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The increasing prevalence of diagnosed breast cancer cases emphasizes the urgent
demand for developing new prognostic breast cancer biomarkers. Copy number
alteration (CNA) burden measured as the percentage of the genome affected by CNAs
has emerged as a potential candidate to this aim. Using somatic CNA data obtained
from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium), we
implemented Kaplan-Meier estimators and Cox proportional hazards models to examine
the association of CNA burden with patient’s overall survival (OS) and disease specific
survival (DSS). We also evaluated the association by considering patients’ age and
tumor subtypes using stratified Cox models. We delineated the distribution of CNA
burden in sample genomes and highlighted chromosomes 1, 8, and 16 as the carriers
of the highest CNA burden. We identified a strong association between CNA burden
and age as well as CNA burden and breast cancer PAM50 subtypes. We found that
controlling the effects of both age (bound by 45-year) and PAM50 subtypes on patient
survival using stratified Cox models, would still result in significant association between
CNA burden and patients overall survival in both Discovery and Validation data. The
same trend was observed in disease specific survival when only PAM50 subtypes were
controlled in the stratified Cox models. Our analysis showed that there is a significant
association between CNA burden and breast cancer survival. This result is also validated
by using TCGA (The Cancer Genome Atlas) data. CNA burden of breast cancer patients
has a considerable potential to be used as a novel prognostic biomarker.

Keywords: copy number alteration, genetic burden, prognosis biomarker, breast cancer, stratified model

INTRODUCTION

With a global estimate of 1.7 million newly diagnosed cases, breast cancer continues to be the most
common malignancy affecting women worldwide. Of these, 80–90% of all breast cancer cases are
sporadic. Sporadic breast cancers are non-hereditary and are believed to arise from gene damages
due to multifactorial causes such as environment, aging and diet. With advances in next generation
sequencing (NGS) and expression profiling studies, breast cancer is now understood as a collection
of highly heterogeneous diseases with distinct clinical and molecular phenotypes (luminal A,
luminal B, HER2-enriched and basal), each leading to unique clinical outcomes in terms of patients’
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survival, disease progression rate, and treatment responses
(Kalimutho et al., 2015). Although being highly influenced by
mutations in oncogenes such as ErbB2 and tumor suppressors
such as TP53 and BRCA1/2, breast tumors are mainly governed
by amplifications, deletions or rearrangements of chromosomal
segments (i.e., copy number alterations, CNAs) rather than
mutations in a single gene (Ciriello et al., 2013).

Accumulated somatic mutations such as CNAs, single
nucleotide substitutions, and translocations appear to have an
important role in determining cancer progression (Futreal et al.,
2004). Generally, somatic mutations are defined as non-heritable
genetic alterations that occur in somatic cells. Errors in DNA
duplications, exposure to chemical agents, and UV radiation are
among the most common triggers of somatic mutations. Somatic
alterations in the copy numbers of a DNA sequence, in the form
of either gain or loss, are known as CNAs which are common
in many cancer types (Beroukhim et al., 2010). Identification of
recurrent CNAs (Baudis, 2007; Mitelman et al., 2009), which are
reported to be strongly associated with clinical phenotypes has
resulted in the discovery of new therapeutic options, targeting
the identified causal mutations in many cancer types (Eder
et al., 2005; Zender et al., 2006; Weir et al., 2007; McLendon
et al., 2008; Chitale et al., 2009; Chapman et al., 2011; Nguyen
and Neal, 2012). Accordingly, CNAs identified in breast cancer
patients could also be regarded as potential biomarkers providing
a considerable opportunity for therapeutic interventions (Stuart
and Sellers, 2009).

It has been reported that 85% of the variations in gene
expressions of breast tumors are due to somatic CNAs at gene
loci (Curtis et al., 2012). It is noteworthy that CNAs often involve
oncogenes and tumor suppressors (i.e., driver genes), which can
directly affect cancer development and disease progression. For
instance, ZNF703 has been known as an independent prognostic
factor for luminal B breast cancer. According to findings from
one study (Holland et al., 2011), patients with CNAs in this
specific gene seem to have worse clinical outcomes. Similarly,
CNAs in 3q26.2-q29, 3p26.3-p11.1, 17p13.3-p11.2, and 9p13.3-
p13.2 have been deemed as predictors of lung cancer (van
Boerdonk et al., 2011). Accordingly, incorporating CNA analysis
of breast tumors with molecular profiling and survival outcomes
of the disease can offer novel therapeutic insights.

