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Coarticulation is the tendency for speech vocalization and articulation even at the

phonemic level to change with context, and compensation for coarticulation (CfC) reflects

the striking human ability to perceive phonemic stability despite this variability. A current

controversy centers onwhether CfC depends on contrast between formants of a speech-

signal spectrogram—specifically, contrast between offset formants concluding context

stimuli and onset formants opening the target sound—or on speech-sound variability

specific to the coordinative movement of speech articulators (e.g., vocal folds, postural

muscles, lips, tongues). This manuscript aims to encode that coordinative-movement

context in terms of speech-signal multifractal structure and to determine whether

speech’smultifractal structuremight explain the crucial gestural support for any proposed

spectral contrast. We asked human participants to categorize individual target stimuli

drawn from an 11-step [ga]-to-[da] continuum as either phonemes “GA” or “DA.” Three

groups each heard a specific-type context stimulus preceding target stimuli: either

real-speech [al] or [aô], sine-wave tones at the third-formant offset frequency of either

[al] or [aô], and either simulated-speech contexts [al] or [aô]. Here, simulating speech

contexts involved randomizing the sequence of relatively homogeneous pitch periods

within vowel-sound [a] of each [al] and [aô]. Crucially, simulated-speech contexts had the

same offset and extremely similar vowel formants as and, to additional naïve participants,

sounded identical to real-speech contexts. However, randomization distorted original

speech-context multifractality, and effects of spectral contrast following speech only

appeared after regression modeling of trial-by-trial “GA” judgments controlled for

context-stimulus multifractality. Furthermore, simulated-speech contexts elicited faster

responses (like tone contexts do) and weakened known biases in CfC, suggesting

that spectral contrast depends on the nonlinear interactions across multiple scales

that articulatory gestures express through the speech signal. Traditional mouse-tracking

behaviors measured as participants moved their computer-mouse cursor to register their
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“GA”-or-“DA” decisions with mouse-clicks suggest that listening to speech leads the

movement system to resonate with the multifractality of context stimuli. We interpret

these results as shedding light on a new multifractal terrain upon which to found a better

understanding in whichmovement systems play an important role in shaping how speech

perception makes use of acoustic information.

Keywords: speech perception, phoneme, coarticulation, multifractal, mouse-tracking

INTRODUCTION

Language use is one of the more challenging accomplishments
of human behavior for scientists to explain (Chomsky, 1959).
Curiously, it becomes no less challenging as we attempt to
break spoken language usage into its smallest bits. For instance,
even at the fine scale of phonemes pairing individual vowels
with individual consonants, speech modeling continues to
the present day to struggle with “coarticulation” (Hill et al.,
2017), i.e., that the physiological production of each phoneme
changes depending on its context in the speech stream. Human
listeners manage to compensate for coarticulation to the point of
responding systematically to audible changes with context—even
without explicitly noticing the context effects and even, instead,
with having the experience of stable phonemic recognition
(Zamuner et al., 2016; Viswanathan and Kelty-Stephen, 2018).
To restate, compensation for coarticulation (CfC) is the tendency
for human listeners to use the preceding auditory context
to perceive ambiguous phonemes. The primary contributions
of the present work are twofold. The first proposal is that
the listener sensitivity to coarticulatory context effects extends
to a finer scale of unnoticed transpositions of the internal
sequence within a single vowel. The second proposal is that such
transpositions allow us to show that the perceptual compensation
for coarticulation depends on the multifractal structure of speech
production.

The multifractal questions of the present work immediately

follows recent work examining how compensation for
coarticulation changed across trials as well as within trials
(Viswanathan and Kelty-Stephen, 2018). Participants judged
tokens from a [ga]-to-[da] continuum, clicking their choice of

[ga] or [da] on a computer screen with amouse cursor. Generally,
participants will compensate for coarticulation by perceiving a
“g” sound following an [al] more often than following an [aô].
General auditory accounts focus more on the spectral contents

of the acoustic signal than on the details of speech production,
and they explain the preference for “g” following [al] in terms
of contrast between the offsets of the third formant (F3) in [al]
and [aô] and the onset of F3 in the [ga]-to-[da] token. That is,
because the F3 of both [al] and [da] are relatively high compared
to the F3 of both [aô] and [ga]. The spectral contrast between the
high F3 in [al] leads listeners to interpret the F3 of [ga]-to-[da]
tokens as having relatively lower frequency (and more “ga”-like)
after hearing the high F3 in [al] rather than the low F3 in [aô]
(Diehl et al., 2004). On the other hand, the gestural account of
compensation for coarticulation is that the frontal tongue-tip
gesture of [al] pulls forward the ambiguous middle steps of the

[ga]-to-[da] continuum into a “ga” sound, but posterior tongue
body constriction in [aô] does not.

Replicating a tried-and-true experimental paradigm but using
longitudinal modeling across the 176 trials opened up a new
finding in favor of gestural explanations of compensation for
coarticulation (CfC): the effect of spectral contrast in phoneme
perception depends on the broader context of a speech sound
as opposed to a tone sound. To put this point in greater detail
of how participants made speech-perceptual judgments, we can
say the following: participants paid progressively less attention
to tone contexts as the experiment went on, they exhibited
progressively stronger compensation for coarticulation in speech
as the experiment went on, and they took more time to process
those speech sounds. Specifically, continued experience with
speech contexts led participants to make better and more subtle
use of the gestural information available in speech rather than in
the tones. Meanwhile, tones prompted less attention: participants
rapidly learned to tune out information from the tone context
and to respond more similarly following the [al] and [aô] tone
variants alike. Mouse-tracking data provided information about
the time-course of the decision-making process on the way
to the mouse-click. Stronger use of CfC led to a significant
decrease in the number of x-position flips, i.e., the number
of times that the mouse-cursor trajectory changes horizontal
direction. X-position flips were greatest for the middle steps of
the [ga]-to-[da] continuum but decreased across trials in the
speech-context condition for slower mouse-trackingmovements,
which we separate from fast mouse-tracking movements using
Calcagnì et al.’s (2017) informational-entropy measures to parse
fast movements from the entire trajectory. In summary, results
essentially suggested that speech contexts appear to trigger
significant change—and improvements—in compensation for
coarticulation on multiple time scales.

Multi-scale changes in compensation for coarticulation with
speech context invites a new theoretical development that may
help explain how speech gestures prove to be so informative for
speech perception. Specifically, speech gestures crucial for CfC
come from a movement system capable of acting and responding
across a wide range of time scales and exhibiting an intermittent,
context-sensitive behavior that could only arise from nonlinear
interactions across these scales (Kelso et al., 1984; Fowler et al.,
2000). Crucially, this nonlinear interactivity is no longer a matter
of preference for one theoretical stance or another: nonlinear
interactions across time scales is the only competitive explanation
for the mounting evidence of intermittent fluctuations following
a multifractal sequence appearing throughout the rhythms of
the movement system (Ivanov et al., 1998), from the autonomic
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movements of heartbeats (Ivanov et al., 1999, 2001, 2004; Amaral
et al., 2001) to the dynamics of neural signaling (Ivanov et al.,
2009), to bipedal gait (Ashkenazy et al., 2002), all the way to
more context-sensitive behaviors such as keeping time (Ihlen
and Vereijken, 2010), wielding limbs and exploring surfaces
(Turvey and Fonseca, 2014) and visually-guided aiming (Carver
et al., 2017). By “intermittency,” we mean “unevenness across
time.” “Multifractal” refers to a specific pattern of unevenness in
which fluctuations grow according to multiple power-laws with
fractional—or “fractal” –exponents.

These technical concepts may bring new insights to speech
perception. If speech contexts support coarticulation better than
symmetrical sine tones, then it is precisely an unevenness
across time in speech that carries perceptual information to
the listener. If the movement system exhibits fluctuations with
multifractal sequence, then perhaps speech contexts bear a
multifractal imprint carrying information about the movement
system’s gestures. Multifractal structure may thus be an
important medium through which speech perception can draw
on information about articulatory gestures. Hence, a major goal
of the present research is to situate gestural theories of speech
perception on multifractal foundations.

Because sequence is crucial to the meaning of multifractal
evidence, a crucial first step of this attempt to test gestural
speech perception is to examine sequence in the production of
phonemes. The immediate two questions are: First, does speech
production exhibit the intermittency—that is, unevenness across
time—consistent with multifractality different from best-fitting
linear models? And second, does the multifractal sequence of
phoneme production impact phoneme perception? Multifractal
analysis is essentially a statistical method for using sequence to
test whether nonlinear mechanisms generate intermittent events.
If gestures provide support for CfC, and if we want to entertain
the idea that multifractality is an important part of the movement
systems generating that gestural support, then an experimental
test of the multifractal foundation should begin by destroying the
original order.

In this original research, we open possibility of multifractal
structure for gestural support by replicating the traditional
[ga]/[da] phoneme-categorization task with one small change:
in addition to presenting tone and speech contexts, we also
introduce a simulated-speech context. The simulated-speech
context will have the same spectral contrasts but none of
the same sequence that human speech-articulatory apparatus
would produce. We will produce simulated-speech contexts by
randomizing the sequence of relatively homogeneous, repeating
segments of open vocalization (i.e., called “pitch periods”) in
the audio waveform, thus preserving the sounds’ own category
membership but destroying its fine-grained sequence. If sequence
does notmatter to speech perception, and if only spectral contrast
matters, then the simulated-speech context should have no effect
on CfC (i.e., no effect on prompting “ga” responses after [al]
rather than [aô]). However, if sequence in the audio waveform
does matter for the use of speech contexts in CfC, then we make
two general predictions. Our first prediction was that the CfC
effects following simulated-speech contexts should resemble CfC
effects following tone contexts, and our second prediction was

thatmultifractal estimates of the context’s audio waveform should
predict the differences in response to the different contexts.

