
Modeling, Identification and Control, Vol. 39, No. 3, 2018, pp. 151–156, ISSN 1890–1328

Tail Removal Block Validation:
Implementation and Analysis

J. Kučera 1 G. Hovland 2

1Bismuth Foundation, Lead Developer, District Ostrava-City, Czech Republic

2Department of Engineering Sciences, University of Agder, N-4898 Grimstad, Norway

Abstract

In this paper a solution for the removal of long tail blocktimes in a proof-of-work blockchain is proposed,
implemented and analysed. Results from the mainnet of the Bismuth blockchain demonstrate that the
variances in the key variables, difficulty level and blocktime, were more than halved after the tail re-
moval code was enabled. Low variances in difficulty and blocktimes are desirable for timely execution of
transactions in the network as well as reduction of unwanted oscillations in the feedback control problem.

Keywords: Blockchain, block times, long tail removal, feedback control

1 Introduction

The first blockchain-based cryptocurrency was Bitcoin
and the original publication was Nakamoto (2009).
Since then hundreds of new cryptocurrency projects
have emerged. Bitcoin and many other blockchain
projects are based on the concept of Proof-of-Work
(POW) where miners compete to solve a difficult cryp-
tographic puzzle linking the blocks together. Bitcoin
aims to keep the average time between blocks (the
blocktime) constant at 10 minutes by adjusting the
so-called difficulty level, but because of the stochas-
tic nature of the problem there are large variations in
the times it takes to generate a new block, even when
the difficulty level is perfectly adjusted to the compu-
tational power of the miners. While the average block-
time in Bitcoin is 10 minutes, individual blocks can
take anything from a few seconds to more than 100
minutes to generate.

The probability density function (PDF) describing
the distribution of blocktimes in Bitcoin has a long tail,
meaning that there is a small, but nonzero, probability
that it can take a very long time to generate a new
block, even when the computational power of the min-
ers is constant or increasing. Such long blocktimes is a

problem for two reasons: 1) Long processing times of
transactions is undesirable. Processing times which are
many factors larger than the desired average blocktime
are seen as negative, 2) a blockchain feedback control
algorithm can typically not distinguish between a long
tail blocktime and the situation where the computa-
tional power of the miners has dropped. Hence, a long
tail blocktime will normally cause a fast-responding
controller to lower the difficulty when it should not do
so, and this behavior can cause unwanted oscillations
or unstability in the process.

Stone (2017) stated the following when refering to
the development of a feedback controller to handle the
long tail problem: When confronted with a ”very hard
to impossible” problem, the best choice is often to re-
define the problem rather than search for a marginal
solution. Such an approach is not uncommon in feed-
back control of physical systems either, for example the
case study of unmanned aerial vehicles in Magnussen
et al. (2014). In that paper the actuator dynamics were
modified to remove a nonlinearity and as a result make
the control problem easier.

In this paper a solution for preventing long block-
times in an open source, public blockchain project is

doi:10.4173/mic.2018.3.1 c© 2018 Norwegian Society of Automatic Control

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201826247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4173/mic.2018.3.1

Modeling, Identification and Control

proposed, implemented and the performance analysed.
The selected blockchain for the implementation is Bis-
muth programmed in Python, Kučera (2018). For
background information and a description of how the
blockchain and the POW mining process in Bismuth
work, see Hovland and Kučera (2017).

2 Blocktime Probability Density
Functions

In Grunspan and Pérez-Marco (2017) it is stated: At
each new hash the work is started from scratch, there-
fore the random variable T measuring the time it takes
to mine a block is memoryless. T is an exponentially
distributed random variable:

fT (t) = αe−αt (1)

for some parameter α > 0, the mining speed, with
the expected value of T equal to 1/α. This function
is plotted in Fig. 1 (red) against the probability dis-
tribution of blocktimes in the Bitcoin blocks 514,456-
530,336 (blue). As can be seen from Fig. 1 the PDF
given by eq. (1) matches well with the data for the Bit-
coin blocks 514,456-530,336, period March-July 2018.

