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Abstract. The aim of this paper is to present the suitability of three different global optimization methods for spe-
cifically the exact optimum solution of the nonlinear transportation problem (NTP). The evaluated global optimization 
methods include the branch and reduce method, the branch and cut method and the combination of global and local 
search strategies. The considered global optimization methods were applied to solve NTPs with reference to literature. 
NTPs were formulated as nonlinear programming (NLP) optimization problems. The obtained optimal results were 
compared with those got from literature. A comparative evaluation of global optimization methods is presented at the 
end of the paper to show their suitability for solving NTPs.
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1. Introduction

The transportation problem (TP) is a well-known net-
work optimization problem that was originally intro-
duced by Hitchcock (1941). The objective of the TP is 
to determine the minimum cost distribution plan for 
the shipment of a single commodity from a number of 
sources to a number of destinations subject to the ca-
pacities of each source and each destination, Çakmak 
and Ersöz (2007). When transportation cost on a given 
route is nonlinearly dependent on the number of the 
units transported, the transportation problem becomes 
the nonlinear optimization problem. Determining the 
optimal solution of the nonlinear transportation prob-
lem (NTP) has been the subject of intensive research 
on logistics management. Various different approximate 
heuristic and exact mathematical programming methods 
have been proposed to solve the NTP.

As regards approximate heuristic optimization 
methods, genetic algorithms (GA) by Holland (1975), 
tabu search (TS) by Glover (1977), simulated annealing 
(SA) by Kirkpatrick et al. (1983), particle swarm optimi-
zation (PSO) by Kennedy and Eberhart (1995) and ant 
colony optimization (ACO) by Dorigo et al. (1996) have 
been proposed to solve the NTP in most of the cases. In 
this way, Michalewicz et al. (1991), Michalewicz (1994), 
Tsujimura et al. (2002) and Jo et al. (2007) have presented 
GA methods for the optimum solution of the NTP. Ilich 
and Simonovic (2001) have developed an evolution pro-
gram (EP) for the NTP. TS optimization techniques for 

the NTP have been suggested by Cao and Uebe (1995) 
and Sun (1998). Yan and Luo (1999) have introduced the 
SA approach for the NTP. Li and Wang (2007) have de-
vised the PSO technique to solve the NTP. Recently, the 
ACO method, the hybrid GA-ACO method and the hy-
brid TA-SA method for the NTP have been worked out 
in the papers by Altiparmak and Karaoglan (2006, 2007 
and 2008).

Considering the exact mathematical programming 
methods, the optimum solution of the NTP has been fre-
quently handled by different linear programming (LP) 
methods, see e.g. Cao (1992), Dangalchev (1996), Bell 
et al. (1999), Kuno and Utsunomiya (2000), Dangalchev 
(2000) and Nagai and Kuno (2005). However, research 
effort has been also devoted to nonlinear programming 
(NLP) techniques for the optimum solution of the NTP. 
For instance, Michalewicz et al. (1991) have applied the 
reduced gradient (RG) method to obtain the optimum 
solution of the NTP. Youssef and Mahmoud (1996) have 
described an iterative tangent line approximation proce-
dure for solving the NTP under concave cost function. 
Tuy et al. (1996) and Puri and Puri (2006) have put for-
ward a strongly polynomial algorithm for a concave NTP. 

The aim of this paper is to present the suitability of 
three different global optimization methods for specifi-
cally the exact optimum solution of the NTP. The eval-
uated global optimization methods include the branch 
and reduce method, the branch and cut method and the 
combination of global and local search strategies. The 
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considered optimization methods were applied to solve 
NTPs with reference to literature. NTPs were formulated 
as NLP optimization problems. The obtained optimal 
results were compared and a comparative evaluation of 
global optimization methods is presented at the end of 
the paper to show their suitability for solving NTPs.

2. Formulation of the NLP Optimization Problem 

The general NLP optimization problem may be formu-
lated in the following form:

Minimize z = f(x),

subject to:

h(x) = 0, (NLP)

g(x) ≤ 0,

x ∈ X = {x| x ∈ Rn, xLO ≤ x ≤ xUP },

where: x is a vector of continuous variables defined 
within compact set X. Functions f(x), h(x) and g(x) are 
(non)linear functions involved in objective function z, 
equality and inequality constraints respectively. All func-
tions f(x), h(x) and g(x) must be continuous and dif-
ferentiable.

In the context of the NTP, continuous variables de-
fine the amounts of shipments (i.e. transporting flows) 
from sources to destinations. The objective function de-
termines the total transportation cost. Equality and in-
equality constraints as well as the bounds of continuous 
variables represent a rigorous system of supply, demand 
and transporting flow constraints.