It is important to emphasize that the sequence-destruction
that produced simulated-speech contexts was extremely subtle—
so subtle as to be undetectable by participants. Randomizations
of sequence that leaves original formants relatively unchanged
leaves speech perception unchanged as well (Saberi and Perrott,
1999; Lachs and Pisoni, 2004), and we can leave the ends
of the formants (i.e., the [l] and [ô]) determining spectral
contrast completely intact. The intriguing potential is whether
leaving these formant offsets intact but randomizing the [a]
vowels preceding those offsets could undermine the gestural
basis of the speech context. Such simulated-speech contexts
would pose participants an intriguing challenge: with formants
half approximated and half intact, participants need not be
consciously aware of any difference in the category membership
of context phonemes, but they will be experiencing the
sounds through a contrived sequence that would only give
the impression of apparent gestures that might have generated
the sounds. If we find a difference by scrambling the sequence of
the [a] vowel in [al] and in [aô], then the multifractal structure
of the speech gestures may be a crucial background support for
spectral contrasts.

Randomizing the sequence offers a clear comparison between
two possible options. If spectral contrasts matter but gestural
structure does not, then destroying the sequence by randomizing
within homogeneous parts of the formants should produce no
effect on speech perception. On the other hand, if randomizing
homogeneous parts of the formants but leaving formant ends
intact has any effect on speech perception, then it may be
compelling evidence for elaborating the gestural account of
speech perception. The present work may thus be the latest
in showing how gestural information can indeed complement
general auditory models of speech perception (Laurent et al.,
2017; Mitra et al., 2017).

This proposal to delicately destroy the sequence of speech
sounds might serve to situate the gestural account of language
perception atop a multifractal foundation. If the formants remain
similar in their homogeneous portions and if formant ends
remain identical, then the average temporal structure should
be the same. In that case, it is worth noting two points
at this juncture. First, multifractal structure will change with
order even when average temporal structure remains the same,
and so that very statistical property that we noted above as
key for expressing interactions across scales could help us to
differentiate specific randomized variants. Second, variation in
fractal structure of speech signals has lately emerged as one of
few effective components in state-of-the-art machine-learning
algorithms aimed at using voice-analysis to predict the onset of
Parkinson’s disorder (Tsanas et al., 2011).

Multifractality is a multifaceted mathematical construct, and
we can point to two multifractal estimates, namely, WMF and
tMF. For any individual series of changes in acoustic pressure,
we can estimate not just the multifractality of that series (wMF)
but also the t-statistic comparing original-series multifractality
to multifractality for the best-fitting linear models of the original
series. The “w” here stands for “width” of a multifractal spectrum.
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In the interest of deferring technical detail to the section
Multifractal Analysis, we only note here that multifractality is
greater as the multifractal spectrum is wider. In a rough intuitive
sense, this spectrum width expresses variability in a way that does
not presume homogeneous variation—standard deviation is a
much more widely known measure of variability, but it presumes
that variation is identically and independently distributed. So,
wMF is essentially a variability measure made for intermittent
signals. On the other hand, tMF indicates the degree to which
multifractality differs fromwhat could be expected from linearity.
Multifractality (wMF) and the nonlinearity it entails (tMF) are
both important for the movement system (Ihlen and Vereijken,
2010; Turvey and Fonseca, 2014; Carver et al., 2017).

The main idea of this research is to investigate whether
the multifractality (wMF) and the nonlinearity (tMF) in speech-
production is an important support for speech perception using
speech contexts. What we aim to test is a twofold foundation for
gestural approaches to language use: first, if gestures generating
speech are multifractal, then the listener may show changes
in perceptual responses sensitive to multifractal fluctuations in
audio waveforms of speech, and second, listeners may benefit
from having a movement system ready to carry these multifractal
fluctuations forward into behaviors responding to speech.

The present work documents a replication of the earlier
design (Viswanathan and Kelty-Stephen, 2018), using real-
speech and tone contexts with the addition of simulated-speech
contexts, as well as using mouse-tracking to capture the mouse-
cursor trajectory on the way to clicking the perceptual response
on the screen. Multifractal analysis and regression models
using multifractal estimates served to quantify how much the
nonlinearity of each of these context sounds contributes to the
judgment of the target phoneme presented after the context.
Important for the test of whether multifractal structure matters
will be speech that sounds identical to human listeners despite
actually differing in sequence. The simulated-speech context
stimuli is absolutely essential for our test of multifractal effects
on compensation for coarticulation. Without simulated-speech
contexts, any difference in multifractality would be reducible to
and indistinguishable from differences in context (real speech vs.
tone) or in frequency ([al] vs. [aô]). It is only with the inclusion of
simulated-speech contexts that we might have tokens of ([al] vs.
[aô]) that sound like speech but that vary sufficiently in sequence
to yield new multifractal estimates.

For the purpose of determining whether speech perception
is sensitive to multifractality in speech, we entertain two
hypotheses. First, we predict that the simulated-speech contexts
lacking the original sequence of the real-speech will show
weaker CfC effects, specifically with context sounds leading to
weaker marginal reference for “GA” over “DA” following [al]
(Hypothesis 1). That is, we predict that effects of simulated
speech will resemble those of tones across trials in work by
Viswanathan and Kelty-Stephen (2018), showing less difference
in “GA response” between [al] and [aô] (Hypothesis 1a) and
showing faster response (Hypothesis 1b). Second, we hypothesize
that the CfC rests on both wMF and tMF as well as on their
interaction. That is, we predict that the way human participants
judge target speech syllables following a context will depend on

the unevenness across time in context sounds, the degree of
nonlinearity contributing to that unevenness, and the interaction
of these two components; and this difference should appear both
in the accumulation of “GA” judgments across the experiments
as well as the accumulation of response time in making these
judgments (Hypothesis 2).

For the purpose of testing whether human listeners carry
multifractal fluctuations in speech contexts forward into
behaviors responding to speech, we also had two expectations.
The primary expectation for analysis of mouse tracking
was that the multifractality of the context-sound stimuli
had a demonstrable effect on mouse-tracking behaviors. We
modeled the three best-known mouse tracking behaviors
(section Traditional geometric mouse-tracking measures), each
of which encode aspects of mouse-cursor movements that
might signify uncertainty, confusion, or attentional load.
Our secondary expectation was that we would replicate
the finding by Viswanathan and Kelty-Stephen (2018) that,
when accentuating models predicting these class mouse-
tracking measures with covariates including information-
theoretic entropy-basedmeasures (section Information-theoretic
entropy measures of mouse-tracking behaviors) developed by
Calcagnì et al. (2017), only one of these classic mouse-tracking
behaviors (specifically, x-position flips) would show an increase
for the most ambiguous target phonemes, that is, the middle
tokens in the [ga]-to-[da] continuum. Our first hypothesis here
is that multifractality will contribute to the already known
interactions of Context with linear effects of Step, quadratic
effects of Step, Block, Trial, Precursor, as well as Calcagnì et al.’s
(2017) more recent entropy measures and, in some cases, to
entirely replace context in these interactions (Hypothesis 3). Our
second hypothesis was that we would only find the main effect of
the quadratic effect of [ga]-to-[da] continuum step in x-position
flips (Hypothesis 4).

METHODS

Participants
Forty-two native English-speaking Grinnell College
undergraduates who reported normal hearing and corrected
or normal vision participated in the study after providing
informed consent. This study was carried out in accordance with
the recommendations of the Common Rule, Grinnell College
Institutional Review Board. The protocol was approved by the
the Grinnell College Institutional Review Board. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. Experimenters randomly assigned each to one of
three groups: speech-context, tone-context, or simulated speech
conditions.

Materials
With the exception of the simulated-speech contexts (section
Simulated Speech), all stimulus materials were the same as
those used by Viswanathan et al. (2009) as well as Viswanathan
and Kelty-Stephen (2018). The simulated-speech contexts were
reorderings of these same speech contexts as described below and
so had most of the same features.
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[ga]-To-[da] Targets
Participants attempted to correctly categorize tokens from a 11-
step continuum of resynthesized consonant-vowel (CV) syllables
as either [ga] or [da]. Tokens varied in F3-onset frequency in
100Hz steps from 1800 to 2,800Hz, changing linearly to 2,500Hz
steady-state offsets (see Viswanathan et al., 2009). All tokens had
identical first, second, and fourth formants, i.e., 500Hz onset to
800Hz offset, 1,600Hz onset to 1,200Hz offset, and remaining at
3,500Hz, respectively. Each CV syllable was 215ms long.

Contexts
In all cases, 50ms of silence separated context and target, but the
experimenters randomly assigned each participant to one of three
context conditions that determined what sounds participants
hear 50ms before the onset of the target. Table 1 shows the
multifractal properties of the contexts in each case.

Real-speech
Real-speech contexts were naturally spoken tokens of [al] and
[aô] with matching 375-ms duration and intensity but, crucially,
differing F3 offsets at approximately 2600Hz for [al] and 1820Hz
for [aô]. Figures 1, 2 depict these real-speech contexts [al] and
[aô], respectively, both in audio waveforms and in spectrograms.

Tones
Tone contexts were duration- and intensity-matched tone
analogs of [al] and [aô] mimicking the corresponding F3-offset
frequencies.

Simulated speech
Simulated-speech contexts were resamplings of the real-speech
contexts: for each of the real-speech contexts, experimenters
selected 11 similarly shaped oscillations in the digital recording
corresponding to the open-voiced “ah” sound before the liquid
(i.e., before the /l/ or the /ô/), cut them apart and resorted them
randomly over the same span of time that they had occurred
in the original real-speech recording. Figure 3 schematizes this
process for the simulating speech contexts for [al].

Simulated-speech contexts were similar to one another.
Generally, this resampling of the real-speech contexts generated

simulated-speech contexts that resembled the original sounds
both in temporal sequence and in spectral structure. Figures 4,
5 show this resemblance visually, depicting the spectrogram
for the same eight variants of the simulated-speech [al] and
simulated-speech [aô] context. A manipulation check confirmed
that the real-speech sounds were auditorily indiscriminable from
the synthesized-speech sounds: a sample of 10 participants
naïve to the manipulation were also unable to distinguish the
real-speech contexts from the corresponding simulated-speech
context. When asked to identify whether the sound was real
speech, these 10 participants identified real-speech contexts as
real speech 66% of the time and identified simulated-speech as
real speech 73% of the time.