Figure 1: Theoretical probability density function (red)
for the bitcoin blocktime compared against
data in blocks 514,456-530,336 (blue).

The Bitcoin blockchain will, in a year, have approx-
imately 52,560 new blocks since the average blocktime
is 10 minutes. The probability of an event which occurs
for one block per year is therefore 1/52560 = 1.9×10−5.

α =
1

10
(2)∫ ∞

108

fT (t)dt = 1.9 × 10−5 (3)

Hence, statistically once per year a blocktime of 108

Blocks Date Time (min)
152,217 - 152,218 2011-11-07 100
270,193 - 270,194 2013-11-17 129
334,486 - 334,487 2014-12-15 102
338,697 - 338,698 2015-01-12 109
425,379 - 425,380 2016-08-15 108
435,031 - 435,032 2016-10-19 102

Table 1: Examples of bitcoin blocks which took 100
minutes or longer (long tail).

minutes or larger should occur in the bitcoin network
when the mining hashpower stays constant as seen by
eq. (3). This matches quite well with data obtained
from the Bitcoin blockchain for the period 2011-2016
shown in Table 1, even though there was a significant
growth in computational power (hashrate) by the min-
ers during this period. As Table 1 shows there was
approximately one block per year which took 100 min-
utes or more in the Bitcoin network. From Nov. 2011
to Oct. 2016 the Bitcoin hashrate grew exponentially
from 9TH/s to 2,000,000 TH/s. The difficulty in Bit-
coin is updated only every 2016 blocks (14 days) and
not continuously in every block. In periods of rapid
growth in hashrate, this will cause the blocktime aver-
age to become less than the target which is 10 minutes
for Bitcoin and there will also be fewer of the long tail
blocktimes compared with the expected number cal-
culated from eq. (3). If the Bitcoin hashrate would
stabilize or even decrease in the future the occurrence
of long tail blocktimes would increase compared with
the historical data.

Figure 2: Theoretical probability density function (red)
for the Bismuth blocktime compared against
data in blocks 675,000-700,000 (blue).

152

Jan Kučera and Geir Hovland, “Tail Removal Block Validation: Implementation and Analysis”

1 de f d i f f i c u l t y (c) :
2 execute (c , ”SELECT block he ight , timestamp FROM tran s a c t i on s WHERE reward != 0 ORDER

BY b lo ck he i gh t DESC LIMIT 2”)
3 b lock he ight , t imestamp las t = c . f e t chone ()
4 t ime s t amp be f o r e l a s t = c . f e t chone () [1]
5
6 execute param (c , ”SELECT timestamp FROM tran s a c t i on s WHERE b lo ck he i gh t > ? AND reward

!= 0 ORDER BY timestamp ASC LIMIT 2” , (b l o ck he i gh t − 1441 ,))
7 timestamp 1441 = c . f e t chone () [0]
8 b lock t ime prev = (t ime s tamp be f o r e l a s t − timestamp 1441) / 1440
9 timestamp 1440 = c . f e t chone () [0]

10 b lock t ime = (t imestamp las t − timestamp 1440) / 1440
11 execute (c , ”SELECT d i f f i c u l t y FROM misc ORDER BY b lo ck he i gh t DESC LIMIT 1”)
12 d i f f b l o c k p r e v i o u s = c . f e t chone () [0]
13
14 t ime to g ene ra t e = t imestamp las t − t ime s t amp be f o r e l a s t
15
16 hashrate = pow(2 , d i f f b l o c k p r e v i o u s / 2 . 0) / (b lock t ime ∗ math . c e i l (28 −

d i f f b l o c k p r e v i o u s / 16 . 0))
17 # Calcu la te new d i f f i c u l t y f o r d e s i r ed blockt ime o f 60 seconds
18 ta r g e t = 60 .0
19 d i f f i c u l t y n ew = (2 / math . l og (2)) ∗ math . l og (hashrate ∗ t a r g e t ∗ math . c e i l (28 −

