes,
with changes in interhemisheric inhibitory interactions between
the affected and the unaffected hemisphere. NIBS therapeutic
strategies have been developed to enhance “adaptive” plasticity
between homologous contralateral areas via transcallosal
interhemispheric inhibition processes, by stimulating either the
“affected” hemisphere, or the “unaffected” hemisphere (Mansur
et al., 2005; Takeuchi et al., 2005; Thiel et al., 2005, 2006; Fregni
et al., 2006; Weiduschat et al., 2011).

EVIDENCE OF FUNCTIONAL
ASYMMETRY AND HEMISPHERIC
INTERACTIONS IN THE RESTING
AUDITORY CORTEX

In order to dissociate task-related compensatory processes from
TMS-induced effects, Andoh et al. (2015) applied TBS to
the auditory cortex immediately before a resting-state fMRI
scan, and compared it to a resting-state scan obtained prior
to stimulation. Such an approach helps to reveal baseline
auditory activity and connectivity, avoiding the confound of a
cognitive task. Andoh et al. (2015) reported that continuous
(inhibitory) TBS over applied over the right but not the left
auditory cortex was related to connectivity decreases in resting-
state auditory and motor networks. Interestingly, the degree of
individual decreases in functional connectivity was associated
with the volume of the callosal fibers connecting both auditory
cortices, such that individuals with greater index of anatomical
connectivity showed the greatest contralateral effects, and vice
versa (Figure 1).

Although there is debate regarding structural linkage and
resting-state functional connectivity (Honey et al., 2009), such
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FIGURE 1 | Individuals with higher density of white matter in the tract connecting both Heschl’s gyri (left) were the ones showing more decreased functional
connectivity (FC) following continuous (inhibitory) TBS applied over the right Heschl’s gyrus (r = –0.6, p < 0.01). Data adapted from Andoh et al. (2015) with
permission.

findings show that asymmetry of NIBS-related effects on the
auditory cortex is present at rest, and that some aspects of
communication between the two auditory cortices may be
directional from the right to left hemisphere, even in the absence
of a task. A recent MRI diffusion-based network connectivity
study using graph theory spreading activation models also
showed evidence for differential patterns emanating from left vs.
right auditory cortex, thereby supporting the effects seen with
NIBS (Misic et al., 2018).

Functional asymmetries in the auditory cortex activity at
rest were also previously reported using positron emission
tomography. For instance, Geven et al. (2014) showed not
only an increased “resting” metabolism in the left compared
with the right primary auditory cortex but also a rightward
asymmetry in the secondary and association auditory cortices.
In addition, an increased resting-state functional connectivity
was found between the right auditory cortex and ventral
premotor areas in musically trained persons (Palomar-Garcia
et al., 2017), thereby supporting the concept of enhanced
coupling between auditory and motor systems as a function
of musical training, and also consistent with the modulation
of the resting-state motor network after auditory stimulation
found in the Andoh et al. (2015)’s study. The nature of
how interhemispheric connectivity is manifested, i.e., inhibitory
or excitatory, is however still debated (Bloom and Hynd,
2005).

Knowledge about baseline connectivity dynamics is highly
valuable since it has the potential to predict behavioral
performance in perception and cognitive tasks (Sadaghiani et al.,
2015; Tavor et al., 2016) and has been considered as a potential
biomarker for various neurological and psychiatric diseases
(Greicius, 2008; Castellanos et al., 2013; Zidda et al., 2018).
For example, anomalies in connectivity between amygdala and
auditory cortex have been associated with tinnitus distress (Chen
et al., 2017), and disruptions in other networks such as bilateral
superior frontal gyri and postcentral gyri have also been identified
(Chen et al., 2016). Such findings show that resting-state MRI can

reveal the activity multiple brain networks without confounding
effects of cognitive ability and may be a promising translation
bridge between basic and clinical research.

MODULATION OF
FREQUENCY-SPECIFIC NEURAL
OSCILLATIONS IN AUDITORY
PROCESSING

A recent development in the field of NIBS is the use of
tACS (Polania et al., 2012) and tRNS to either synchronize
or desynchronize neural oscillations (Terney et al., 2008).
Evidence for the potential of such techniques comes from
studies showing that frequency-specific neural oscillations
play a role in processing sensory information (Hong et al.,
2008; Keil and Senkowski, 2018). For example, attentional
modulation of cortical excitability in sensory regions has been
shown to be reflected in oscillatory alpha power (∼10 Hz)
under visual (Jensen and Mazaheri, 2010) or auditory tasks
(Weisz et al., 2014). Therefore frequency-specific modulation
of physiologically relevant brain oscillations might provide an
interesting perspective into cognitive functions (Basar et al., 2001;
Engel et al., 2001). Whereas in tDCS, a constant current is
applied over time, tACS consist in applying a current alternating
at a frequency which is believed to be associated with a
particular cognitive function (Herrmann et al., 2013). In tRNS,
alternating electrical currents are applied at different frequencies
and amplitudes (random noise frequency spectrum; Antal
and Herrmann, 2016; Heimrath et al., 2016). The mechanism
underlying tRNS has been associated with stochastic resonance,
which describes an enhancement of weak signals when an
appropriate level of random noise is added to a non-linear system
(Gingl et al., 1995)