Procedure
In a two-alternative forced-choice task, participants clicked the
computer-mouse cursor over a “Start” box at the screen’s lower
center to play stimuli. They indicated judgments by clicking
either the top-left or top-right of the screen labeled “ga” or “da”
(location counterbalanced across participants).

After 10 practice trials presenting only [da] and [ga] endpoints
in random order, participants completed 176 trials (16 repetitions
of the 11-step stop continuum) judging members of stop
continuum in the no-context group. The speech- and tone-
context group judged these stops in disyllable sequences and in
tone-speech sequences, respectively. The onset of the next trial
was controlled by participants who had an option to take breaks
between trials. The overall experiment lasted under 30min. No
feedback was provided.

Throughout, on each trial, the presentation software collected
data on mouse-tracking behaviors, recording the x-y screen
positions of the mouse cursor as participants moved their mouse
cursor toward the “GA” icon on the screen that they clicked.

Analysis
Multifractal Analysis
Subsequent modeling used Chhabra and Jensen’s (1989) [CJ]
canonical “direct” algorithm for calculating the multifractal-
spectrum width wMF on the absolute-value of the audio

TABLE 1 | Multifractal properties of contexts by type and by precursor, with model-predicted logarithmic-probability of one more “GA” response and

model-predicted response time (RT).

Model-predicted probability of one more …

Contexts WMf tMF “GA” response Second of RT

CONTEXT(REALSPEECH)

[al] 0.1463 −14.77 91.10% 1.64%

[aô] 0.1018 −16.76 68.89% 1.64%

CONTEXT(TONE)

[al] 0.0096 −5.94 71.36% 1.46%

[aô] 0.0141 −17.99 37.33% 1.51%

CONTEXT(SIMULATED SPEECH[SS])

[al] 0.1467 to 0.1472 −14.01 to −12.31 91.13–91.49% 1.37–1.46%

[aô] 0.1017 to 0.1020 −15.67 to −15.03 70.24–71.27% 1.34–1.38%

Showing inter-quartile range (i.e., 1st−3rd quartile) for 8 variants of SS context in each precursor.
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FIGURE 1 | Audio waveform (top) and spectrogram (bottom) for speech context [al].

FIGURE 2 | Audio waveform (top) and spectrogram (bottom) for speech context [aô].

waveform of each context stimuli. This use of absolute-
value draws on a long-standing tradition in fractal analyses
decomposing signals into magnitudes and signs and using either
to quantify nonlinearity (Ashkenazy et al., 2003; Schmitt et al.,
2009; Gómez-Extremera et al., 2016). We chose to use only
magnitudes using the absolute-value of the audio waveform, but
we omitted sign because the symmetry of the audio waveform
around zero entailed that the timing of signs would be redundant
with magnitude in this case. The absolute value is necessary, and
sign series are not usable–both because the CJ method is not
defined for non-positive numbers.

This CJ algorithm is preferable to finite-variance scaling
methods (e.g., multifractal detrended fluctuation analysis;
Kantelhardt et al., 2002) because the time-varying sinusoidal

properties of audio waveform constitute a nonstationarity
that not even the detrended variance-based methods cannot
adequately remove (Bashan et al., 2008). We preferred the direct
algorithm to the wavelet transform modulus maxima method
as well (Muzy et al., 1991, 1993, 1994) which shows strong
agreement with multifractal detrended fluctuation analysis, both
in its resulting estimates and in its sensitivity to quasiperiodic
trends (Zhou et al., 2013).

The CJ method samples measurement series u(t) at
progressively larger scales, estimating bin-level proportion
Pi(L) within bin i of scale L is

Pi (L) =

∑iL
k=(i−1)L+1 u(k)

∑

u(t)
(1)
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FIGURE 3 | Schematic showing the process of isolating 11 pitch periods within the vowel component of “[al]” and subsequent separation for later randomization, with

eight different randomizations each producing a new variant of simulated speech [al].

FIGURE 4 | Eight panels of spectrograms for each of the eight variants of simulated-speech contexts simulating the speech context “[al]”.
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FIGURE 5 | Eight panels of spectrograms for each of the eight variants of simulated-speech contexts simulating the speech context “[aô]”.

CJ method estimates P(L) for NL nonoverlapping L-sized bins of
u(t) and using parameter q to translate them into mass µi(q,L):

µij(q, Lj) =
[Pij(Lj)]

q

Nj
∑

i=1
[Pij(Lj)]

q

. (2)

For each q, each estimated α(q) appears in the multifractal
spectrum only when Shannon entropy of µ(q,L) scales with L
according to the Hausdorff dimension f (q),where

f (α(q)) = − lim
Nj→∞

Nj
∑

i=1
µij(q, Lj)ln[µij(q, Lj)]

lnNj

f (α(q)) = lim
Lj→0

Nj
∑

i=1
µij(q, Lj)ln[µij(q, Lj)]

lnLj
(3)

and where

α(q) = − lim
Nj→∞

Nj
∑

i=1
µij(q, Lj)ln[Pij(Lj)]

lnNj

α(q) = lim
Lj→0

Nj
∑

i=1
µij(q, Lj)ln[Pij(Lj)]

lnLj
(4)

For −300≤q≤300, and including only linear relationships
with correlation coefficient r > 0.995 for Equations 3, 4,

the downward-opening curve [α(q),f (q)] is the multifractal
spectrum. αmax-αmin is multifractal-spectrum width wMF

according to the CJ algorithm.

Calculating tMF from comparison to iterated amplitude
adjusted fourier-transform (IAAFT) surrogates
Fifty IAAFT surrogates [26] were produced for each original
series, using 1,000 iterations of randomizing the phase spectrum
from the Fourier transform, taking the inverse Fourier transform
of the original series’ amplitude spectrum with the randomized
phase spectrum, and replacing the inverse-Fourier series with
rank-matched values of the original series. We calculated tMF

as the difference (wMF −
(

1
50

)
∑50

i=1 wSurr (i)) divided by the
standard error of wSurr . Hence, positive or negative tMF indicated
wider or narrower, respectively, spectra than surrogates.

Mouse-Tracking Analysis
E-Prime R© software collected (x,y) mouse-tracking data at
approximately 58Hz. The R package “mousetrap” calculated
x-position flips, area under the curve (AUC), and maximum
displacement (MD) statistics from mouse-tracking trajectories
(Kieslich et al., 2017).

Traditional geometric mouse-tracking measures
Each of the three classic mouse-tracking behaviors reflects
deviations from the quickest, shortest, most linear mouse-cursor
paths from the start position at the bottom middle of the screen
to the top right or top left choices. That is, the mouse-tracking
behaviors encode nonlinearity of mouse-tracking trajectory,
but these three vary in what aspect of the nonlinearity they

Frontiers in Physiology | www.frontiersin.org 8 September 2018 | Volume 9 | Article 1152

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Ward and Kelty-Stephen Multifractal Coarticulation

emphasize. Area under the curve (AUC) is the count of square-
pixel units of screen space between the straightest linear path and
the actual mouse-tracking movement enacted by the participant.
Maximum displacement (MD) is the distance in pixels of the
longest orthogonal line segment definable from the nonlinear
trajectory and the shortest linear path. X-position flips is the
count of reversals in horizontal direction, as though to suggest
that each reversal reflects a mental vacillation between the
two horizontally-spaced options of the forced-choice on the
screen.

Information-theoretic entropy measures of mouse-tracking

behaviors
We use Calcagnì et al.’s (2017) method of decomposing the
mouse trajectories because Viswanathan and Kelty-Stephen
(2018) had found that this decomposition was crucial for
clarifying the effects of speech vs. tone contexts on the three
classic metrics of AUC, MD, and x-position flips. Briefly,
Calcagni et al.’s method computes two information-theoretic
measures of entropy for each trial’s mouse-tracking trajectory:
one for slow movements ψ and one for fast movements ξ

within the same trajectory. Viswanathan and Kelty-Stephen
had found that speech-context effects on all mouse-tracking
measures had all interacted with the slow entropy ψ. They
interpreted this finding in light of their earlier finding that
compensation for coarticulation became stronger for speech
contexts, and they interpreted the significance of ψ interactions
with speech context as indication of the fact that the use
of speech context invoked longer-term processing, that is,
processing that included perception both of the current target
stimuli and the just-previous context stimulus. Despite finding
this interesting interaction throughout all mouse-tracking
behaviors, Viswanathan and Kelty-Stephen only found that x-
position flips increased with ambiguity of the mid-continuum
[ga]-to-[da], with a significant negative quadratic effect of
continuum steps indicating a peak in the middle of the
continuum.

Entropy measures can be sensitive to temporal correlations
(Xiong et al., 2017), but mouse-tracking data was sampled at
58Hz, and participant response occurred at an average of 650ms.
Hence, the mouse-cursor trajectories were roughly 30 to 40
samples long, generating series too short for judicious estimation
of temporal correlations.

Entropy measures served as predictors of traditional
geometric measures
X-position flips, AUC, and MD are all expected to increase
with (Calcagnì et al., 2017) informational-entropy measures ψ

and ξ quantify entropy for the entire trajectory and only for
fast movements, respectively. Because all subsequent modeling
includes both entropy measures in the same regression models,
we refer to ψ as capturing slow entropy because any resulting
effect of that measure will necessarily represent the contribution
of entropy above and beyond ξ encoding fast-movement
entropy.

Regression Modeling

“GA” selection and response time (RT)
Linear mixed-effect modeling tested both hypotheses because RT
and mousetrap measures varied continuously. Poisson mixed-
effect modeling tested Hypothesis 1 because individual “ga”
selections were dichotomous, and cumulative “ga” selections
across 176 trials were better modeled as a count variable than as
a continuous variable. Whereas logistic modeling uses logit links
to model odds of a single dichotomous events, Poisson modeling
uses log links to model the marginal probability of one more
event. Poisson modeling allowed trial effects to explicitly model
actual sequence of the dependent variable and allowed random-
effects structure without compromising convergence in logistic
models.