Attempts for explaining the effects of CNAs on the advent of
schizophrenia revealed that investigating CNAs in a single gene
locus may not be as optimal as studying the total burden of genes
influenced by CNAs (Rees et al., 2013). This can be due to a low
number of identified causal genes, as well as the observation that
a CNA in a single gene may affect individuals differently, based on
their genetic and environmental backgrounds (Pocklington et al.,
2015).

A percentage of the genome that is affected by CNAs is known
as CNA burden. Several studies have reported the existence
of an association between CNA burden and tumor attributes
such as tumor grade, recurrence, and metastasis (Baca et al.,
2013). A prostate cancer study showed that CNA burden can
be regarded as a prognostic biomarker associated with cancer
biochemical recurrence and metastasis (Hieronymus et al., 2014).
Also, a recent lung cancer study revealed that squamous cell

carcinoma lung cancer patients have an increased copy number
burden in most of the individual chromosomes, particularly
in the length of 50 kb (Yang et al., 2015). In consistence,
investigations about the role of CNAs in patients with malignant
melanomas presented an association between CNA and poor
outcomes (Hirsch et al., 2013). All these studies imply the
importance of assessing CNA burden in different cancers. To our
knowledge, to date, CNA burden is not well-studied in breast
cancer patients. In this study we aim to analyze the CNA burden
on a per-individual base. We hypothesize that CNA burden
(high/low) may act as a prognostic factor in associating with the
survival outcome of breast cancer patients.

MATERIALS AND METHODS

Materials
METABRIC (Molecular Taxonomy of Breast Cancer
International Consortium) Data
Clinical annotations (including patients’ overall survival and
cancer-specific survival, age at diagnosis, tumor subtype and
grade, etc.) and somatic CNA profiles for Discovery (980) and
Validation (985) sets of primary breast tumors were derived
from METABRIC (Curtis et al., 2012). The study was obtained
by permission from the METABRIC. We downloaded the data
from European Genome-phenome Archive at http://www.ebi.
ac.uk/ega/ under the accession number of EGAS00000000083.
The patient-specific somatic CNA profiles include start and end
position of each CNA, type of the CNA (gain or loss) and number
of its probes (SNP and CNV probes).

We defined a somatic CNA segment as a DNA segment
that is 1 kilobase or larger at variable copy numbers (gain or
loss. See details below) when referred to a reference genome.
The HapMap and normal datasets were used to estimate the
frequency of germline copy number variations (CNVs) in the
cohort, while the tumor samples were used for estimating somatic
CNAs. After computing the log2 ratios for each probe, samples
were segmented using the circular binary segmentation (CBS)
algorithm implemented in the DNAcopy R Bioconductor package
and individual patient level CNVs were called. For the tumor
samples, any segmented mean that fell within a region included
in the HapMap + Normals CNV list was labeled as an inherited
CNV. In order to remove all possible germline CNVs, the
frequencies of somatic CNAs in the tumor samples were obtained
after removing the germline CNVs from the normalized pool
reference. Neutral LOHs were also excluded in the data analysis.
For calling alterations, the thresholds for gains and losses were set
to +2 σ and −2.5 σ (σ is the standard deviation of the log2 ratio
for each array) respectively. The asymmetry in the thresholds
results from the assumption that one copy gain is 3/2 whereas
one copy loss is 1/2. Please note that this was carried out in the
original METABRIC study.

TCGA (The Cancer Genome Atlas) Data
To further validate our approach, it was also applied to analyze
TCGA breast cancer data (The Cancer Genome Atlas, 2012).
The study included 825 primary breast cancers. The clinical
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annotations included patients’ overall survival, age at diagnosis,
tumor subtype and grade, etc. However, only 482 of the samples
had PAM50 subtype information. Somatic CNA profiles were
performed in the TCGA study. We used the same cutoff to define
somatic CNA segments as applied in the METABRIC study.