d i f f b l o c k p r e v i o u s / 16 . 0))
20 # Feedback c o n t r o l l e r
21 Kd = 10
22 d i f f i c u l t y n ew = d i f f i c u l t y n ew − Kd ∗ (b lock t ime − b lock t ime prev)
23 d i f f ad ju s tmen t = (d i f f i c u l t y n ew − d i f f b l o c k p r e v i o u s) / 720
24
25 i f d i f f ad ju s tmen t > 1 :
26 d i f f ad ju s tmen t = 1
27
28 d i f f i c u l t y n ew ad j u s t e d = d i f f b l o c k p r e v i o u s + d i f f ad ju s tmen t
29 d i f f i c u l t y = d i f f i c u l t y n ew ad j u s t e d
30
31 # Tai l Removal Code
32 d i f f d r op t ime = 180
33
34 i f time . time () > t imestamp las t + d i f f d r op t ime :
35 t im e d i f f e r e n c e = time . time () − t imestamp las t
36 d i f f d r opped = d i f f i c u l t y − t im e d i f f e r e n c e / d i f f d r op t ime
37 e l s e :
38 d i f f d r opped = d i f f i c u l t y
39 # End Tai l Removal Code
40
41 i f d i f f i c u l t y < 50 :
42 d i f f i c u l t y = 50
43 i f d i f f d r opped < 50 :
44 d i f f d r opped = 50
45
46 return (d i f f i c u l t y , d i f f d ropped , t ime to gene ra t e , d i f f b l o c k p r e v i o u s , b lock t ime ,

hashrate , d i f f ad ju s tment , b l o ck he i gh t)

Figure 3: Difficulty calculation function (feedback controller) with the single block difficulty drop included.

153

Modeling, Identification and Control

1 mining hash = b in conve r t (ha sh l i b . sha224 ((miner address + nonce + db block hash) . encode
(” utf−8”)) . hexd ige s t ())

2 d i f f d r op t ime = 180
3 min ing cond i t i on = b in conve r t (db block hash) [: d i f f]
4
5 i f min ing cond i t i on in mining hash : # s imp l i f i e d comparison , no backwards mining
6 app log . i n f o (” D i f f i c u l t y requirement s a t i s f i e d f o r b lock {} from {}” . format (

b lock he ight new , p e e r i p))
7 d i f f s a v e = d i f f
8
9 # Tai l Removal Condit ion Check S ta r t s Here

10 e l i f r ece ived t imestamp > db t imestamp last + d i f f d r op t ime :
11 t im e d i f f e r e n c e = rece ived t imestamp − db t imestamp last
12 d i f f d r opped = d i f f − t im e d i f f e r e n c e / d i f f d r op t ime
13 i f d i f f d r opped < 50 :
14 d i f f d r opped = 50
15
16 min ing cond i t i on = b in conve r t (db block hash) [: d i f f d r opped]
17
18 i f min ing cond i t i on in mining hash :
19 app log . i n f o (”Readjusted d i f f i c u l t y requirement s a t i s f i e d f o r b lock {} from {}” .

format (b lock he ight new , p e e r i p))
20 d i f f s a v e = d i f f
21 e l s e :
22 r a i s e ValueError (”Readjusted d i f f i c u l t y too low f o r b lock {} from {} , should be at

l e a s t {}” . format (b lock he ight new , pee r ip , d i f f d r opped))
23 e l s e :
24 r a i s e ValueError (” D i f f i c u l t y too low f o r b lock {} from {} , should be at l e a s t {}” .

format (b lock he ight new , pee r ip , d i f f))

Figure 4: Python code for calculating mining condition.

Bismuth will, in a year, have 525,600 new blocks
since the average blocktime is 60 seconds. A probabil-
ity of an event which occurs for one block per year is
therefore 1/525600 = 1.9 × 10−6.

α =
1

60
(4)∫ ∞

790

fT (t)dt = 1.9 × 10−6 (5)

Hence, statistically once per year a blocktime of 790
seconds (13 minutes and 10 seconds) or larger could
have occured in the Bismuth network before the hard-
fork at height 700,000, as seen by eq.(5).