Throughout, mixed-effect modeling used random-effect
intercepts per participant. Fixed-effect instances of linear and
quadratic effects used orthogonal polynomials to eliminate
correlation between them. In addition to predictor Step, other
predictors were Context (i.e., Speech or Tone), and Precursor
(Low or [aô] = 1, High or [al] = 2). All terms not including
explicit interaction with Context refer to effects in the real-
speech context case, that is, beyond the “simple replication”
portion of Results, all modeling addresses all data including no-
context cases. Context (Real-Speech) is the control case of the
categorical variable Context, and it is customary for modeling to
omit explicit listing of the control case (e.g., Bates et al., 2015).

Mouse-tracking measures (x-pos flips, MD, and AUC)
Linear mixed-effect modeling was used for mousetrap measures
AUC andMD because these varied continuously. Poisson mixed-
effect modeling was used for mousetrap measure x-position flip
because x-position flips is a discrete and so count variable.

We attempted to model mouse-tracking behaviors as
exhaustively as possible especially because we sought to attribute
as much possible variability to non-multifractal trial-varying
predictors. Hence, all models included a counterbalancing (CB)
term dummy-coded as 0 or 1 depending on whether the “GA”
choice appeared on the left or the right side of the screen. The
placement of the response buttons should have as much to do
with any pattern of the movement of the mouse cursor across the
screen as any experimental stimulus features.

Availability of Materials
All materials as well as the raw data supporting the conclusions
of this manuscript will be made available by the authors, without
undue reservation, to any qualified researcher.

RESULTS

Effects of Context Multifractality on
Perceptual Responses (Proportion of “GA”
Selections) and Response Times (RT)
Logistic Regression Replicates the Traditional CFC

Effects but Finds No Effect of Context Type
First, we sought to test whether participants heard “GA” more
often following [al] than [aô]. This first step tested only
whether [al] made hearing “GA” more likely on an average
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trial. A preliminary logistic regression (Supplementary Table 1)
confirmed that “GA” responses become less likely with greater
Step across the [ga]-to-[da] continuum and replicated the prior
effect (e.g., Viswanathan et al., 2014; Viswanathan and Kelty-
Stephen, 2018) that, on average, “GA” judgments weremore likely
following [al] and less likely than following [aô]. This model
indicated no significant difference for tones or for simulated
speech. Figure 6 shows the average proportion of “GA” response
as a function of Step and plotted separately by precursor in
each of three conditions. CfC effects are robust across different
contexts. More subtle modeling will show that this portrayal in
Figure 6 hides finer systematic differences across trial.

Comparable Poisson Modeling Fails to Replicate

CFC Effects
Next, we sought to test whether participants heard “GA” more
often following [al] than [aô], but the difference here was that
we wanted to test whether this effect was consistent across the
entire experiment. Poisson modeling allowed previous research
to document a cumulative effect of CfC (Viswanathan and Kelty-
Stephen, 2018). Whereas logistic regression only tests for CfC
effects to hold on average over all trials, Poisson modeling
tests whether the effect of [al] precursors persists—across the
entire experiment—in prompting a “GA” response more than
otherwise. So, Poisson regression seeks to test whether the

coarticulatory effects sustains similarly across all trials and
does not merely hold on average, varying unsystematically
across trials. However, perhaps strikingly, the Poisson regression
modeling using the same predictors as the logistic regression in
Supplementary Table 2 returned no effects for CfC and only a
marginally significant tendency for simulated-speech contexts to
discourage “GA” responses. Taken together, the significant effect
of CfC in logistic modeling and the null effect for CfC in Poisson
modeling means the following: the CfC effect is unstable and
intermittent across time.

As shown in Supplementary Table 3, expanding the model to
include block and trial effects improve model fit but fail to reveal
any CfC effects and show no new differences in response due to
simulated vs. natural speech.

Context Multifractality’s Contributions to “GA”

Responses Reveals CfC-related Effects
The priormodels cast doubts on whether participants heard “GA”
more often following [al] than [aô]—that is, whether CfC was a
really consistent, systematic effect across the entire experiment.
Our next step in this modeling is to test whether the context
multifractality was a crucial factor in whether participants heard
“GA” or not.

CfC-related effects only appeared in Poisson modeling
with the incorporation of predictors encoding context-stimuli

FIGURE 6 | Average proportions of “GA” responses by precursor frequency [al] and [aô] plotted across Step in the [ga]-to-[da] continuum, for each of the three

conditions in the study: real-speech context (top left panel), simulated-speech context (top right panel), and tone context (bottom right panel). Individual coefficients in

the logistic regression in Supplementary Table 1 appear in bottom left panel to reinforce what the resemblance of these plots might already suggest, i.e., that the

average proportions of “GA” response due to Precursor is not different following simulated-speech context or tone context than from following real-speech context.

The approaching significance (p = 0.09) of the difference due to Precursor in the case of simulated-speech context only reflects an unstable tendency for the average

proportions of “GA” response to drop off somewhat sooner for [aô] than for [al] from left to right along the Step continuum.
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TABLE 2 | All coefficients from Poisson regression predicting cumulative “GA”

responses with multifractal estimates.

Predictor B SE p

Intercept 8.19 3.19 <0.05

Context(Tone) −6.26 3.17 <0.05

Context(SimulatedSpeech[SS]) −0.3022 0.15 <0.05

Linear(Step) −0.0071 0.0018 <0.0001

Precursor −1.24 0.70 0.07

Precursor× Context(Tone) 1.99 0.92 <0.05

Precursor× Context(SS) −0.04 0.02 <0.05

OVER-TIME EFFECTS: BLOCK NUMBER, TRIAL NUMBER WITHIN

BLOCK, AND INTERACTIONS

Trial 0.03 0.0009 <0.0001

Block 0.31 0.0027 <0.0001

Block × Trial −0.0035 0.0001 <0.0001

Block × Context(Tone) −0.0030 0.0021 0.16

Block × Context(SS) 0.02 0.0023 <0.0001

Block × Linear(Step) 0.0010 0.0003 <0.001

MULTIFRACTAL ESTIMATES: MULTIFRACTAL SPECTRUM WIDTH,

T-STATISTIC INDICATING NONLINEARITY, AND INTERACTION

WMF −0.34 0.17 <0.05

tMF 0.06 0.03 <0.05

WMF× tMF −0.39 0.18 <0.05

multifractal estimates, i.e., WMF (B = −0.34, SE = 0.17),
tMF (B = 0.06, SE = 0.03) and their interaction WMF×tMF

(B = −0.39, SE = 0.18) were all significant at p < 0.05
(Table 2). What these results indicate is that likelihood of
“GA” responses decreases following relatively more multifractal
contexts but depends as well on the multifractality having
nonlinear sources, i.e., on the tMF being non-zero. The negative
main effect of tMF suggests a modest increase in likelihood
of “GA” responses with more positive tMF , but the positive
interaction suggests that the likelihood of “GA” decreases as
wMF and tMF increase together. Table 1 details the model-
predicted change in probability of “GA” response following
all contexts of different multifractality. It is noteworthy that
these model-predicted changes in probability change with [al]
and [aô] but only does so because the different precursor
contexts had different multifractal structure. This table reports
only on the effects of multifractal measures, especially as
there were no interactions of multifractal estimates with any
other speech properties. Specifically, for both real-speech and
simulated-speech contexts, the multifractality of the context
stimuli predicted roughly 91% and 70% probability of “GA”
response for [al] rather than following [aô]. Meanwhile, the
multifractality of the tone-contexts predicted a similar decrease
of probability over the lower and smaller range of 71% and
37%. Hence, despite the fact that Precursor×Context(Tone)
has the opposite direction for real-speech and simulated-speech
contexts, the multifractal effects on probability of “GA” response
with different tone-contexts follows the same direction across
precursors [al] and [aô] expected from real-speech and simulated
speech. Hence, the Precursor×Context(Tone) effect stands in

direct contrast to effects of multifractality from the context
stimuli.

The CfC-related effects revealed by this multifractal
elaboration only appeared significantly for the interactions
of precursor with tone context (B = 1.99, SE = 0.92) and of
precursor with simulated-speech context (B=−0.04, SE= 0.02)
with both ps < 0.05, and real-speech context only contributed
to a marginally significant CfC effect (B = −1.24, SE = 0.70,
p = 0.07). The positive interaction of precursor with tone
contexts indicates that “GA” responses were increasingly more
likely following tones approximating the F3 of [aô]. Meanwhile,
the negative interaction with precursor and simulated-speech
context aligned more closely with the prior understanding of
“GA” responses being more likely following [al] rather than
[aô] (Table 2). The negative interaction of precursor with
real-speech context for Poisson modeling is analogous to the
negative significant effect in the logistic regression, with the
difference in significance perhaps indicating that the CfC
effect of real-speech contexts does not persist throughout the
entire experiment but only holds on average as indicated by
the logistic regression. The absence of any Block interactions
of precursor real-speech contexts suggest that there is no
systematic growth or decrease of this CfC effect and that
different participants exhibit different sequences of responses
indicating CfC. Figures 7–9 display individual-participant
model predictions in the real-speech context, tones context and
simulated-speech context, respectively, for four participants in
each condition.

Alternative Poisson modeling omitting the simulated-
speech context condition did not find significant effects for
tone or for real-speech contexts. Because the tone and real-
speech contexts did not vary within their corresponding
level of Precursor, differences in multifractal estimates were
not appreciably different from differences in Precursor,
and so unsurprisingly, adding multifractal estimates to
Poisson models omitting simulated-speech context were
no more effective at revealing significant effects for
only tone and real-speech contexts than earlier Poisson
models.

Response Times (RT) Responded to Wider Set of

Predictors Than did Likelihood of Cumulative “GA”

Response
Having modeled whether participants heard “GA” or not, we
then turned to modeling how much time participants took
to register their perceptual response as a mouse-click on a
corresponding icon on the screen. Because Poisson modeling
including multifractal measures was successful for modeling
whether participants heard “GA,” we thought that Poisson
modeling including multifractal measures would also offer a
successful way to model the time participants took to register this
response.

Table 3 reports all of the significant contributions to RT. As
noted in the Method section we used Poisson regression because
it is a method for addressing non-negative count variables
and it is applicable to continuous variables. Furthermore,
whereas a traditional approach to RT is to use linear regression
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FIGURE 7 | Cumulative “GA” judgments and corresponding model predictions for four individual participants in the real-speech context. To depict the full range of

regression-model performance in the real-speech condition, we include individual-participant plots from the two participants for whose data the model fit worst (top

two panels) as well as from the two participants for whose data the model fit best (bottom two panels).