3. Formulation of the NLP Optimization Model 

Taking into account the general formulation of the NLP 
optimization problem, the formulation of the latter 
model for the NTP is more specific, particularly in terms 
of variables and constraints. The objective of the NTP 
is to minimize the total nonlinear transportation cost 
while meeting supply, demand and transporting flow 
constraints. The formulation of the optimization model 
for the NTP is given in the following way:

Minimize CT  = , ,
1 1
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where: objective variable CT represents the total trans-
portation cost for the shipment of a single commodity 
from sources m to destinations n, fi,j(xi,j), denotes the 
cost function of transporting flow xi,j from source i to 
destination j, si and dj are the capacities of each source i 
and each destination j respectively.

The total cost objective function defined by Eq. (1) 
represents the sum of the individual cost contributions 
of transporting flows. Eq. (2) and Eq. (3) determine sup-
ply and demand constraints respectively. While the set of 
constraints presented in Eq. (2) ensures that the sum of 
shipments from a source equals its supply, the set of con-
straints given by Eq. (3) requires that the sum of ship-
ments to a destination must satisfy its demand. Finally, 
the required non-negativity condition for transportation 
flows is handled by the set of constraints shown in Eq. 
(4). Only when all cost functions fi,j(xi,j) are linear, the 
optimization model is linear. Otherwise, the above-de-
fined optimization model determines the NTP.

The presented formulation of the optimization 
model determines the balanced transportation prob-
lem. The structure of the optimization model implies 
that total supply 1

m
ii s=∑  must be equal to total demand 

1
n

jj d=∑ .

4. Optimization Methods
The defined NLP optimization problem may be solved 
applying a suitable optimization method. The NLP class 
of optimization problems can, in principle, be solved 
using several classical local search algorithms and their 
extensions such as the reduced gradient method (RG) by 
Wolfe (1963), the generalized reduced gradient method 
(GRG) by Abadie and Carpentier (1969), augmented La-
grangian (AL) by Powell (1969) and Hestenes (1969), se-
quential quadratic programming (SQP) by Powell (1978) 
and the interior point method (IP) by Karmarkar (1984). 
In this paper, the suitability of the exact global optimiza-
tion techniques for solving NTPs was investigated. The 
considered optimization techniques are briefly presented 
in the following sections.

4.1. Branch and Reduce Method
The first exact global optimization method applied is 
the branch and reduce method (BR) by Ryoo and Sahi-
nidis (1996) implemented in the computational system 
BARON (Branch and Reduce Optimization Navigator) 
by Sahinidis and Tawarmalani (2008).

The BR global optimization approach integrates 
the conventional branch and bound method (BB) with 
a wide variety of range reduction tests applied to every 
sub-problem of the search tree in pre- and post-process-
ing steps to contract search space and reduce the relaxa-
tion gap. Many of reduction tests are based on duality 
and applied when relaxation is convex and solved by an 
algorithm that provides the dual, in addition to the pri-
mal, solution of the relaxed problem. 

An important element of the computational system 
is the implementation of heuristic techniques for the ap-
proximate solution of the problem that yield improved 
bounds for the variables (feasibility-based tightening). It 
also includes a number of compound branching schemes 
that accelerate the convergence of standard branching 
strategies. Currently, the BR algorithm can handle non-
linear functions that involve exp(x), ln(x), xα for real α, 
βx for real β, xy and |x|. On the other hand, there is no 
support for other functions, including trigonometric 
ones such as sin(x), cos(x), arctan(x) etc.
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lems include 7×7 and 10×10 node problems with six dif-
ferent nonlinear continuous cost functions. The capaci-
ties of sources si, the capacities of destinations dj and the 
matrix of the cost parameters ci,j of the 7×7 problem are 
given in Table 1.

It should be noted that 7×7 cost matrix represents 
a symmetrical matrix with zero cost parameters on the 
diagonal and six cost parameters with a large value of 
1000 in a relative comparison to the rest of cost param-
eters. The input data of the 10×10 node problem is given 
in Table 2.

The cost functions applied in the tests were defined 
as proposed by Michalewicz et al. (1991) and are listed 
in Table 3.

4.2. Branch and Cut Method
The second exact global optimization technique applied 
is the branch and cut method (BC) implemented in 
solver LINDOGlobal by LINDO Systems, Inc. (2008). 

The BC method is used to break an NLP optimiza-
tion model down to a list of sub-problems each of which 
is analyzed and either:

 – is shown not to have a feasible or optimal solu-
tion;

 – an optimal solution to the sub-problem is found;
 – the sub-problem is further split into two or more 
sub-problems, which are then put on the list. 

The optimization algorithm automatically linear-
izes a number of nonlinear relationships through the ad-
dition of constraints and variables, so the transformed 
linearized model is mathematically equivalent to the 
original nonlinear model. 

The optimization procedure has a multi-start fea-
ture that restarts the standard (non-global) nonlinear 
algorithm from a number of the intelligently generated 
points which allows the solver to find a number of locally 
optimal points and report the best one found.

