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Abstract. In order to reveal the bifurcation mechanism and optimize the system design for 
high-static-low-dynamic-stiffness (HSLDS) vibration isolation system (VIS) with elastic base, the 
local bifurcation analyses both in unfolding parameter space and physical parameter space were 
carried out theoretically and numerically. Firstly, the restoring force of the HSLDS-VIS was 
approximated to linear and cubic stiffness by applying the Maclaurin series expansion and the 
motion equations of HSLDS-VIS with elastic base were established. Subsequently, the motion 
equations of HSLDS-VIS with elastic base were formulated to transform the system into a 
standard form and the averaging method was applied to obtain the single-variable bifurcation 
equation for the HSLDS-VIS with elastic base in case of primary resonance and 1:2 internal 
resonance. Furthermore, the transition sets and bifurcation diagrams in the unfolding parameter 
space were studied by means of singularity theory. Finally, for the engineering application, the 
transition sets were transferred back to the physical parameter space, thus to obtain the bifurcation 
diagrams of the amplitude with respect to the external force. The numerical simulation results 
show that the local bifurcations of HSLDS-VIS with elastic base in case of 1:2 internal resonance 
are considerable complex and need to be analyzed in six two-parameters spaces, meanwhile, the 
necessary condition of multiple solutions lies in some physical parameters, which can provide a 
theoretical basis and reference for design and application of the HSLDS-VIS with elastic base. 
Keywords: high-static-low-dynamic-stiffness (HSLDS), vibration isolation system (VIS), elastic 
base, averaging method, singularity theory, transition set, bifurcation diagram. 

1. Introduction 

Undesirable vibration can affect human comfort and even the structural safety, which has 
become an urgent problem to be solved in engineering. It is evident that the bandwidth of vibration 
isolation is often limited by the mount stiffness element required to support a static load. To 
overcome this limitation, the high-static-low-dynamic-stiffness (HSLDS) mechanism is put 
forward, what results in low natural frequency with a small static displacement. Whilst it maintains 
locally low stiffness near equilibrium and static load bearing, which reduces the natural frequency 
and extends the frequency isolation region [1]. The isolation system with HSLDS characteristic 
has been well established both theoretically and experimentally in recent literatures and has 
recently been the subject of growing interest of both engineers and researchers. Carrella et al. and 
Wu et al. investigated vibration isolators with HSLDS property via the combination of a 
mechanical spring and magnets [2, 3], Li et al. presented a device using a magnetic spring 
combined with rubber membranes to suppress vibration [4], Zhou et al. develop a tunable isolator 
with HSLDS property by using a pair of electromagnets and a permanent magnet and can act 
passively or semi-actively[5], Meng et al. concerned the quasi-zero-stiffness by combining a 
negative disk spring with a linear positive spring [6]. 

Recently, many methods for bifurcation analysis of high-dimensional dynamical system have 
been proposed. Among these methods, singularity theory is of much importance and has been 
widely applied as a quanlative analysis method, which can solve the bifurcation problems 
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uniformly and definitely. Yu et al. studied the local bifurcation of nonlinear vibration isolation 
system with 1:2 internal resonance [7, 8], Qin et al. investigated two-degree-of-freedom 
(two-DOF) bifurcation equation for elastic cable with 1:1 internal resonance [9], Wang et al. 
analyzed the bifurcation models of a class of power system by using C-L method [10], Zhou et al. 
considered the local bifurcation of a nonlinear system based on MR damper [11], Volkov et al. 
studied the bifurcation in the system of two identical diffusively coupled Brusselators [12]. 

In this paper, the local bifurcation and singularity analysis of a HSLDS-VIS with elastic base 
have been presented, which is organized as follows. In Section 2, the restoring force and the 
motion equations of HSLDS-VIS were established. In Section 3, the motion equations of 
HSLDS-VIS with elastic base were established. In Section 4, the averaging method was applied 
to obtain the bifurcation equation for the system with primary resonance and 1:2 internal  
resonance. In Section 5, the singularity theory was used to analyze the system local bifurcations 
to obtain the 4-codimensional universal unfolding, the transition sets and bifurcation diagrams. In 
Section 6, the transition sets were transferred back to the physical parameter space to obtain the 
bifurcation behaviors of the amplitude with respect of the external force. Finally, some 
conclusions were summarized in Section 7. 

2. Modeling of the HSLDS-VIS 

Consider a simple model of the isolator shown in Fig. 1. Two nonlinear oblique springs are 
assumed to have nonlinearity with linear stiffness 𝑘  and cubic nonlinear stiffness 𝑘 . In addition, 
they are pre-stressed, i.e. compressed by length 𝛿  and connected at point C with a vertical 
unstressed linear spring of stiffness 𝑘 . The oblique springs are hinged at 𝐴 and 𝐵. The geometry 
of configuration is decided by horizontal distance 𝑎 from point 𝐴 to 𝐶 and initial height ℎ, while 𝑥 denotes the vertical displacement from the initial unloaded position caused by the force 𝐹. 

 
a) 

 
b) 