FIGURE 8 | Cumulative “GA” judgments and corresponding model predictions for four individual participants in the tone context. To depict the full range of

regression-model performance in the tone condition, we include individual-participant plots from the two participants for whose data the model fit worst (top two

panels) as well as from the two participants for whose data the model fit best (bottom two panels).

on logarithmically scaled RT, Poisson regressions make the
logarithmic transformation implicit in its log-linking. With
few exceptions noted below, all effects were significant at

p < 0.0001, and all effects not included either did not make
significant improvements to model fit or led model convergence
to fail.
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FIGURE 9 | Cumulative “GA” judgments and corresponding model predictions for four individual participants in the simulated-speech context. To depict the full range

of regression-model performance in simulated-speech condition, we include individual-participant plots from the two participants for whose data the model fit worst

(top two panels) as well as from the two participants for whose data the model fit best (bottom two panels).

Effects of context and CfC-related terms
Compared to RT for real-speech context, RTwas higher following
tone contexts (B = 90.65, SE = 0.26) and lower following
simulated-speech contexts (B = −0.34, SE = 0.14, p < 0.05).
As for precursor effects, [aô] prompted quicker responses than
[al] (B = −0.35, SE = 0.07) especially for tone contexts
(B = −35.86, SE = 0.26), but simulated-speech contexts sped
responses least (B = 0.14, SE = 0.0003). The significant negative
quadratic effect of Step (B = −2.40, SE = 1.48) indicated
significantly slower response for the middle steps of the [ga]-
to-[da] continuum which grew slower in the case of tone and
simulated-speech contexts (Bs = −6.05 and −2.30, SEs = 0.09,
respectively). Difference in these negative coefficients indicated
that response slowness for middle-step [ga]-to-[da] tokens was
greatest especially following tone contexts. These effects held
above and beyond the lower-order linear effects of Step and its
interactions with tone and simulated-speech context (Bs = 7.98,
−3.91, and −3.66; SEs = 0.15, 0.10, and 0.09, respectively) but
became progressively faster with subsequent Blocks (B = 0.51,
SE= 0.02).

Block interactions with trial, context, and step
RT increased across blocks (B = 0.15, SE = 0.0018), decreased
across trials within block (B = −0.04, SE = 0.0001), but
this change with trials became shallower in later blocks and
actually increased in Blocks 7 and increased faster in Block 8
(B = 0.0062, SE = 0.0001). RT increased less over blocks in both
tone and simulated-speech conditions (Bs = −0.04 and −0.02,
SEs = 0.0014 and 0.0004, respectively). The above-mentioned
negative relationship between RT and steps in the [ga]-to-[da]

continuum dwindled on two counts: first, the linear effect of
Step becoming weaker with blocks (B = −1.30, SE = 0.02)
until reversing and becoming positive in Block 7 and growing in
Block 8; and second, with the negative quadratic effect of Step
going from negative to positive in Block 5 and growing larger
in later blocks (B = 0.51, SE = 0.02). The absence of Block
interactions with Step×Context indicate that responses remained
slower in the middle [ga]-to-[da] steps for tone and simulated-
speech contexts, but the eventually negative-linear, positive-
quadratic profile of RT with Step following real-speech contexts
entails gradually quicker responses for all but the strongest [ga]
candidates in the [ga]-to-[da] continuum.

Multifractal effects on RT
RT increased with greater multifractal spectrum width WMF

(B = 35.74, SE = 1.02). Non-zero t-statistics indicating
evidence of nonlinear sources of multifractality accentuated this
WMF×tMF (B = 36.74, SE = 0.25). Whereas the model of
“GA” responses showed no significant interactions of multifractal
estimates with task parameters, the model of RT exhibited
effects of WMF×Precursor (B = 260.87, SE = 0.75) and
tMF×Precursor (B = 1.56, SE = 0.01). Table 1 depicts how
the model-predicted probability of an additional millisecond
of RT per trial changed with the multifractal properties
of the context stimuli. Multifractal effects predicted greater
probability (1,637%) of single-millisecond increases in RT
for real-speech contexts and lesser probabilities (1,483 and
1,490%) of single-millisecond increase in RT for tone and
simulated-speech contexts, with miniscule differences across
precursor in real-speech context, slightly greater range across
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TABLE 3 | All coefficients from Poisson regression predicting response times

(RTs).

Predictor B SE p

Intercept −83.07 0.24 <0.0001

Context(Tone) 90.65 0.26 <0.0001

Context(SimulatedSpeech[SS]) −0.34 0.14 <0.05

Linear(Step) 7.98 0.15 <0.0001

Quadratic(Step) −2.40 1.48 <0.0001

Precursor −0.35 0.07 <0.0001

Precursor × Context(Tone) −35.86 0.21 <0.0001

Precursor × Context(SS) 0.14 0.0043 <0.0001

Linear(Step) × Context(Tone) –3.91 0.10 <0.0001

Quadratic(Step) × Context(Tone) –6.05 0.09 <0.0001

Linear(Step) × Context(SS) –3.66 0.09 <0.0001

Quadratic(Step) × Context(SS) –2.30 0.09 <0.0001

OVER-TIME EFFECTS: BLOCK NUMBER, TRIAL NUMBER WITHIN

BLOCK, AND INTERACTIONS

Trial −0.04 0.0001 <0.0001

Block × Trial 0.0062 0.0001 <0.0001

Block 0.15 0.0018 <0.0001

Block × Context(Tone) −0.04 0.0014 <0 0.0001

Block × Context(SS) −0.02 0.0004 <0.0001

Block × Linear(Step) −1.30 0.02 <0.0001

Block × Quadratic(Step) 0.51 0.02 <0.0001

MULTIFRACTAL ESTIMATES: MULTIFRACTAL SPECTRUM WIDTH,

T-STATISTIC INDICATING NONLINEARITY, AND INTERACTION

WMF 357.40 1.02 <0.0001

tMF −0.6.96 0.05 <0.0001

WMF× tMF 36.74 0.25 <0.0001

WMF× Precursor 260.87 0.75 <0.0001

tMF× Precursor 1.56 0.01 <0.0001

WMF× Block 0.02 0.01 <0.05

tMF× Block 0.0017 0.0001 <0.0001

precursors with tone context and among 8 variants of the [aô]
precursor, and greatest range among the 8 variants of the [al]
precursor.

Multifractal interactions with Block
What Table 1 does not show is the additional results that
RT increased with block’s interactions with WMF (B = 0.02,
SE = 0.01, p < 0.05) and with tMF (B = 0.0017, SE = 0.0001).
Hence, with further blocks in the experiment, RT increased more
so with multifractal-spectrum WMF and to a lesser degree with
tMF .

Discussion of Perceptual Response and RT, and

Hypotheses for Second Section
We tested two predictions: first, simulated speech will prompt
weaker differences in “GA” selection between [al] and [aô] as
well as faster responses (Hypothesis 1), and second, judgment
of target speech syllables following a context will depend on
the multifractal unevenness across time in context sounds,
the degree of nonlinearity contributing to that multifractal

unevenness, and the interaction of these two components, and
this difference should appear both in the accumulation of “GA”
judgments across the experiments as well as the accumulation
of response time in making these judgments (Hypothesis 2).
Results supported all predictions. It is worth emphasizing that
our support of Hypothesis 1 is a replication of the findings by
Viswanathan and Kelty-Stephen (2018). It is equally important
to stress that the support for Hypothesis 2 was crucial for
supporting this replication of Hypothesis 1. Simply put, there
were no effects of CfC until modeling was cumulative rather
than on-average (i.e., Poisson rather than logistic, respectively),
and there were not effects of CfC in Poisson modeling until
we incorporated multifractal estimates wMF and tMF. The effects
of multifractality on compensation for coarticulation appear to
support the replicable facts of compensation for coarticulation.

Perhaps themost striking result in the foregoing was the initial
failure to replicate the coarticulation compensation as noted by
Viswanathan and Kelty-Stephen (2018). Viswanathan and Kelty-
Stephen found both compensation for coarticulation effects in
logistic regressions testing average proportion of “GA” response
and interactions of time with compensation for coarticulation
in Poisson modeling of cumulative “GA” responses. The present
work found compensation for coarticulation only in the logistic
regression and found no difference by context in the average
proportions of “GA responses.” The present Poisson model
found no effect for compensation for coarticulation, even after
the inclusion of time effects to interact with the compensation
for coarticulation.

Crucially, it was only the inclusion of multifractal estimates
wMF , tMF, and their interaction that revealed effects of
compensation for coarticulation in the Poisson model for “GA”
responses. The prior failure of the Poissonmodeling suggests that
the compensation for coarticulation was uneven over time, but
it is intriguing that including multifractal estimates manages to
control for this and reveal the known significant effects related
to compensation for coarticulation. One possible explanation
for this pattern of results is that multifractal estimates indicate
unevenness with time, and the unevenness with time found
in context stimuli might serve to produce the unevenness
with time found in the “GA” responses. Said another way, the
failure to replicate the simpler, multifractal-free effects showing
that coarticulation for coarticulation need not be troubling
because the nonlinear interactions across time scale in the
measured behaviors—both in speech context and in participants’
“GA” responses—are classically statistical mechanisms known to
produce intermittent, nonstationary, and irregular results over
average (Wallot and Kelty-Stephen, 2017).

Strange though it may sound, multifractality may be
the geometry that defines the landscape of events shaping
our perceptual experience (Kelty-Stephen and Dixon, 2014).
Whether or not each of those events has sufficient strength
to activate individual neurons and whether or not all details
of this multifractal geometry reaches our current awareness,
it may be that the multifractal structure shapes the longer-
range perceptual use of available information—beyond the time
scale of individual neuron firings and into the time scales of
the following, coarticulated phonemes. The picture of speech
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perception coming into focus is that of a multifractal patterning
that arises from the details of the movement system producing
speech. The next section of the present work raises the possibility
that, on the way to the participant’s decisions about speech-
perception, it may be the listener’s movement system that acts as a
substrate to absorb themultifractality in context sounds and carry
them forward to the mouse-clicked response. Hypothesis 3 will
be that mouse-cursor movements by the participant will reflect
the interactions of multifractal measures and Context with linear
effects of Step, quadratic effects of Step, Block, Trial, Precursor,
as well as Calcagnì et al.’s (2017) entropy measures. Hypothesis 4
will be, as in Viswanathan and Kelty-Stephen (2018) a negative
main effect of quadratic effects of Step would appear in the
measure of x-position flips.