4.3. Combination of Global and Local  
Search Strategies 
The last global optimization approach employed is based 
on the seamless combination of global and local search 
strategies proposed by Pintér (2007) and implemented 
in optimization software LGO (Lipschitz Global Opti-
mizer) by Pintér (2008). The optimizer integrates the 
following global scope algorithms:

 – branch and bound (adaptive partition and sam-
pling) based global search (BB);

 – adaptive global random search (GARS);
 – adaptive multi-start global random search (MS)

and the following local search (LS) strategies: 
 – bound-constrained local search based on the use 
of an exact penalty function (EPF);

 – constrained local search based on a generalized 
reduced gradient approach (GRG).

The global search algorithms are used to generate a 
close approximation of the global solution points (initial 
solution for subsequent local search). For this purpose, 
any of global algorithms BB, GARS or MS can be select-
ed within a given solver run. Upon the generation of the 
global solution points, optimization switches over to LS 
using both the EPF and the GRG. 

While BB + LS and GARS + LS search strategies 
launch a single local search from the best point found in 
the global search phase, MS + LS search strategy applies 
several local searches. Although MS + LS search strategy 
requires the most computational effort (due to its multi-
ple local searches), it usually finds the best solutions. In 
this way, MS + LS search strategy was used to solve NTPs.

5. Test Problems

5.1. Input data
The considered set of test problems was originally pre-
sented by Michalewicz et al. (1991). The set of test prob-

Table 1. 7×7 cost matrix and source/destination capacities

Source si: 27 28 25 20 20 20 20
Destination dj: 20 20 20 23 26 25 26
Cost ci,j: 0 21 50 62 93 77 1000

21 0 17 54 67 1000 48
50 17 0 60 98 67 25
62 54 60 0 27 1000 38
93 67 98 27 0 47 42
77 1000 67 1000 47 0 35

1000 48 25 38 42 35 0

Table 3. Cost functions

Function A: f (xi,j) = arctan(PA (xi,j – S))/π + 0.5 +
arctan(PA (xi,j – 2 S))/π + 0.5 +
arctan(PA (xi,j – 3 S))/π + 0.5 +
arctan(PA (xi,j – 4 S))/π + 0.5 +
arctan(PA (xi,j – 5 S))/π + 0.5

Function B: f (xi,j) = (xi,j /S) [arctan(PB xi,j)/π + 0.5] +
(1 – xi,j /S) [arctan(PB (xi,j – S))/π + 0.5] +
(xi,j /S – 2) [arctan(PB (xi,j – 2 S))/π + 0.5]

Function C: f (xi,j) = xi,j
2

Function D: f (xi,j) = xi,j
0.5

Function E: f (xi,j) = [1 + (xi,j – 2 S)2]-1 + 
[1 + (xi,j – 2.25 S)2]-1 +
[1 + (xi,j – 1.75 S)2]-1 

Function F: f (xi,j) = xi,j [sin(5 π xi,j /4 S) + 1]

Table 2. 10×10 cost matrix and 
source/destination capacities

Source si: 8 8 2 26 12 1 6 18 18 1
Destination dj: 19 2 33 5 11 11 2 14 2 1
Cost ci,j: 15 3 23 1 19 14 6 16 41 33

13 17 30 36 20 17 26 19 3 33
37 17 30 5 48 27 8 25 36 21
13 13 31 7 35 11 20 41 34 3
31 24 8 30 28 33 2 8 1 8
32 36 12 9 18 1 44 49 11 11
49 6 17 0 42 45 22 9 10 47
2 21 18 40 47 27 27 40 19 42

13 16 25 21 19 0 32 20 32 35
23 42 2 0 9 30 5 29 31 29
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Both values of parameters PA and PB were set to 
1000. For function A, S was set to 2 while for functions B, 
E, and F, the value of 5 was used as proposed by Michale-
wicz et al. (1991).

The total transportation cost objective function for 
both above-defined 7×7 and 10×10 node problems was 
formulated as follows:

CT  = , ,
1 1

( ),
m n

i j i j
i j

c f x
= =
∑∑   (5)

where: f(xi,j) is the cost function. While the shape of cost 
function f(xi,j) is the same on all arcs, variation in arcs is 
obtained using cost parameters ci,j. 

Ilich and Simonovic (2001) have also applied the 
above-presented set of test problems to investigate the ef-
ficiency of a strongly feasible evolution program (SFEP) 
for solving NTPs. The gained optimum solutions pre-
sented in their research work were used in this research 
as the initial points for optimization.

5.2. Optimization
The formulation of the NLP optimization model for the 
NTP was applied to solve test problems. A high-level 
language GAMS (General Algebraic Modelling System) 
by Brooke et al. (1988) was used for modelling and data 
inputs/outputs. Test problems were solved using person-
al computer Intel Core2 Duo T8100, 2.10 GHz, 4 GB 
RAM DDR2 and 250 GB hard disc.