Methods
CNA Burden Definition
The total genomic regions spanned by continuous somatic CNA
segments with a size of at least 1 kb identified by 5 or more probes
were summed up, and the final CNA percentage was calculated
based on the size of the autosomal human genome (chromosomes
1–22). In regression models, this value was referred to as the
continuous CNA burden. The resulting somatic CNA burden
was used to stratify breast cancer patients into high and low
CNA burden groups based on the median CNA burden observed
across the breast cancer genomes in METABRIC Discovery
and Validation data and TCGA data, respectively. The stratified
results were referred to as binary CNA burdens. We used one-
sample Wilcoxon signed rank sum test to evaluate whether a
given chromosome has significantly higher somatic CNA burden
than others.

Gene Set Enrichment Analysis
For the chromosomes with significantly higher somatic CNA
burden than other chromosomes, we extracted a list of genes from
the somatic CNA regions on the chromosomes. We filtered the
top 10% most frequent genes on each chromosome separately
for loss and gain groups. We conducted our gene-set enrichment
analyses using the most recently updated version of Enrichr tool
(Kuleshov et al., 2016).

Statistical Analyses
All the statistical analyses were performed using R version
3.3.1. For clinical characteristics, p-values were determined by
Wilcoxon rank sum test for continuous variables and Fisher’s
exact test for categorical variables. The associations of CNA
burden with age and PAM50 subtypes were determined by
linear regression and one-way ANOVA. For the METABRIC
data, survival analysis was performed on breast cancer’s disease-
specific survival (DSS), defined as the time period from a
diagnosis to a breast cancer-related death, as well as overall
survival (OS), defined as the time period from a diagnosis
to a death from any cause. For the TCGA data, survival
analysis was only performed on patients’ OS since the study
did not provide DSS. Kaplan–Meier (KM) estimators and Cox
proportional hazard (PH) models were used for the survival
analysis to evaluate the association of CNA burden with OS and
DSS respectively. The R package survminer (Kassambara et al.,
2016) was used for generating the KM plots (based on p-values
from log-rank tests indicating the significance of the differences
between groups) as well as the risk-table (demonstrating the
number of patients at risk at each time point). We first
included CNA burden as a covariate in a Cox proportional
hazard model, subsequently added age and PAM50 subtypes
separately as confounding factors, and lastly generated models
including all these variables. The assumption of proportional

hazard was evaluated based on correlation between time and
Schoenfeld’s partial residuals (Harrell, 2001). Time dependent
variables (known to violate proportional hazard assumption)
were assessed by stratified Cox models which evaluated the
association of CNA burden with OS and DSS respectively. Firstly,
the data was stratified by time dependent variables. Age is a
continuous and time dependent variable, hence in our analysis
we stratified it by 45-year bound. Afterward, Cox model was fitted
for each category with different baseline hazard function and the
same parameters for covariates (Therneau and Grambsch, 2000).
All Cox model related analyses were calculated via R package
survival (Therneau, 2015).

RESULTS

METABRIC Patients’ Characteristics
The characteristics of patients from Discovery and Validation
groups are compared in Table 1. The characteristics include age
at diagnosis, CNA burden, PAM50 subtypes, grade and the status
of ER, PR and Her2 defined based on the gene expression data. At
the significance level of 0.05, there was not a significant difference
in “the age at diagnosis” between the two groups (p-value = 0.21).
However, patients in the Validation group showed to carry higher
CNA burden than those in Discovery group (p-value = 0.01). The
Validation group also included a greater proportion of patients
with normal-like and basal-like subtypes, while the Discovery
group included a greater proportion of patients with the subtype
luminal A. While the two groups showed no significant difference
in PR-expr (p-value = 0.93) and HER2-expr (p-value = 0.19),
the expression of ER was more prevalent in the Discovery group
(p-value < 0.0001).

The patients in the Discovery and Validation groups showed
similar overall survival (OS) and disease specific survival (DSS)
(Figure 1). OS and DSS were also examined among the
PAM50 subtypes in the Discovery (Figures 1A,B) and Validation
(Figures 1C,D) groups, respectively. As expected, the luminal A
subtype had better OS and DSS rates compared to other subtypes,
while basal-like and her2-enriched had the worst outcomes in
both Discovery and Validation groups.