Effects of Context Multifractality on
Mouse-Cursor Trajectories on the Way to
Clicked Response
In this section, we review modeling of the mouse-cursor
trajectory data as participants move the mouse-cursor to
the appropriate icon on the computer screen to register
their response. We already found that context multifractality
influenced whether participants heard “GA” and how much time
participants took to register this response. The present modeling
is important to the present considerations because it would test
our prediction that context multifractality would also influence
the movement system of the listening participants, particularly as
they used their perception of speech to make a task response.

Maximum Displacement (MD) and Area Under the

Curve (AUC)
Our model for MD was specified by the following family of
highest-order interactions:

CB×ψ×ξ×Linear(Step)×Precursor×Context×Block×Trial
CB×ψ×ξ×Quadratic(Step)×Precursor×Context×Block
×Trial
ψ×ξ×WMF×Linear(Step)×Precursor×Block
ψ×ξ×WMF×Quadratic(Step)×Precursor×Block
ψ×ξ×tMF×Precursor×Block.

The model included these higher-order interactions named
above, as well as all lower-order interactions and main effects
composing these higher-order interactions. No other effects
improved model fit. Supplementary Table 4 lists their significant
coefficients (p< 0.05), organized by whether they implicateWMF

or tMF, the interaction ofψ and ξwithout anymultifractal effects,
and the interaction of CB with all non-multifractal effects.

Our model for AUC was specified by the following family of
highest-order interactions:

CB×ψ×ξ×Precursor×Context×Block
WMF×tMF×ψ×ξ×Linear(Step)×Precursor×Context×Block
×Trial
WMF×tMF×ψ×ξ×Quadratic(Step)×Precursor×Context
×Block×Trial

The model included these higher-order interactions named
above, as well as all lower-order interactions and main effects
composing these higher-order interactions. No other effects
improved model fit. We were able to fit much higher-order
interactions that significantly improved model fit here in the
model for AUC than in the foregoing model for MD. One
explanation for this difference is AUC has greater capacity
to vary than MD: MD varies proportionally to the number
of pixels in one direction, and as an area measure, AUC
varies as pixels-squared. So, AUC may simply be a dependent
measure that manifests more clearly the expression of a greater
number of independent factors. Beyond the capacity for a
larger stable model, an interesting feature of this model is
that the significant interaction of WMF and tMF with one
another as well as with all other factors besides counterbalancing
(CB). Supplementary Table 5 lists their significant coefficients
(p < 0.05).

The results of this model indicated that MD and AUC of
mouse-tracking behavior depended on the multifractality of the
context stimuli, on type and frequency of the context stimuli, on
the step in the [ga]-to-[da] continuum, and on the different speed
of movements within a single trial’s mouse-tracking behavior
(i.e., the entropy-based parsing of the movement series). A
skeptical view might consider it plausible that this sensitivity
of MD and AUC to multifractality might fall within incidental
variability of MD and AUC due to the direction of movement
across the screen. For this reason, Supplementary Tables 4, 5
include all CB-related interactions to confirm that screen position
did have a significant impact on mouse-tracking movements
but to emphasize that multifractal effects on mouse-tracking
movements did not depend on screen position. However, we
omit explicit discussion of them except to note here that effects
of multifractality did not depend on any factors incidental to
counterbalancing of screen position.

MD showed dual-entropy interactions with all
non-counterbalancing factors and single-entropy

interactions with specific types of multifractal estimates
Far from being straightforwardly smaller with more practice and
perhaps with more confidence on later trials, the observed MD
appears to depend strongly on the different contexts and the
different precursor frequencies, and it appears to do so differently
in the slower and faster components (i.e., ψ and ξ, respectively)
of the mouse-tracking behaviors. Supplementary Figures 1, 2
depict the specific effects of interactions involving multifractal
estimates WMF and tMF, respectively, as well as with entropy
measures, Block, Trial, and Step predictors. Important to note,
Supplementary Figures 1, 2 show predicted MD for the WMF-
based effects in the specific case of Step = 5 in the middle of the
0-to-10 11-step continuum.

The prevalent case of non-CB effects was the interaction
of both entropies together ψ×ξ with other factors. The
relatively rare exceptions to ψ×ξ supporting the significant
interaction effects were five interaction terms only featuring one
entropy: ψ×WMF×Precursor×Block, ξ×tMF, ξ×tMF×Block,
ξ×tMF×Precursor, and ξ×tMF×Precursor×Block. Prior work
had found significant interactions of ψ only with speech context
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rather than tone context. The present work finds now that
interactions of entropy-based measures ψ-alone were significant
for WMF-related effects only and ξ-alone were significant for
tMF-related effects only.

MD showed linear effects of Step for all
non-counterbalancing effects and quadratic effects of Step for

counterbalancing effects
The traditional interpretation of MD as indicating uncertainty
or increasing processing load would suggest that MD should
increase for middle steps of the [ga]-to-[da] continuum, but
the absence of a quadratic effect indicates no significant
difference for the middle steps. The linear effect of Step only
shows changes in MD with increasing or with decreasing
Step. The interaction implicating Linear(Step) with WMF (i.e.,
ψ×ξ×WMF×Linear(Step)×Precursor×Block; B = −8.87×108;
SE = 3.46×108) is negative: MD decreased with increased Step
as well as with increases in either entropy and in WMF . This
interaction was stronger for [aô] than for [al] and, in either case,
with increasing block number.

The next set of interactions involving Linear(Step)
were those interactions including neither multifractality
nor CB effects. Two effects in this set indicated a MD
increase, i.e., ψ×ξ×Linear(Step)×Precursor×Block and
ψ×ξ×Linear(Step)×Precursor×Block×Trial. Another three
effects in this set indicated decreases in MD for similar
interactions specific to the tone-context condition,
i.e., ψ×Linear(Step)×Context(Tone)×Block×Trial,
ψ×ξ×Linear(Step)×Precursor×Context(Tone)×Block, and
ψ×ξ×Linear(Step)×Precursor×Context(Tone)×Block×Trial.

Major distinctions among effects on AUC
As with MD, far from being straightforwardly smaller with
more practice and perhaps with more confidence on later trials,
the observed AUC appears to depend strongly on the different
contexts and the different precursor frequencies, and it appears
to do so differently in the slower and faster components (i.e., ψ
and ξ, respectively) of the mouse-tracking behaviors. Rather than
attempt to detail the extensive significant individual findings in
text, we make relatively few distinctions to organize the AUC
findings. Supplementary Figure 3 to depict the specific effects
of interactions involving multifractal estimates WMF and tMF

with each other as well as with entropy measures, Block, Trial,
and Step predictors. Important to note, Supplementary Figure 3

shows predicted AUC for these effects in the specific case of
Step= 5 in the middle of the 0-to-10 11-step continuum.

AUC showed CB interactions with Context but not Step vs.
multifractal interactions with Step but not Context. One major
distinction we can draw amongst these effects is that, whereas
WMF, tMF, and WMF×tMF interact with the quadratic term of
Step but not with Context, CB interactions include interactions
with Context but not with the Step terms.

AUC showed analogous multifractal-dependent interactions
involving WMF only or tMF had opposite signs. A second
distinction is different subsets of the effects mirrored one
another’s directionality. There were many effects involving either

WMF or tMF but not both, and some of these interactions were
identical except for including an interaction with WMF for
an interaction with tMF. These analogous interactions showed
mutually opposite effects. For instance, Supplementary Table 5

lists a significant interaction ψ × ξ × WMF (B = 7.60 × 106;
SE = 3.64 × 106) but also a significant interaction ψ × ξ × tMF

(B = −5.40 × 104; SE = 2.58 × 104), and coefficients for these
similarly built terms have opposite signs. The opposite signs here
reflect independent and separable contributions of correlated
factors WMF and tMF.

WMF × tMF interactions had opposite signs from analogous
interactions without multifractal terminology. For instance,
Supplementary Table 5 lists a significant interaction ψ × ξ ×

WMF × tMF (B = 4.87 × 105; SE = 2.40 × 105) as well as a
significant interaction ψ × ξ (B = −8.39 × 105; SE = 3.87 ×

105).

X-Position Flips
Our model for AUC was specified by the following family
of highest-order interactions and main effects: Precursor ×

Context, ψ ×WMF, ξ ×WMF, Precursor×WMF, Block× Trial,
Linear(Step), Quadratic(Step) and CB.

The model included these higher-order interactions named
above, as well as all lower-order interactions and main
effects composing these higher-order interactions. No other
effects improved model fit. Whereas AUC afforded much
more variability than MD within which to fit additional
significant predictors, x-position flips proved much less forgiving
than MD in terms of affording the variability to warrant
many significant predictors. Supplementary Table 6 lists all
coefficients (p < 0.05).