It should be noted that the n×n node optimization 
problem includes n2 variables (e.g. transporting flows 
xi,j) + an objective variable (e.g. total transportation cost 
CT), 2 n constraints (e.g. supply and demand constraints) 
and a nonlinear objective function, e.g. see Eq. (5). In this 
way, the resulting formulation of the NLP optimization 

model for the 7×7 node problem included 50 variables, 
14 constraints and the objective function while the op-
timization model for the 10×10 node problem included 
101 variables, 20 constraints and the objective function.

5.3. Computational Results for Function A
Function A represents a nonlinear continuous and dif-
ferentiable arc-tangent approximation of a five-step 
piece-wise linear function, see Fig. 1.

Since BARON cannot handle trigonometric func-
tion arctan(x) within the optimization model, the op-
timum solutions of NTPs with function A were found 
only by LINDOGlobal and LGO. Both solvers found 
identical optimum solutions for the 7×7 node problem 
with function A, see Table 4. The gained minimum ob-
jective function value was 4.264.

Table 5 and Table 6 represent optimum solutions for 
the 10 × 10 node problem with function A obtained us-
ing LINDOGlobal and LGO respectively. The algorithms 
calculated different optimum solutions with an identical 
minimum objective function value of 174.067.
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Fig. 1. Function A

Table 4. Optimum solution for the 7×7 node problem with function A

Transporting flow xi,j
19.870 0.000 0.761 1.782 1.737 1.763 1.086
0.130 20.00 1.388 1.798 1.778 1.092 1.814
0.000 0.000 17.852 1.783 1.726 1.776 1.864
0.000 0.000 0.000 17.637 1.191 0.000 1.171
0.000 0.000 0.000 0.000 19.567 0.368 0.065
0.000 0.000 0.000 0.000 0.000 20.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 20.000

Total solver time LINDOGlobal: 3.328 s
Total solver time LGO: 1.297 s

Objective function CT: 4.264

Table 5. Optimum solution for the 10×10 node problem with function A obtained using LINDOGlobal

Transporting flow xi,j
1.105 0.648 1.224 1.661 1.566 0.000 0.149 1.646 0.000 0.000
1.325 0.653 1.199 0.403 1.574 0.000 0.298 1.628 0.920 0.000
0.000 0.000 0.000 0.000 0.669 0.000 0.000 1.331 0.000 0.000
0.000 0.000 23.485 0.000 1.218 0.000 0.000 1.296 0.000 0.000
0.876 0.185 3.576 0.484 1.490 0.000 1.552 1.757 1.080 1.000
0.000 0.000 0.000 0.000 0.313 0.000 0.000 0.687 0.000 0.000
0.000 0.000 1.251 1.712 1.311 0.000 0.000 1.726 0.000 0.000

14.399 0.000 1.009 0.000 1.213 0.000 0.000 1.378 0.000 0.000
1.295 0.514 1.256 0.740 1.581 11.000 0.000 1.614 0.000 0.000
0.000 0.000 0.000 0.000 0.063 0.000 0.000 0.937 0.000 0.000

Total solver time LINDOGlobal: 51.140 s Objective function CT: 174.067
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5.4. Computational Results for Function B
Function B represents a nonlinear arc-tangent approxi-
mation of a piece-wise linear function with three gradi-
ents, see Fig. 2.

Similarly as before, the optimum solutions of NTPs 
with function B were gained only by LINDOGlobal and 
LGO while BARON could not handle arc-tangent func-
tions within the optimization model. Both LINDOGlo-
bal and LGO found identical solutions for the 7×7 node 
problem and for the 10×10 node problem respectively. 
The minimum objective function value of 183.586 was 
obtained for the 7×7 node problem while the objective 
function value of the optimal solution for the 10×10 
node problem was 146.987, see Table 7 and Table 8.

Table 6. Optimum solution for the 10×10 node problem with function A obtained using LGO

Transporting flow xi,j

1.102 0.650 1.222 1.664 1.567 0.000 0.147 1.648 0.000 0.000
1.325 0.654 1.197 0.401 1.575 0.000 0.297 1.629 0.922 0.000
0.000 0.000 0.000 0.000 0.668 0.000 0.000 1.332 0.000 0.000
0.000 0.000 23.491 0.000 1.215 0.000 0.000 1.294 0.000 0.000
0.871 0.182 3.582 0.481 1.490 0.000 1.556 1.760 1.078 1.000
0.000 0.000 0.000 0.000 0.318 0.000 0.000 0.682 0.000 0.000
0.000 0.000 1.248 1.715 1.309 0.000 0.000 1.728 0.000 0.000