3 Tail Removal Implementation

Tail removal means to prevent blocks from taking a
long time to generate. In this paper the tail is defined
as blocks taking 180 seconds or longer to generate. In
Fig. 2 this accounts for 6.2% of the blocks which trans-
lates to approximately 90 blocks per day.

The tail removal implementation is only a few lines
of code, shown in Fig. 3, lines 34-38, see also Kučera

(2018) (file node.py). The code before line 34 contains
the difficulty feedback controller developed in Hov-
land and Kučera (2017) without modification. Note
that the modified difficulty variable diff dropped is
the second index in the returned array from the func-
tion difficulty(c), whereas the unmodified diffi-
culty is in the first index. As seen in lines 34-38 in
Fig. 3 the difficulty is reduced linearly by the factor
time difference / 180, where time difference is
the difference between the current system time and the
time when the previous block was validated.

In Fig.4 the modified code for calculating the min-
ing condition is shown. For a more detailed explana-
tion of the mining condition in Bismuth, see Hovland
and Kučera (2017). Line 15 in Fig. 4 uses the tail re-
moval variable diff dropped to calculate a new min-
ing condition. Note also that in line 19 the unmod-
ified difficulty (first variable index returned from the
function difficulty(c) in Fig. 3 is saved instead of
diff dropped in order not to affect the feedback con-
trol algorithm for future blocks. By design, the feed-
back controller should respond to external changes in
hashrate by the miners, and less to the occurrence of

154

Jan Kučera and Geir Hovland, “Tail Removal Block Validation: Implementation and Analysis”

long tail blocktimes.

4 Results

Fig. 5 shows the original theoretical PDF (red) vs.
the new PDF with tail removal (blue) as implemented
on the Bismuth mainnet starting from block 700,000.
Blocktimes starting from block 701,441 are chosen since
the feedback controller in Bismuth considers the previ-
ous 1440 blocks, see Fig. 3, Line 10.

Figure 5: Theoretical probability density function (red)
for the bismuth blocktime compared against
data in blocks 701,441-726,440 (blue) which
have tail removal activated.

Figure 6: Theoretical curve (red) vs. Bismuth block-
times larger than 180 seconds in blocks
701,441-726,440 (blue).

As can be seen from the plot the tail after blocktime
180 sec has been almost completely removed and there

Figure 7: Mining difficulty: Blue=blocks 675,001-
700,000, Red=blocks 701,441-726,440.

Figure 8: 24 hour average blocktime: Blue=blocks
675,001-700,000, Red=blocks 701,441-
726,440.

is a desired, distinct high probability of bloctime be-
tween 180 and 190 seconds. The blocks with blocktime
larger than or equal to 190 seconds in Fig. 6 account for
less than 1% of the total when the tail removal code
is activated, compared to 5.4% before. The largest
blocktime in the data was 450 seconds or 7.5 minutes
compared to 810 seconds in blocks 675,001-700,000. If
more than 180 seconds has passed since the last block
was validated, the difficulty is reduced by 1.0, and for
every 180 seconds thereafter it is reduced linearly by
another 1.0. In the Bismuth blockchain implementa-
tion a reduction of difficulty by 1.0 normally results
in the miners validating blocks twice as fast as before.
Hence, the probability of long tail blocktimes is sig-
nificantly reduced by the algorithm presented in this

155

Modeling, Identification and Control

paper.

Variance 685,001-700,000 701,441-726,440
Blocktime 1.3466 0.5333
Difficulty 7.1705 × 10−4 3.3182 × 10−4

Table 2: Variance in 24 hour (1440 blocks) average
blocktime and difficulty before and after tail
removal.

Fig. 7 shows the difficulty level in blocks 675,001-
700,000 (blue) and in blocks 701,441-726,440 (red).
Since the hashrate increased rapidly during blocks
675,001-685,000, the feedback controller caused the dif-
ficulty level to increase from 111.0 to 112.0. During
this period the 24 hour average blocktime decreased
from 60 to 50 seconds, as seen in Fig. 8. Hence, blocks
675,001-685,000 are not included in the results in Ta-
ble 2. The two periods compared had approximately
the same constant hashrate. The table shows that the
variance in blocktime and difficulty more than halved
when introducing tail removal.