This much sparser model allows us to detail the entirety of the
model’s coefficients. First, the interpretation of x-position flips
as a sign of uncertainty finds some confirmation in that they
are more frequently found in the slower component of mouse-
tracking movements (ψ; B = 1.38, SE = 0.08, p < 0.0001)
and much less likely in the faster component of mouse-tracking
movements (ξ; B = −0.64, SE = 0.09, p < 0.0001). We fit the
lower-order linear effect of Step on the [ga]-to-[da] continuum
(B = −8.92, SE = 1.43, p < 0.0001) as a means to get a proper
estimate for the quadratic effect of Step (B = −2.85, SE = 1.40,
p < 0.05). The negative linear effect entails that x-position flips
are much more likely for [ga] than for [da] sounds, but the
negative quadratic effect of Step confirms that x-position flips
do increase the most for the middle steps of the [ga]-to-[da]
continuum, i.e., for the most ambiguous stimuli. As for effects of
context, x-position flips are significantly less frequent following a
tone context (B = −43.86, SE = 2.87, p < 0.0001) than during
either real-speech or simulated-speech contexts, neither of which
latter two different from one another. X-position flips were more
likely following [al] (Precursor = 1) and less likely following [aô]
(Precursor = 2; Precursor, B = −18.81, SE = 1.60, p < 0.0001)
for real-speech and simulated-speech contexts. The tone context
showed none of this dependence of x-position flips on precursor
(B = 18.20, SE = 1.30, p < 0.0001). X-position flips are less
likely following context stimuli with greater multifractality WMF

(B = −287.80, SE = 15.50, p < 0.0001), particularly in the
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slower components of mouse-tracking behavior (B = −2.77,
SE = 0.71, p < 0.001). This finding might suggest a direct
relationship between multifractality of the context stimuli and
the confidence of the decision-making, but it is important to
note that the multifractality may both increase x-position flips
in the faster components of mouse tracking behavior (B = 2.33,
SE= 0.80, p < 0.01) and may have a weaker effect in diminishing
x-position flips following context stimuli associated with [aô]
(Precursor= 2) rather than with [al] (Precursor= 1; B= 103.10,
SE = 21.06, p < 0.0001). No effects of tMF significantly
improved model fit. Supplementary Figure 4 depicts the average
differences in x-position flips for different entropy and for
different precursor.

Across the experiment, x-position flips decrease with
increasing blocks (B = −0.11, SE = 0.01, p < 0.0001) revealing
either growing tedium or growing resoluteness regarding how
participants choose to respond to each item. There is as well a
decrease in x-position flips with increasing trial number within
blocks (B = −0.03, SE = 0.0051, p < 0.0001) that diminishes
across blocks (B= 0.0042, SE= 0.0011, p< 0.001). We left in the
nonsignificant main effect of CB to show that counterbalancing
of screen position does not change x-position flips as a main
effect, and no additional interaction of multifractal effects with
CB improved model fit either.

Discussion
We hypothesized that multifractal measures contributed to all
interactions of Context with linear effects of Step, quadratic
effects of Step, Block, Trial, Precursor, as well as (Calcagnì
et al., 2017) entropy measures (Hypothesis 3), and we also
hypothesized that the only negative main effect of quadratic
effects of Step would appear in the measure of x-position flips
(Hypothesis 4). Results supported both hypotheses. None of these
effects are artifactually due to counterbalancing of the “DA” and
“GA” locations on the screen because all modeling incorporated
this effect with its CB predictor.

Hypothesis 3
Both MD and AUC showed a vast set of significant effect of
interactions involving multifractal measures WMF and tMF with
Context, linear effects of Step, quadratic effects of Step, Block,
Trial, Precursor, as well as Calcagnì et al.’s (2017) entropy
measures. An important distinction among these two measures
is that the statistical model for AUC exhibited a dependence on
the interaction ofWMF with tMF, which two-way interaction term
participated in many higher-order interactions with the other
predictors. On the other hand, the statistical model for MD only
supports interactions with WMF and also, independently from
those interactions, interactions with tMF. These independent sets
of interactions show a similar pattern of results indicating that
these different facets of multifractal structure pick up on similar
groupings of predictor variables. It may also be that availability
of the WMF×tMF interactions in the AUC case may reflect the
fact that the AUC definition in terms of pixels-squared affords
greater margins predictable variability than the MD defined in
terms of pixels. That is to say, the higher dimensional definition

of AUC than of MDmay explain some of the asymmetry between
regression-modeling results for each of the measures.

Hypothesis 4
The model of x-position flips shows an interesting case in which
the multifractal structure in terms of WMF completely replaces
the role of Context in any interaction with (Calcagnì et al., 2017)
entropy measures that Viswanathan and Kelty-Stephen (2018)
had shown. Generally, the effect of multifractality seems to be to
reduce the number of x-position flips particularly in the slower
components of mouse-tracking movements. Also, it seems to
reduce the number of x-position flips more so in the case of [al]
than for [aô].

GENERAL DISCUSSION

As noted above, the main idea of this research is to investigate
whether the multifractality (wMF) and the nonlinearity (tMF) in
speech-production is an important support for speech perception
using speech contexts. This main idea promises to elaborate
an explanation for why speech contexts may be better, in the
long-run, for supporting compensation for coarticulation. We
estimated the multifractal signatures specific to the movement
system producing speech as well as estimating multifractal
signatures specific to speech resynthesized to destroy sequence
while preserving phoneme-category membership. We tested
whether multifractal signatures predicted perceptual response
(i.e., which phoneme participants chose) but also whether those
multifractal signatures predicted the participants’ mouse-cursor
trajectories as they moved to click the icon corresponding to their
choice. All tests suggested that multifractal estimates of context
stimuli did in fact influence the perceptual response and the
mouse-cursor trajectory as participants moved to register those
responses.

The current model of compensation for coarticulation in
general-auditory accounts has been that the formant offsets of
vowel-consonant contexts strike a contrast with formant onsets
of subsequent consonant-vowel. What we have accomplished
is to show that compensation for coarticulation shows subtle
but significant disturbance when resynthesizing speech context
sounds reorders the vowel in the context but leaves the
subsequent formant offsets and onsets implicated in contrast
unchanged. Hence, whatever spectral contrast might contribute
to compensation for coarticulation, these effects rest within a
deeper, longer-range context of multifractal structure of context
sounds.

No matter their subtlety, the multifractal effects may be
key for finding any significant interaction of context with
formant offset (i.e., precursor) over trials in an experimental
study. The logistic regression on “GA” responses only shows an
effect of Precursor indicating the role of formant offset without
any further interaction of formant offset with context. This
finding would seem to support a general-auditory account of
compensation for coarticulation by finding a change in “GA”
response with spectral contrast and no change in “GA” response
with context. However, a comparable Poisson regression for
modeling this effect across trials in the experiment shows no
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significant effect of formant offsets (Precursor) but a moderate
negative effect of simulated-speech contexts. The difference in
results is evidence that the compensation for coarticulation holds
on average, but it is not a stable result across trials.

One key for decoding and unlocking the meaning from this
instability of spectral-contrast across each and every trial is
multifractal analysis. The instability of the effect of formant-
offsets across trials can be understood as soon as the model
incorporates multifractal estimates WMF, tMF, and WMF×tMF.
That is, the instability of the context sounds across time (WMF),
the instability of context sounds specifically due to nonlinearity
(tMF), and their relationship—all three of these components need
only to appear in the Poisson regression model, and when they
do, then the significant effects for context and precursor emerge
in just the pattern that we typically expect from comparable
Poisson modeling of previous results (e.g., Viswanathan and
Kelty-Stephen, 2018). It is important to note that the contribution
of multifractal effects acts above and beyond already included
effects of Block and Trial and their interactions with the
preexisting predictors. It is no less important to note that these
multifractal effects do the same job without having added in those
Block- and Trial-related effects. Hence, the multifractal effects
appear to be important underlying factors for understanding
compensation for coarticulation in speech perception.

Two Kinds of Context: The Just-Previous
Context of General Auditory Theories and
the (Nonlinear)
Interactions-Across-Time-Scales From
Gestural Theories of Language
Context effects prompt speech-perception researchers to
operationalize context in two very different ways. Researchers
from a “general auditory process” perspective eschew any
distinctions between speech sounds and other auditory stimuli
(e.g., Laing et al., 2012), and they situate the “context” very
cleanly completely in the recent, just-previous sounds (Stilp
and Assgari, 2018). Hence, they propose a model of speech
perception that should be like any other short-memory
Markov sequence of acoustic processing in which nothing
but extremely recent spectral properties carries any effects
on current perceptions (e.g., Chambers et al., 2017). The
“gestural” perspective on speech perception emphasizes that
what people perceive in speech are articulatory gestures, i.e.,
not the “gestures” including hand movements and head tilts
but the rather the patterns of movement that generate speech
sounds. For gestural theories, compensation for coarticulation
reflects speech perception’s capacity to bypass low-dimensional
acoustic variability (i.e., in frequency means or intensity
patterns) and to find invariant structure in gestures (Fowler,
2006). These gestures set up a context that shapes the perception
of a target phoneme, but because gestures are themselves
context-sensitive, gestural theories encompass a broad set of
structures unfolding and interacting with one another across
a variety of time scales, e.g., the entire phrase in which a
phoneme occurs (Tilsen, 2009), the surrounding discourse
(Skipper et al., 2017), the facial movements implicated in

articulation (Massapollo et al., 2018), the social setting and
concurrent multimodal sensory information (Levinson and
Holler, 2014), the language itself (Tobin et al., 2017). Compared
with the extremely stringent just-previous-sound definition of
context from general-auditory theorists, the gestural-theoretic
context risks seeming sprawling and perhaps unfalsifiably
vast.

Nonetheless, the narrowness of the general-auditory theoretic
“context” severely ends up conflicting with plain evidence generic
to all acoustic structure—leading to falsifiability challenges of its
own. For instance, a variety of speech sounds (notably fricatives
and stop consonants) involve the generation of turbulent fluid
flow (Stevens, 1971; Mitra et al., 2017), suggesting that the
acoustics of speech contain long-range correlations beyond
short-memory processes. Making matters more challenging
for a theory of speech perception drawing heavily on brief
spectral properties, turbulent air flow from the vocal tract
during a pause can exhibit spectral properties similar to
the previously voiced phoneme. That is to say, turbulence
does not simply entail long-range structure during voicing,
but turbulence may actually force general auditory theorists
into a false positive of registering a phoneme that is no
longer voiced (Hlavnicka et al., 2017). Hence, speech actually
embodies the capacity for turbulent fluid flow to fossilize past
structures, freezing them (or even reconstituting them) after
the driving forces originally producing them have vanished—
which capacity is generic to fluid flows, acoustic or otherwise
(Gibson, 1986; Marcus et al., 2016 Rotter et al., 2007). The
supposed agnosticism with which “general auditory” theories
deal with speech—that is, reducing it to an understanding of
acoustic structure equivalent with its current spectral properties
and separating it from the just-previous context–thus risks
leaving “general auditory” accounts in the position of ignoring
long-range events that might produce later spectral structure
in the complete absence of sound, let alone the absence of
speech. Assurances about perhaps a longer-term spectral average
may fall flat in light of the present work’s use of long-range
linear surrogates. Indeed, an entirely speech-specific reason for
admitting a broader notion of context in a theory of speech
perception is that the context for coarticulation can be a
future, not-yet-articulated, but anticipated phoneme (Maruthy
et al., 2018). So, enforcing strict definitions of context as just-
previous past risks ensuring an inability to explain anticipatory
coarticulation.