14.408 0.000 1.005 0.000 1.210 0.000 0.000 1.377 0.000 0.000
1.295 0.514 1.254 0.739 1.582 11.000 0.000 1.616 0.000 0.000
0.000 0.000 0.000 0.000 0.067 0.000 0.000 0.933 0.000 0.000

Total solver time LGO: 69.937 s Objective function CT: 174.067

0

1

2

3

4

0 5 10 15 20 25

Fu
nc

tio
n f

(x)
 

Flow x 

Fig. 2. Function B

Table 7. Optimum solution for the 7×7 node problem with function B

Transporting flow xi,j

20.000 7.000 0.000 0.000 0.000 0.000 0.000
0.000 13.000 5.000 0.000 10.000 0.000 0.000
0.000 0.000 15.000 0.000 0.000 0.000 10.000
0.000 0.000 0.000 20.000 0.000 0.000 0.000
0.000 0.000 0.000 3.000 16.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 20.000 0.000
0.000 0.000 0.000 0.000 0.000 4.000 16.000

Total solver time LINDOGlobal: 2.313 s
Total solver time LGO: 0.875 s

Objective function CT: 183.586

Table 8. Optimum solution for the 10×10 node problem with function B

Transporting flow xi,j

0.000 2.000 0.996 4.004 0.999 0.000 0.001 0.001 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.999 0.001 0.000
0.000 0.000 0.001 0.000 0.000 0.000 1.999 0.000 0.000 0.000

11.001 0.000 10.001 0.996 0.000 3.001 0.000 0.000 0.000 1.000
0.000 0.000 10.001 0.000 0.000 0.000 0.000 0.000 1.999 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.000 0.000 0.000
7.999 0.000 10.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 10.000 7.999 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total solver time LINDOGlobal:13.219 s
Total solver time LGO: 3.985 s

Objective function CT: 146.987
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5.5. Computational Results for Function C
Function C is a regular quadratic function, see Fig. 3. 
The NTP with a quadratic cost function represents the 
convex optimization problem, for which classical gradi-
ent based algorithms usually easily find the global op-
timum.

As expected, BARON, LINDOGlobal and LGO 
solvers calculated the identical optimum solutions of the 
convex 7×7 and 10×10 node problems with function C 
respectively. Table 9 demonstrates the optimum solution 
of the 7×7 node problem with the objective function val-
ue of 2535.293 while Table 10 represents the optimum 
solution of the 10×10 node problem with the objective 
function value of 4401.649.

5.6. Computational Results for Function D
Function D is a square root function, see Fig. 4. This 
concave function gives large contribution to the overall 
objective function value even for small values of deci-
sion variables.

All three global optimization methods calculated 
the identical optimum solutions also in cases of 7×7 and 
10×10 NTPs with function D respectively. For the 7×7 
test problem, the applied global search algorithms found 
the optimum solution with the objective function value 
of 480.164, see Table 11. 

The obtained minimum cost objective function 
value for the 10×10 node optimization problem was 
388.910, see Table 12.

Table 9. Optimum solution for the 7×7 node problem with function C

Transporting flow xi,j

20.000 0.523 0.851 1.826 1.587 2.078 0.135
0.000 19.477 1.856 1.893 2.038 0.149 2.587
0.000 0.000 17.293 1.178 1.072 1.753 3.705
0.000 0.000 0.000 18.103 1.272 0.047 0.578
0.000 0.000 0.000 0.000 19.736 0.264 0.000
0.000 0.000 0.000 0.000 0.000 20.000 0.000
0.000 0.000 0.000 0.000 0.295 0.709 18.995

Total solver time BARON: 0.060 s
Total solver time LINDOGlobal: 0.203 s
Total solver time LGO: 0.140 s

Objective function CT: 2535.293

Table 10. Optimum solution for the 10×10 node problem with function C

Transporting flow xi,j

0.834 0.000 3.257 0.000 1.871 0.000 0.000 2.038 0.000 0.000
1.242 0.000 2.618 0.000 1.960 0.000 0.000 1.908 0.272 0.000
0.000 0.000 1.597 0.000 0.178 0.000 0.000 0.225 0.000 0.000
4.249 2.000 3.794 4.910 2.237 2.994 1.805 1.837 1.174 1.000
0.088 0.000 8.139 0.000 0.920 0.000 0.000 2.853 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 3.533 0.000 0.493 0.000 0.000 1.974 0.000 0.000

10.871 0.000 4.674 0.022 0.953 0.000 0.096 1.046 0.337 0.000
1.715 0.000 3.388 0.068 2.387 8.006 0.099 2.120 0.218 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total solver time BARON: 0.090 s
Total solver time LINDOGlobal: 0.750 s
Total solver time LGO: 0.703 s

Objective function CT: 4401.649
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5.7. Computational Results for Function E
Function E infrequently appears within the cost func-
tions of practical NTPs, see Fig. 5. However, this non-
convex function was proposed by Michalewicz et al. 
(1991) and included into NTPs as a severe test for opti-
mization algorithms.