Such techniques seem particularly relevant considering
that gamma band oscillations have been associated with the
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processing of auditory information at the level of the auditory
cortex (Rosen, 1992). Using frequency-specific 40-Hz tACS
applied over bilateral auditory cortices, auditory gamma rhythm
activity has been related to phoneme processing (Rufener et al.,
2016b). In a second study, the same authors showed that
40-Hz tACS applied over bilateral auditory cortices improved
accuracy during a phoneme categorization task in older adults
(>60 years) compared with younger ones (<35), offering
potential for therapy in individuals with impaired auditory
temporal resolution (Rufener et al., 2016a). However, some
studies also reported a large variability in the preferred frequency
of the targeted cortex and it has been suggested that targeting
alpha rhythm activity might be preferable since it provides
clearly extractable peaks in the individual frequency spectra
(Zaehle et al., 2010a; Zoefel and Davis, 2017). This is in
line with findings from Neuling et al. (2012) showing that
phase of alpha oscillations over the temporal cortex was
related to auditory detection performance (Neuling et al.,
2012).

Stimulation of auditory areas outside of the temporal
cortex has recently been shown to be especially relevant
for auditory working memory. Albouy et al. (2017) used
magnetoencephalography to identify that theta-band activity
coming from the auditory dorsal stream was higher when the
task involved manipulating the stimuli in working memory
(comparing tones in reversed order), compared to a simple
comparison task. They then applied rhythmic TMS at the
theta frequency over the left intraparietal sulcus during the
silent period in between two stimuli, during which mental
manipulation was occurring, and observed that behavioral
performance improved significantly compared both to baseline
and to an arrhythmic TMS control condition. Critically,
using simultaneous electroencephalography (EEG) and TMS,
they found that rhythmic TMS enhanced EEG theta power,
and that the degree of enhancement predicted individual
differences in degree of behavioral improvement. This study
thus showed the power of combined imaging and stimulation
protocols to demonstrate a causal influence of TMS on
behavior, mediated by oscillatory activity in the auditory dorsal
network.

POTENTIAL OF NIBS IN THE
DEVELOPING BRAIN

The potential of NIBS techniques to boost sensory or cognitive
functions such as auditory or language processing in a safe and
non-invasive fashion motivated its use in the developing brain.
The use of these neuro-enhancement techniques in pediatric
populations raises however ethical concerns (Cohen Kadosh
et al., 2012b; Davis, 2014; Maslen et al., 2014), particularly since
data on safety and potential hazards of NIBS in children are
insufficient. Indeed, differences in anatomy and function between
the mature and the developing brain are not well understood;
consequently, modulating the activity in the “wrong” brain
area might induce abnormal patterns of activity in this area
and in interconnected areas. Similarly, “boosting” capacities in

certain cognitive domains might reduce functioning in others
(Cohen Kadosh et al., 2012a). Although disorders related to
abnormalities of auditory processing such as autism or dyslexia
(Khan et al., 2011; Edgar et al., 2015) might benefit from
NIBS application (Gomez et al., 2017); the use of NIBS might
be still premature in developmental populations, and proper
protocols still need to be established to avoid unwanted side
effects.

SHORT- AND LONG-TERM EFFECTS OF
NIBS ON CORTICAL EXCITABILITY

An additional point regarding NIBS applications, particularly
relevant for therapy, concerns its after-effects. The physiological
bases of NIBS after-effects have not yet been clearly identified.
Many arguments support the idea that the mechanisms
underlying NIBS after-effects could resemble LTD and LTP
described in the human auditory cortex using fMRI (Zaehle et al.,
2007) or EEG (Clapp et al., 2005).

Little is known however, because most studies have examined
lasting effects only on the motor cortex, and focused on
the immediate effects induced after the stimulation. For
instance, using tDCS over the motor cortex, perturbation in
neurophysiological measures was shown to substantially outlast
the stimulation period by up to 90 min (Nitsche and Paulus,
2001; Nitsche et al., 2003a). Using combined EEG and tACS, an
increased in alpha band power was found lasting up to 30 min
after the end of the stimulation (Zaehle et al., 2010b; Neuling
et al., 2013).

Long-lasting changes in cortical excitability were also shown
with tRNS, such that 10-min tRNS lasted up to 60 min (Terney
et al., 2008), and 5-min tRNS lasted 10 min (Chaieb et al., 2011),
highlighting relationship between NIBS parameters and their
long lasting effects.

Similarly, after-effects on cortical excitability have been
reported with TMS and have been related to the frequency
used. Using 50-Hz bursts of TMS (e.g., cTBS), decreased cortical
excitability was reported lasting up to 60 min (Huang et al.,
2005). In addition, 1-Hz rTMS decreased cortical inhibition up to
30 min following the cessation of TMS (Muellbacher et al., 2000;
Gerschlager et al., 2001), which was also shown by a decreased
fMRI neural activity for up to 20 min (Min et al., 2016).