5 Discussion and Conclusions

In this paper a solution for preventing very large block-
times in a blockchain has been proposed, implemented
and analysed based on data stored on Bismuth main-
net. The code was enabled at block height 700,000 and
comparison of the network before and after the code
was enabled shows that the variance in the key vari-
ables, difficulty level and blocktime, have been more
than halved when a long tail threshold of 180 seconds,
3 times the desired blocktime of 60 seconds, was cho-
sen.

To avoid creating large number of orphaned blocks at
the threshold mark and later, the difficulty is reduced
linearly with time instead of a sudden change to a low
difficulty level. By using a linear ramp, the risk of a
large number of orphans is mitigated. A linear ramp
was also proposed in Stone (2017).

One potential side-effect of the long tail removal is a
stored shares race by the miners under certain condi-
tions. If such a race turns out to be a problem it could
be mitigated with a slight adjustment to the mining
condition after the 180 second threshold. Such an ad-
justment could be made which has no effect upon the
performance of the feedback control loop.

In the case where computational power from one or
several large miners would suddenly disappear from the
network, the proposed long tail removal code would
also be beneficial. The feedback controller would ad-
just the difficulty level relatively slowly down to adapt
to the new situation, while the long tail removal code

would prevent large blocktimes from occurring during
the transient phase until a new steady-state phase has
been reached.

Historically blockchain projects such as Bitcoin have
experienced rapid (exponential) growth in computa-
tional power (hashrate) by the miners. This growth
has, to some extent, reduced the occurrences of long
tail blocktimes. It is believed by the authors that in
the future, when the growth in hashrate levels out or
when miners to a larger degree switch frequently be-
tween different projects to maximize rewards causing
hashrate to decrease in many projects, the focus on
stabilizing and performance enhancing functions such
as long tail removal is likely to increase.

Acknowledgement

The research presented in this paper has received par-
tial funding from the Norwegian Research Council, SFI
Offshore Mechatronics, project number 237896.

References

Grunspan, C. and Pérez-Marco, R. Double spend
races. CoRR, 2017. abs/1702.02867. URL http:

//arxiv.org/abs/1702.02867.

Hovland, G. and Kučera, J. Nonlinear Feedback
Control and Stability Analysis of a Proof-of-Work
Blockchain. Modeling, Identification and Control,
2017. 38(4):157–168. doi:10.4173/mic.2017.4.1.

Kučera, J. Bismuth source code, re-
lease 4.2.5.3. https://github.com/

hclivess/Bismuth/releases, commit hash
6646704833987a8dd4ecd984cb395c1f27d0de44,
2018.

Magnussen, Ø., Ottestad, M., Hovland, G., and
Kirby, S. Experimental study on the influence
of controller firmware on multirotor actuator dy-
namics. In Proc. IEEE Intl. Symp. on Robotic
and Sensors Environments (ROSE 2014). 2014.
doi:10.1109/ROSE.2014.6952992.

Nakamoto, S. Bitcoin: A peer-to-peer electronic cash
system. http://www.bitcoin.org/bitcoin.pdf,
2009.

Stone, A. Tail removal block validation.
https://medium.com/@g.andrew.stone/

tail-removal-block-validation-ae26fb436524,
2017.

156

http://arxiv.org/abs/1702.02867
http://arxiv.org/abs/1702.02867
http://dx.doi.org/10.4173/mic.2017.4.1
https://github.com/hclivess/Bismuth/releases
https://github.com/hclivess/Bismuth/releases
http://dx.doi.org/10.1109/ROSE.2014.6952992
http://www.bitcoin.org/bitcoin.pdf
https://medium.com/@g.andrew.stone/tail-removal-block-validation-ae26fb436524
https://medium.com/@g.andrew.stone/tail-removal-block-validation-ae26fb436524
http://creativecommons.org/licenses/by/3.0

	Introduction
	Blocktime Probability Density Functions
	Tail Removal Implementation
	Results
	Discussion and Conclusions