Also, in cases of NTPs with function E, BARON, 
LINDOGlobal and LGO found the identical optimum 
solutions for 7×7 and 10×10 test problems respectively. 
Table 13 demonstrates the minimum cost solution of 
204.842 for the 7×7 test problem.

For the 10×10 node problem, global optimization 
methods calculated the optimum solution with the cost 
objective function value of 71.657, see Table 14.

Table 11. Optimum solution for the 7×7 node problem with function D

Transporting flow xi,j

20.000 7.000 0.000 0.000 0.000 0.000 0.000
0.000 13.000 15.000 0.000 0.000 0.000 0.000
0.000 0.000 5.000 0.000 0.000 0.000 20.000
0.000 0.000 0.000 20.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 20.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 20.000 0.000
0.000 0.000 0.000 3.000 6.000 5.000 6.000

Total solver time BARON: 0.580 s
Total solver time LINDOGlobal: 1.172 s
Total solver time LGO: 0.156 s

Objective function CT: 480.164

Table 12. Optimum solution for the 10×10 node problem with function D

Transporting flow xi,j

1.000 2.000 0.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 3.000 0.000 0.000 3.000 2.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 2.000 0.000 0.000 0.000
0.000 0.000 25.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
0.000 0.000 7.000 0.000 0.000 0.000 0.000 5.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.000 0.000 0.000

18.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 8.000 10.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total solver time BARON: 0.030 s
Total solver time LINDOGlobal: 0.093 s
Total solver time LGO: 1.094 s

Objective function CT: 388.910
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Table 13. Optimum solution for the 7×7 node problem with function E

Transporting flow xi,j

0.000 0.000 0.000 1.000 0.000 0.000 26.000
0.000 0.106 0.443 1.478 0.974 25.000 0.000
0.000 0.000 0.000 0.000 25.000 0.000 0.000
0.000 0.000 19.557 0.443 0.000 0.000 0.000
0.000 0.000 0.000 20.000 0.000 0.000 0.000

20.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 19.894 0.000 0.079 0.026 0.000 0.000

Total solver time BARON: 0.550 s
Total solver time LINDOGlobal: 0.422 s
Total solver time LGO: 2.594 s

Objective function CT: 204.842
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5.8. Computational Results for Function F
Function F represents a non-convex function with mul-
tiple valleys and peaks, see Fig. 6. This function with 
multiple sub-optimal points usually causes difficulties 
in classical gradient based search techniques to find the 
global optimum solution.

Optimum solutions to NTPs with function F were 
found only using LINDOGlobal and LGO. BARON 
could not handle sinus functions within the optimiza-
tion models of NTPs.

For the 7×7 test optimization problem, LINDOG-
lobal calculated a solution with the total transportation 
cost of 70.248 while LGO found the best solution with 
the minimum cost objective function value of 54.562, see 
Table 15 and Table 16. It should be noted that even after 
several hours of spent overall solver time, LINDOGlobal 
could not improve the minimum cost solution presented 
in Table 15.

On the other hand, both LINDOGlobal and LGO 
found identical optimum solutions for the 10 × 10 node 
optimization problem with function F, see Table 17. The 
calculated minimum value of the cost objective function 
for the optimum solution of the 10 × 10 node problem 
was 153.493.

Table 14. Optimum solution for the 10×10 node problem with function E

Transporting flow xi,j
0.000 1.685 0.344 2.058 2.109 0.000 0.000 1.804 0.000 0.000
0.476 0.019 0.690 0.000 2.620 0.000 0.000 2.222 1.973 0.000
0.000 0.000 0.046 0.969 0.000 0.000 0.000 0.985 0.000 0.000
0.000 0.000 26.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 3.616 0.000 1.511 0.000 2.000 3.846 0.027 1.000
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.005 1.973 0.000 0.000 0.000 3.022 0.000 0.000

17.957 0.000 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.567 0.296 1.257 0.000 2.760 11.000 0.000 2.121 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Total solver time BARON: 0.730 s
Total solver time LINDOGlobal: 5.859 s
Total solver time LGO: 3.391 s

Objective function CT: 71.657

Table 15. Optimum solution for the 7×7 node problem with function F obtained using LINDOGlobal

Transporting flow xi,j

14.286 0.558 0.000 0.064 6.109 5.983 0.000
0.000 7.775 6.162 14.064 0.000 0.000 0.000
5.714 5.824 1.721 0.000 5.972 5.769 0.000
0.000 5.844 5.910 2.572 5.674 0.000 0.000
0.000 0.000 0.000 0.062 8.245 5.730 5.963
0.000 0.000 6.207 0.000 0.000 7.518 6.275
0.000 0.000 0.000 6.238 0.000 0.000 13.762