Effects of NIBS on auditory or language functions might not
be as long lasting as for the motor cortex or more complex
to assess, possibly related to ongoing cognitive processes and
deserve thorough investigation using neuroplasticity markers.
For instance, 20-Hz rTMS applied over the left temporal cortex
induced performance facilitation lasting up to 2 min (Sparing
et al., 2008). In Andoh and Zatorre (2011), using 1-Hz- or 10-
Hz rTMS applied over the right auditory cortex offline (before
an auditory task), changes in response time were shown to be
differently modulated between time 1 (0–5.5 min) and time
2 (5.5–11 min). Such differences in behavior were related to
changes in functional connectivity of auditory cortices, showing
therefore relationships between after-effects of NIBS modulatory
effects and underlying ongoing cognitive processes.
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TRANSLATIONAL APPROACHES TO
AUDITORY NEUROLOGICAL
DISORDERS

Current NIBS findings in basic research highlight inter-
individual variability related to structure and function of the
auditory cortex, thereby emphasizing the importance of assessing
individual measures. This information is especially important for
optimizing therapeutic outcome in clinical settings, e.g., tinnitus
or auditory hallucinations in schizophrenia patients, since the
lateralization and duration of the disorder, frequency of the
occurrence of the symptoms, might affect functional organization
in the auditory pathway and therefore after-effects of NIBS.

Therapeutic use of NIBS for tinnitus suppression was
investigated using TMS applied over the auditory cortex. Some
studies compared various rTMS protocols (e.g., 1 Hz, cTBS, and
iTBS) and showed greatest reduction of tinnitus loudness for both
iTBS and 1-Hz rTMS (Lorenz et al., 2010; Muller et al., 2013). The
positive outcome of TMS is however short-lived. For instance,
rTMS applied over auditory cortex showed tinnitus reduction
for 2 s only (De Ridder et al., 2005). Other NIBS techniques
(tDCS, tACS, and tRNS) have also been tested, and seem to show
superiority for tRNS on tinnitus loudness and distress (Vanneste
et al., 2013; Joos et al., 2015; Abtahi et al., 2018). However,
differences in mechanisms of action between NIBS techniques
are not well understood, and there is little knowledge about
the optimal dose and interval between consecutive applications
(Goldsworthy et al., 2015).

NIBS: FUTURE DIRECTIONS

Non-invasive brain stimulation techniques such as tDCS have
been a technique of choice in many clinical and research settings
because it is portable, painless, and inexpensive compared with
other NIBS techniques. tACS, tRNS, and tDCS have however
a relatively low spatial precision, due to the large spatial
distribution of the electrical current flow produced by the
electrodes and is furthermore accentuated by the anatomical
variability of the targeted brain structures (Parazzini et al., 2015;
Alam et al., 2016). To overcome this problem, efforts have
been made such as the use of high-definition or multi-electrode
tDCS (Faria et al., 2011; Ruffini et al., 2014) and computational
modeling of the electric field using individual structural MRI
(Datta et al., 2011; Dmochowski et al., 2011; Opitz et al., 2015).
These newer approaches have yet to be applied very systematically
to date, but hold promise for future applications.

It is however still unclear if modulation of auditory functions
will benefit from higher spatial accuracy. Present knowledge
using TMS show that even targeting “accurately” the auditory
cortex within a 2-cm resolution has an effect at a large scale

reaching remote interconnected areas. New directions for NIBS
might be therefore oriented toward “guided cortical plasticity,”
consisting in combining NIBS-induced unspecific neural noise
with specific behavioral training. Such approach has been
successfully used to improve various perceptual or cognitive
abilities in both healthy participants and in patients (Richmond
et al., 2014; Looi et al., 2016).

Other NIBS techniques have also been recently developed
which also hold promise for advancement into our understanding
of cognitive function. For instance, transcranial pulsed current
stimulation (tPCS; Jaberzadeh et al., 2014), which converts a
direct current into unidirectional pulsatile current is believed to
reach deep structures such as thalamus or hypothalamus (Datta
et al., 2013). Moreover, transcranial ultrasound stimulation
(TUS) which is based on ultrasound-induced modulation offers
also a new perspective into NIBS (Tufail et al., 2011). The effects
of tPCS or TUS have so far not been investigated on the auditory
cortex.

CONCLUSION

We highlighted the complexity of the cortical dynamics
and functional interactions in the auditory cortex. We also
emphasized the importance of NIBS approaches in basic science
research, since they helped to better understand local and remote
functional interactions in auditory areas, such as the asymmetric
communications between auditory cortices. Such information is
crucial and could help to optimize the application of NIBS in
clinical settings. We support the combined use of NIBS with
functional imaging techniques, such as fMRI or EEG/MEG to
better understand the physiological consequences of stimulation
of neural networks and to account for individual differences.
Current findings also suggest that individual differences in
structure and function could be predictive factors of NIBS
outcome. Therefore, assessing functional organization and
connectivity in auditory-related disorders should provide a better
understanding of NIBS-induced propagation mechanisms in
disease.
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