CNA Landscape and Its Association With
Breast Cancer Outcomes
The CNA burdens of breast cancer genomes in METABRIC
were visualized by heat map (Figure 2). CNA burdens on
chromosomes 1, 8, and 16 were significantly higher than other
chromosomes (p-value < 0.001) in both Discovery (Figure 2A)
and Validation (Figure 2B) groups. For the top 10% most
frequent genes on each chromosome separately for loss and gain
groups, gene set enrichment analysis (Supplementary Table S1)
showed that somatic aberrations on chromosome 1 interact
closely with the genes involved in “regulation of humoral
immune response (GO:002920).” Overexpression of immune
responses against tumor associated antigens has been frequently
reported in breast cancer patients (e.g., 82% antibodies against
Her2/neu in cases with strong expression versus no antibodies in
cases with weak expression) (Reuschenbach et al., 2009). Some
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TABLE 1 | Clinical characteristics of METABRIC Discovery and Validation data.

Characteristic METABRIC Discovery METABRIC Validation P†††

Age at diagnosis 61 (51, 70)∗ 63 (52,71) 0.2107

CNA burden (%) 6.62 (3.00, 11.28) 7.39 (3.18, 13.39) 0.0119

Subtype 0.0005

Normal 58 (6%)‡ 144 (15%)

LumA 454 (46%) 255 (26%)

LumB 266 (27%) 222 (23%)

Her2 84 (9%) 153 (15%)

Basal 118 (12%) 211 (21%)

Grade 0.0095

1 68 (7%) 98 (11%)

2 407 (42%) 356 (40%)

3 505 (51%) 444 (49%)

ER-expr 784 (80%) 712 (72%) <0.0001

PR-expr 517 (53%) 517 (52%) 0.9282

Her2-expr 112 (11%) 132 (13%) 0.1940

∗For continuous variables (Age, CNA burden), quantiles [50th percentile (25th percentile, 75th percentile)] were presented. †p-values were determined by Wilcoxon rank
sum test for continuous variables and Fisher’s exact test for categorical variables. ‡The number of patients in each category and its proportion were presented. In ER-expr,
PR-expr and Her2-expr, only the number of positive cases were presented.

FIGURE 1 | Breast cancer survival outcomes according to PAM50 subtypes. The p-value for log-rank test and a table counting the number of patients at risk are
shown for each below case. Overall survival (OS) and disease specific survival (DSS) were used as surrogates for outcome in the METABRIC Discovery and
Validation data sets, respectively. Kaplan-Meier plots for (A) OS for PAM50 subtypes in METABRIC Discovery data. (B) DSS for PAM50 subtypes in METABRIC
Discovery data. (C) OS for PAM50 subtypes in METABRIC Validation data. (D) DSS for PAM50 subtypes in METABRIC Validation data.
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FIGURE 2 | Copy number landscape of breast cancer. Heat maps of copy number alteration burden (%) in METABRIC Discovery (A) and Validation (B) data. The
significance (P-value) of the CNA burden in each chromosome evaluated using one-sample Wilcoxon signed rank test was shown on the right side of the figures
(A,B). Chromosomes 1, 8 and 16 have significantly higher CAN burden than other chromosomes.

somatic CNA-affected genes from chromosomes 1 belong to
“MAPKAPK3_knockdown” related gene sets, which comprise
genes involved in MAPK signaling pathways which provoke
responses to mitogens and environmental stress stimuli (Lapin
et al., 2014). Loss of genes such as MAPKAPK3 was reported

in invasive breast carcinomas (Wei et al., 2015). One of the
interesting gene sets affected by somatic CNAs on chromosome 8
is ‘MYC-MAX complex’ which comprises oncogenes deregulated
in 50% of human cancers including breast cancer (Chen et al.,
2018). Genes affected by somatic CNAs on chromosome 8
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FIGURE 3 | Breast cancer survival outcomes according to high and low CNA burden in METABRIC. The p-value for log-rank test and a table counting the number of
patients at risk in each time point are shown in each case. High and low CNA burden is associated with OS and DSS of breast cancer in METABRIC. Kaplan–Meier
plots for (A) OS for breast cancer by high and low CNA burden (cutoff 6.62%) in METABRIC Discovery data. (B) DSS for breast cancer by high and low CNA burden
(cutoff 6.62%) in METABRIC Discovery data. (C) OS for breast cancer by high and low CNA burden (cutoff 7.39%) in METABRIC Validation data. (D) DSS for breast
cancer by high and low CNA burden (cutoff 7.39%) in METABRIC Validation data.

include members of ‘TP53 Receptors and Ligands’ gene set,
which induce pro-apoptotic signaling in response to external
stimuli via extrinsic apoptosis pathway (Wilson et al., 2013). In
breast cancer, p53 mutation is strongly associated with disease
severity and overall survival (Gasco et al., 2002). At last but not
least, chromosome 16 also appeared to share important genes
on somatic CNA segments with gene sets related to cell-cell
junction interactions as well as kinase co-expression pathways.
The genes for cadherin are frequently epigenetically deregulated
in metastatic breast cancers (Andrews et al., 2012).