Total solver time LINDOGlobal: 2.016 s Objective function CT: 70.248

Table 16. Optimum solution for the 7×7 node problem with function F obtained using LGO

Transporting flow xi,j

8.556 6.270 0.000 6.216 0.000 5.957 0.000
5.687 2.206 0.049 14.064 5.994 0.000 0.000
0.000 5.680 7.571 0.000 5.945 0.000 5.805
5.757 5.844 0.000 2.616 0.000 0.000 5.783
0.000 0.000 0.000 0.103 8.078 5.801 6.017
0.000 0.000 6.202 0.000 0.000 7.539 6.258
0.000 0.000 6.178 0.000 5.983 5.702 2.137

Total solver time LGO: 0.344 s Objective function CT: 54.562
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6. Comparison of Results
Table 18 and Table 19 demonstrate a comparison be-
tween the obtained optimum results from this research 
and the previously reported optimum results obtained 
by the following optimization algorithms:

 – MINOS (RG) by Michalewicz et al. (1991);
 – GENETIC-2 (GA) by Michalewicz et al. (1991);
 – GENOCOP (GA) by Michalewicz (1994);
 – SFEP (EP) by Ilich and Simonovic (2001).

Note, however, that the obtained optimum results 
for NTPs with functions A, B and F in Table 18 and Table 
19 are presented only for global solvers LINDOGlobal 
and LGO since BARON could not handle trigonometric 
functions within the optimization model.

Based on the above presented comparisons of the 
obtained results, the global optimization methods, except 
a few cases discussed bellow, found smaller or (almost) 
the same objective function values for the optimum 
solutions of NTPs in comparison with the optimiza-
tion methods presented by Michalewicz et al. (1991), 
Michalewicz (1994) and Ilich and Simonovic (2001).

For instance, Table 18 shows that LINDOGlobal 
and the LGO calculated a higher value of the objective 
function for the 7×7 test problem with function A than 
GENETIC-2 and SFEP. The main reason for such results 
lies in the fact that the presented exact global optimiza-
tion techniques can handle only the continuous and dif-
ferentiable approximation of original piece-wise linear 
function A while both GENETIC-2 and SFEP can han-
dle the original one. Contrary to the original piece-wise 
linear function A, arc-tangent approximation has no 
zero function values (e.g. see Fig. 1 for 0 ≤ x ≤ 2). Conse-
quently, GENETIC-2 and SFEP calculated the zero mini-
mum value of the objective function while LINDOGlo-
bal and LGO calculated a very small non-zero minimum 
value of the objective function for the 7×7 test problem 
with function A. Note that the optimum solution of the 
7×7 test problem calculated by LINDOGlobal and LGO 
indicates zero value for the objective function with origi-
nal piece-wise linear function A, see cost parameters ci,j 
in Table 1, function A for 0 ≤ x ≤ 2 in Fig. 1 and the ob-
tained optimum solution in Table 4.

Table 18. Comparison of results for 7×7 node problems

f(x) GENOCOP GENETIC-2 SFEP BARON LINDOGlobal LGO
A 24.15 0.00 0.00 – 4.26 4.26
B 205.60 203.81 203.75 – 183.59 183.59
C 2571.04 2564.23 2534.34 2535.29 2535.29 2535.29
D 480.16 480.16 480.16 480.16 480.16 480.16
E 204.82 204.73 204.88 204.84 204.84 204.84
F 119.61 110.94 78.81 – 70.25 54.56

Table 19. Comparison of results for 10×10 node problems

f(x) MINOS GENETIC-2 SFEP BARON LINDOGlobal LGO
A 281.00 202.00 173.00 – 174.07 174.07
B 180.80 163.00 159.79 – 146.99 146.99
C 4402.04 4556.20 4435.49 4401.65 4401.65 4401.65
D 408.40 391.10 388.91 388.91 388.91 388.91
E 145.10 79.20 71.83 71.66 71.66 71.66
F 1200.80 201.90 173.26 – 153.49 153.49

Table 17. Optimum solution for the 10×10 node problem with function F

Transporting flow xi,j

0.000 2.000 0.000 0.000 5.309 0.000 0.274 0.417 0.000 0.000
0.123 0.000 0.000 0.000 0.000 5.866 0.000 0.305 1.705 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.722 0.278 0.000 0.000
0.085 0.000 14.034 5.000 0.000 0.000 0.000 6.172 0.000 0.709
5.989 0.000 5.751 0.000 0.000 0.000 0.000 0.260 0.000 0.000
0.000 0.000 0.383 0.000 0.000 0.031 0.000 0.000 0.295 0.291
0.000 0.000 5.879 0.000 0.000 0.000 0.000 0.121 0.000 0.000
6.352 0.000 5.957 0.000 5.691 0.000 0.000 0.000 0.000 0.000
6.450 0.000 0.000 0.000 0.000 5.103 0.000 6.447 0.000 0.000
0.000 0.000 0.996 0.000 0.000 0.000 0.004 0.000 0.000 0.000