CONCLUSIONS

For present purposes, we take the gestural-theoretic position of
admitting a context with important structure at many different
scales, and we propose that a multifractal model of speech signals
might offer a way to characterize speech as a physiological
product embedded within interactions across multiple scales of
space and time. Generally speaking, acoustic signals produced
for communicative purposes exhibit a fractal-like hierarchical
organization across time scales, and they do so regardless of
whether they are human speech (Kello et al., 2017). Furthermore,
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if gestures are what listeners respond to, gestures are expressions
of a movement system widely characterized by multifractal
structure (Turvey and Fonseca, 2014). Unsurprisingly, gestures
are themselves multifractal (Ashenfelter et al., 2009). Some
of this multifractal structure comes from the fact that the
movements system can pick up multifractal structure from a
task environment (Stephen and Dixon, 2011). Furthermore,
multifractality appears to spread easily from one part of the
movement system to another (Carver et al., 2017). Hence, if
gestures are central to speech perception, then any structure in
gestures or their consequences for a listener’s comprehension
of speech should depend on multifractal structure. Our aim in
the present work is to situate the gestural account of speech
perception on multifractal foundations.

Listening Is Sensitive to Action
Section Effects of Context Multifractality on Perceptual
Responses (Proportion of “GA” Selections) and Response Times
(RT) thus makes the case that multifractality of context sounds
may provide a key medium through which the speech signal
communicates gestures and not just auditory information to
the listener. The fact that multifractality predicted response
behavior without qualification by context suggests that
multifractality may actually provide even more general a
framework in which to understand coarticulation than even
the proposed “general-auditory” framework had. Crucially,
multifractality addresses just those turbulent aspects of speech
stream dynamics, physiology, as well as of social-cognitive
contexts framing speech. The extremely specific case of turbulent
structure of speech exemplifies what is generally typical of all
acoustic distributions and speech behaviors in environments or
surroundings where listeners draw meaning from sound stimuli
speech or otherwise. Hence, multifractality might generalize a
great deal of the contextual overlap noted by gestural accounts
of speech perception and operationalize it in neat logical
terms where multifractality can address specifically nonlinear
interactions across scales (Mandelbrot, 1974; Schertzer and
Lovejoy, 1985; Ihlen and Vereijken, 2010; Turvey and Fonseca,
2014).

The work in section Effects of Context Multifractality on
Perceptual Responses (Proportion of “GA” Selections) and
Response Times (RT) offers a potentially intriguing statistical
relationship between phonemic perception and the multifractal
structure of context stimuli preceding the target phoneme. What
it does not offer is a proposed mechanism. Without addressing
this point, a reader might easily come to the conclusion
that we might envision a latent cognitive or perceptual factor
responsible for detecting multifractality in the context stimulus,
calculating multifractal estimates, and deploying these calculated
estimates in the motor planning of a response to complete
the task. We offer this secondary analysis in section Effects of
Context Multifractality on Mouse-Cursor Trajectories on the
Way to Clicked Response to instead offer the secondary proposal
that multifractality in the context stimuli resonates with the
multifractal structure of the movements system. That is to say,
despite seeming sometimes like the most passive perceptual
modality in which we let sound wash over hair cells in the

cochlea, auditory perception especially for speech may enlist the
movement system.

Action in Response to Listening
Perhaps multifractality of all context sounds impress themselves
not just on speech-perceptual responses but, more broadly, on
the movements implicated in the decision process and behaviors
supporting the perceptual response. This point here thus leads
us to the strange but tantalizing possibility that the perception
of speech enlists the movement system in ways that undermine
the seemingly passive reception of speech sounds. Taken together
with recent evidence that prosodic sing-song structure of spoken
communication supports comprehension (Kelty-Stephen et al.,
2018) and that song-like vocalizations exhibit multifractality due
to nonlinear sources (Roeske et al., 2018), present results may
extend to long-range speech comprehension.

We align the present work with a growing body of evidence
and theory suggesting that the absorption of multifractal
fluctuations by the movement system is a generic case of
complexity matching in which the coupling of two systems
occasions a sharing of multifractal fluctuations (Delignières et al.,
2016; Almurad et al., 2017; Mahmoodi et al., 2017). Neither
would it be the first time that speech perception has been
understood as a sort of complexity matching. Abney et al.
(2014) recorded individual speakers’ speech sounds during an
entire dyadic conversation and they assessed the monofractal
structure for the individual speakers. They found that affiliative
conversations led speakers to match one another’s fractal
patternings of speech. They interpreted this finding as evidence
of complexity matching, specifically raising the possibility that
systems poised to agree and to share information would be more
likely to tailor their fractal patternings to one another. This
intriguing work proposed to pool the many scales of variability
in speech production from the phonemic scale of individual
voicings of sounds to the discourse scale of an entire 10min
conversation.

The present work aims to set the notion of complexity
matching atop the extremely fine time scale of the 375ms of
context-sound stimuli. Whereas a 10min conversation affords
room for variability in speech sounds to absorb a variety of
emotional, cognitive, and social factors, the 375ms of context for
a subsequent phoneme leaves remarkably little room for anything
but the multifractal geometry. 375ms is a razor’s edge on which
we might try to balance the proposed factor of multifractal
structure and to launch it into the movements system of a
listener poised to decide the target phoneme following the 375-
ms context.

The movement system of the listener echoes broadly with the
multifractality of context sounds. That is, the multifractality is
effective not just in quantifying a variable that might address
key factors underlying speech perception. It may be providing
a modality-general geometrical measure of stimulus energy that
holds a common currency with the geometry of the movement
system. As noted above, the progress on “complexity matching”
has progressed mostly with regard movement systems whether
between or within them (e.g., Kelty-Stephen and Dixon, 2014).
So far, the movement system appears in “motor theories” of
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speech perception (Liberman and Mattingly, 1985; Galantucci
et al., 2006), but gestural theories had once rejected the idea that
the movement system is involved in speech perception (Fowler,
1996) but has recently reconsidered this position (Fowler, 2008)
in light of more recent evidence (Fadiga et al., 2002). And
research by gestural-theorists is certainly cognizant that speech
perception occurs in an auditory scene and has found effects of
spatial separation (Viswanathan et al., 2016). Multifractal may
allow gestural theories to explain howmovement systems support
the speech-perceptual process.
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Supplementary Figure 1 | Model predictions representing the effects of

multifractality WMF as well as its interactions with Precursor, with entropy

measures ψ and ξ on the mouse-tracking measure of maximum displacement

(MD). These ψ×ξ×WMF×Precursor interaction effects on MD manifested

differently across all context conditions: in real-speech context (left panel), in

simulated-speech context (top right panel), and the tone context (bottom right

panel). In all panels, interaction effects appear in solid lines (for Precursor [al]) or in

dashed lines (for Precursor [aô]), in black (for low ψ) or in gray (for high ψ), and

with circle markers (for high ξ) or without circle markers (for low ξ).

Supplementary Figure 2 | Model predictions representing the effects of

multifractal-based nonlinear estimate tMF as well as its interactions with Precursor,

with entropy measures ψ and ξ on the mouse-tracking measure of maximum

displacement (MD). These ψ×ξ×tMF×Precursor interaction effects on MD

manifested differently across all context conditions: in real-speech context (left

panel), in simulated-speech context (top right panel), and the tone context (bottom

right panel). In all panels, interaction effects appear in solid lines (for Precursor [al])

or in dashed lines (for Precursor [aô]), in black (for low ψ) or in gray (for high ψ),

and with circle markers (for high ξ) or without circle markers (for low ξ).

Supplementary Figure 3 | Model predictions representing the effects of

multifractality WMF × tMF as well as its interactions with Precursor, with entropy

measures ψ and ξ on the mouse-tracking measure of area under the curve (AUC).

These ψ × ξ × WMF × tMF × Precursor interaction effects on AUC manifested

differently across all context conditions: in real-speech context (left panel), in

simulated-speech context (top right panel), and the tone context (bottom right

panel). In all panels, interaction effects appear in solid lines (for Precursor [al]) or in

dashed lines (for Precursor [aô]), in black (for low ψ) or in gray (for high ψ), and

with circle markers (for high ξ) or without circle markers (for low ξ).

Supplementary Figure 4 | Model predictions representing the effects of

multifractality WMF and its interactions with slow entropy ψ × WMF, with fast

entropy ξ × WMF, and with precursor Precursor × WMF on x-position flips. Panels

show predictions specific to real-speech contexts (top left and in solid black),

simulated-speech contexts (top right and in dashed black), and tone contexts

(bottom right and in solid gray). Predictions for Precursor [al] appear as filled bars

whereas predictions for Precursor [aô] appears empty bars. To show the range of

multifractal properties in the simulated-speech cases, predictions appears for

simulated-speech contexts with higher WMF and higher tMF appearing with

higher-frequency dashes composing the borders and the filling of the bars.

Supplementary Table 1 | All coefficients from logistic regression predicting “GA”

vs. “DA” without any block or trial effects.

Supplementary Table 2 | All coefficients from Poisson regression predicting

cumulative “GA” responses without any block or trial effects.

Supplementary Table 3 | All coefficients from Poisson regression predicting

cumulative “GA” responses with block or trial effects.

Supplementary Table 4 | Significant effects (p < 0.05) from linear regression of

trial-by-trial maximum displacement (MD).

Supplementary Table 5 | Significant effects (p < 0.05) from linear regression of

trial-by-trial area under the curve (AUC).

Supplementary Table 6 | Coefficients from Poisson regression of trial-by-trial

x-position flips.
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