We hypothesized whether CNA burden is associated with
OS and DSS in METABRIC. The Kaplan-Meier estimators by
high and low CNA burden in the Discovery and Validation
groups were used as a preliminary test before we fit the data
into more complicated models. It was revealed that high and low
CNA burden indeed had a significant association with OS and
DSS in Discovery (Figures 3A,B, both p-values < 0.001) and
Validation (Figures 3C,D, p-values < 0.001 and =0.003) groups.
The significant association of the high and low CNA burden
with OS was validated in TCGA data (Supplementary Figure S1,
p-value < 0.05).

Additionally, in the Discovery group, patients with low CNA
burden (<6.62%) had 82.7% 5-year OS rate and 87.7% 5-year

DSS rate, better than the records for patients with high CNA
burden(≥6.62%), who had 71.1% OS rate and 79.3% DSS rate.
Similarly, in the Validation group, the patients with low CNA
burden (<7.39%) had 80.2% 5-year OS rate and 85.1% 5-year DSS
rate, while patients with high CNA burden (≥ 7.39%) had 74.1%
OS rate and 81.6% DSS rate.

CNA Burden by PAM50 Subtypes and
Age
In the previous section, we reported a significant association
between PAM50 subtypes and breast cancer survival in
METABRIC patients. It is noteworthy that the strong association
between the patient’s age and breast cancer survival has
previously been reported in literature (Adami et al., 1986; Jenkins
et al., 2014; Azim et al., 2015). Accordingly, in order to show
that the reported association between breast cancer outcome
and CNA burden did not result from the confounding effects of
PAM50 subtypes or age, we investigated the association between
CNA burden and PAM50 subtypes as well as between CNA
burden and age.

One-way ANOVA was conducted to compare the effect of
PAM50 subtypes on CNA burden. The results of F-test from
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FIGURE 4 | CNA burden by quintiles within PAM50 subtypes and age groups. (A) CNA burden by PAM50 subtypes in METABRIC Discovery data. (B) CNA burden
by PAM50 subtypes in METABRIC Validation data. (C) CNA burden by age groups in METABRIC Discovery data. (D) CNA burden by age groups in METABRIC
Validation data.

Discovery (p-value < 0.0001) and Validation (p-value < 0.0001)
groups indicated that PAM50 subtypes had a significant
association with CNA burden. Furthermore, the histograms
of PAM50 subtypes across CNA burden categories (divided
by its quintiles) showed that for both Discovery (Figure 4A)
and Validation (Figure 4B) groups, the incidence of Luminal
B tumors increased with CNA burden, whereas the incidence
of Normal-like decreased (Chi-squared test p-value < 0.0001).
Therefore, PAM50 subtypes were associated with CNA burden in
METABRIC patients. Similar association result was also observed
in TCGA patients (p-value < 0.001).

Considering the fact that both age and CNA burden are
continues variables, we fitted a linear regression model for
evaluating the effect of age on CNA burden. The results appeared
to be significant for both Discovery (p-value for F-test = 0.0012)
and Validation (p-value for F-test = 0.0020) groups. The estimates
of the parameters for age were positive, which implies that
older patients may have greater CNA burden. One-way ANOVA
was also conducted to study the effect of age groups on CNA
burden in 21–39, 40–49, 50–59, 60–69, and 70–97 years of age
(Jenkins et al., 2014). The results were consistent with the linear
regression model for both Discovery (p-value = 0.0052) and
Validation (p-value = 0.0599) groups. Moreover, the histograms
of age groups across CNA burden categories (Figures 4C,D)
supported this association. The linear regression model of age
on CNA burden in TCGA cohort also showed that they had a
significant association (p-value for F-test = 0.04).