Total solver time LINDOGlobal: 4.500 s
Total solver time LGO: 0.984 s

Objective function CT: 153.493
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Alongside the above mentioned differences in func-
tion formulations, conceptual differences between the 
considered optimization techniques also indicated some 
influence on the objective function values of the opti-
mum solutions. Namely, GENETIC-2, GENOCOP and 
SFEP represent heuristic optimization methods while 
MINOS, BARON, LINDOGlobal and LGO represent 
the exact optimization methods. While the heuristic 
methods calculate the approximate optimum solutions, 
the exact optimization methods calculate the exact ones. 
The exact optimization methods are expected to find a 
global optimum of the convex optimization problems 
(e.g. test problems with quadratic function C) and the 
heuristic methods are usually gauged by measuring their 
closeness to global optimum found by the exact method. 

In this way, the approximate optimum solution 
calculated by the heuristic method can sometimes rep-
resent an infeasible solution for the exact optimization 
technique. This, in turn, may result in some differences 
in the objective function value between both the approx-
imate and exact solutions. For example, the approximate 
optimum solution obtained by SFEP indicates a 0.04% 
smaller objective function value for the convex 7×7 test 
problem with quadratic function C than the exact glo-
bal optimum solution, see Table 18. Similarly, SFEP also 
found an approximate optimum solution for the 10 × 10 
test problem with function A with a 0.62% smaller ob-
jective function value than LINDOGlobal and LGO, see 
Table 19.

On the other hand, LINDOGlobal and LGO cal-
culated optimum solutions with a significantly smaller 
objective function value for NTPs with function A in 
comparison with GENOCOP (–82.36%) and MINOS 
(–38.05%). Further, the results for testing NTPs with 
functions B and F obtained by LINDOGlobal and LGO 
were found to be better in comparison with the best 
previously reported results, i.e. the optimum results ob-
tained by SFEP.

For the 7×7 test problem with function B, the ob-
jective function value of the optimum solution obtained 
by LINDOGlobal and LGO was 9.89% smaller than the 
one obtained by SFEP. The minimum objective function 
value for the 10 × 10 test problem with function B found 
by LINDOGlobal and LGO was 8.01% smaller than that 
gained by SFEP.

Considering the test on NTPs with function F, the 
optimum solution for the 7×7 node problem obtained 
by LGO shows a 22.33% smaller objective function value 
than the solution found by LINDOGlobal. The mini-
mum objective function value for the 7×7 test problem 
obtained by LGO was 30.77% smaller in comparison 
with the one found by SFEP. For the same test problem, 
LINDOGlobal calculated the optimum solution with a 
10.86% smaller objective function value than that calcu-
lated by SFEP. As regards the 10×10 test problem with 
function F, both LINDOGlobal and LGO found the 
identical optimum solution with a 11.41% smaller objec-
tive function value than the solution calculated by SFEP. 
The optimum solutions for NTPs with functions C, D 
and E calculated by the considered global optimization 

techniques were found to be (nearly) the same as the best 
previously reported results.

7. Conclusions
All three global optimization methods find acceptable 
the exact solutions for the considered test on NTPs by 
reasonably low consumption of the total solver time. The 
gained solutions to the test on NTPs calculated applying 
global optimization techniques were found to be better 
or at least almost the same as the best previously re-
ported results.

The BR algorithm inside computational system 
BARON appears to be fast and more robust of global op-
timization techniques. The convergence of the optimum 
solutions for the test on NTPs with functions C, D and E 
was achieved by the BR algorithm in less than a second. 
A lack of support for trigonometric functions within the 
optimization model reduces the applicability of the BR 
algorithm for solving NTPs.

The BC method implemented in solver LINDOG-
lobal, is an applicable tool for solving NTPs that can in-
clude a wide variety of nonlinear functions. However, 
non-convex functions with multiple valleys and peaks 
(i.e. such as function F) defined inside the optimization 
model for the NTP may cause difficulties with the BC 
method to find the global optimum solution to reason-
able total solver time.

A combination of the global and local search strate-
gies of LGO software (i.e. MS + LS search strategy) solves 
both convex and non-convex NTPs fast and efficiently. 
Most of the considered test problems were solved em-
ploying LGO within a few seconds. Only 10×10 test on 
the NTP with function A (i.e. nonlinear continuous and 
differentiable arc-tangent approximation of a five-step 
piece-wise linear function) was found to be the one that 
required the most consumption of the total solver time 
for which both LINDOGlobal LGO solvers required ap-
proximately one minute.
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