The CNA Burden Is a Prognostic Factor
in Breast Cancer Survival
In order to quantify the effects of CNA burden on OS and
DSS in METABRIC patients, Cox proportional hazard regression
models were fitted to the data. First we fitted the univariate
Cox regression models between the CNA burden and OS,
as well as CNA burden and DSS. Consequently, we found a
significant association in both Discovery and Validation groups
(p-value < 0.001) (Table 2). Furthermore, we estimated that
hazard ratio in all cases was greater than one, which suggested
that a higher CNA burden would result in a greater risk of death.
These results were consistent with the observed outcomes from
KM analysis by high and low CNA burden. Subsequently, in order
to adjust the confounding effects of age and PAM50 subtypes,
the two covariates were respectively and jointly included in
multiple Cox regression models. The results suggested that age
and PAM50 subtypes affect OS significantly, no matter if they
were examined alone or jointly (p-value < 0.01) (Table 2).
However, in case of DSS, the effect of age appeared to be
insignificant (p-value > 0.05), while PAM50 was still significantly
effective.

Eventually, the proportional hazard ratios were calculated
based on the fitted models. The results implied that unlike CNA
burden, both age and PAM50 subtypes were time dependent
variables required to be eliminated from the Cox models (p-
value < 0.05, which rejects the null hypothesis that the hazard
ratio for these variables remain constant over time) (Table 3).
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Accordingly, we proceeded to stratified Cox models (Table 4).
Once the covariates age and PAM50 subtypes were stratified and
fitted in the models (either separately or jointly), their effects on
OS and DSS were significant for both Discovery and Validation
groups (Table 4). These results suggested that CNA burden has
significant association with OS and DSS in METABRIC breast
cancer patients.

The Analysis of CNA Burden and Breast
Cancer Survival by Tumor Subtypes
The strong association between PAM50 subtypes and CNA
burden encouraged us to generalize Cox models for each of the
PAM50 subtypes. However, most of the models failed to test
any significant association. In the Discovery group, CNA burden
was associated with OS and DSS only for Her2-enriched subtype
considered either alone (p-values = 0.013 and 0.013) or along with
age (p-value = 0.02 and 0.003) (Table 5). A marginal significance
was also observed for Luminal A in all cases except for DSS in the
Validation group (p-value = 0.128).

CONCLUSION AND DISCUSSIONS

In this study, we examined the CNA burden of patients from
METABRIC study and highlighted chromosomes 1, 8, and 16
to carry the highest burden. We showed an association between
PAM50 subtypes and CNA burden, as the incidence of Luminal
B tumors increases with CNA burden while the incidence of
Normal-like tumors decreases. We also reported a relationship
between age and CNA burden since older people tend to have
higher CNA burden. Furthermore, we proposed CNA burden
as a prognostic criterion for estimating OS and DSS of breast
cancer in METABRIC patients, as our analysis showed that CNA
burden has a significant association with both OS and DSS in our
stratified Cox models.

While studying the overall survival of METABRIC patients, we
stratified the patients by PAM50 subtypes and 45-year age bound,
and observed a significant association between changes in CNA
burden and hazard ratio. Per each 1% change in CNA burden the
same changes in different subtypes would occur, however each
group is still distinctive as it has its own baseline hazard function.
Regarding disease specific survival, we found no confounding
effect for age. Accordingly, each PAM50 subtype will have its own
baseline function while the effect of CNA burden on hazard ratio
remains the same. We also showed that all measured CNA hazard
ratios to be greater than one, which evidently showed that higher
CNA burden would result in worse outcomes in METABRIC
patients. Additionally, the prognostic effect of CNA burden is
not salient in all PAM50 subtypes. We observed that only HER2-
enriched and Luminal A tumors followed such a trend. Therefore,
CNA burden and PAM50 subtypes have a joint prognostic effect
on OS and DSS in METABRIC patients.

We defined CNA burden as a percentage of the CNA segments
found in a cancer genome and based all our examinations on
it. This definition is empowered by considering the size of
CNA segments, monitoring the whole amount of genome and
studying the fraction of genome which is encountered with

CNAs. However, it is prone to some limitations resulting from
the cutoffs used to define a region as a gain or loss such as the
region’s size and the number of probes found in a region. Other
definitions proposed in literature suggest “the number of CNA
segments” as the criterion for defining a CNA burden. However,
this explanation is also limited by incapability of considering the
size of CNA segments in an individual.

As a final remark, the association between CNA burden
and breast cancer survival is a novel concept with limited
investigations. Consequently, it calls for more studies through
future works in order to reveal the relationship between CNA
burden and other tumor characteristics and its effect on breast
cancer survival.
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