Fig. 1. Schematic representation of an isolator based on HSLDS 

The general equation between the force 𝑓 and the displacement 𝑥 can be derived as: 

𝐹 = 𝑘 𝑥 + 2𝑘 (𝑥 − ℎ) √𝑎 + ℎ + 𝛿𝑎 + (𝑥 − ℎ) − 1        + 2𝑘 (𝑥 − ℎ)𝑎 + (𝑥 − ℎ) ⋅ 𝑎 + (𝑥 − ℎ) − 𝑎 + ℎ − 𝛿 . (1)

Introducing 𝑦 = 𝑥 − ℎ, 𝑓 = 𝐹 − 𝑘 ℎ, Eq. (1) can been recast in dimensionless form as: 

𝑓 = 𝑘 𝑦 + 2𝑘 𝑦 √𝑎 + ℎ + 𝛿𝑎 + 𝑦 − 1 + 2𝑘 𝑦𝑎 + 𝑦 𝑎 + 𝑦 − 𝑎 + ℎ − 𝛿 , (2)

where: 
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𝛼 = 𝑘𝑘 ,     𝑦 = 𝑦√𝑎 + ℎ ,     𝑓 = 𝑓𝑘 √𝑎 + ℎ ,     𝛾 = 𝑎√𝑎 + ℎ , 
𝛿 = 𝛿√𝑎 + ℎ ,     𝛽 = 𝑘 (𝑎 + ℎ )𝑘 ,     Δ = (𝛿 + 1)𝜓 ,     𝜓 = 𝛾 + 𝑦 . 

The dimensionless dynamic stiffness can be obtained by differentiating Eq. (2) to 𝑦: 𝑘 = 1 + 2𝛼 1 − 𝛾 Δ 𝜓⁄ − 2𝛽(Δ − 1) (1 − Δ)(3𝑦 + 𝛾 ) + 3𝑦 Δ . (3)

Using the Maclaurin series expansion, an approximate expression for the stiffness is found to 
be: 

𝑘 ≈ −2𝛽 + 3𝛽 1 + 𝛿𝛾 + 𝛼 1 + 𝛿𝛾 − 𝛽 (1 + 𝛿)𝛾 𝑦        + 𝛽 − 𝛼(𝛿 + 1 − 𝛾) − 𝛾2(𝛿 + 1 − 𝛾) . (4)

It is clear that the oblique springs can reduce the positive stiffness so that the linear natural 
frequency is smaller in the isolation range; and they introduce the cubic stiffness so that the peak 
response bends to higher frequencies, which potentially reduces the frequency region. 

For a SDOF system depicted in Fig. 2. It includes a rigid mass 𝑚 suspended on a three springs 
mount in parallel with a viscous damper 𝑐 . 𝑥  denotes the vertical displacement from the 
equilibrium position caused by a harmonic excitation 𝑓 = 𝐹cosΩ𝑇 . The mass moves in the 
vertical direction through the guide rod and bushing. By applying the Newton’s second law, the 
motion equation of SDOF system can be expressed as 𝑚𝑢 + 𝑐𝑢 + 𝑏 𝑢 + 𝑏 𝑢 = 𝐹cosΩ𝑇, (5)

where: 𝑏𝑘 = 𝛽 − 𝛼(𝛿 + 1 − 𝛾) − 𝛾2(𝛿 + 1 − 𝛾) ,      𝑏𝑘 = 3𝛽 1 + 𝛿𝛾 + 𝛼 1 + 𝛿𝛾 − 𝛽 (1 + 𝛿)𝛾 − 2𝛽, 𝑢 = 𝑑𝑢𝑑𝑡 . 
 

 
a) 

 
b) 

Fig. 2. Structural model of the SDOF system with HSLDS characteristic: 1 – loading platform, 2 – oblique 
spring, 3 – guide device, 4 – pillar, 5 – vertical spring, 6 – base plate, 7 – linear bearing, 8 – sliding rod 

3. Modeling of the HSLDS-VIS with elastic base 

On the condition that taking the first order mode of the elastic base, it can be reduced to a rigid 
mass supported by a spring and damper. Therefore, the HSLDS-VIS with elastic base can be 
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simplified to two-DOF mass-spring system, which is shown in Fig. 3. 𝑀  and 𝑀  denote the 
isolation equipment and the intermediate mass, respectively. 𝑀  is supported by a linear damper 
and a nonlinear spring which possesses both linear and cubic stiffness. 𝑀  is connected with a 
fixed plane using a linear spring and a linear damper. When the origins of coordinates are set at 
the position where the springs are not compressed, as shown in Fig. 3(a), the equation of the 
HSLDS-VIS with elastic base can be given by: 𝑀 𝑍 + 𝐶 (𝑍 − 𝑍 ) + 𝐾 (𝑍 − 𝑍 ) + 𝐾 (𝑍 − 𝑍 ) = 𝐹cosΩ𝑇 + 𝑀 𝑔, 𝑀 𝑍 + 𝐶 𝑍 + 𝐾 𝑍 = 𝐶 (𝑍 − 𝑍 ) + 𝐾 (𝑍 − 𝑍 ) + 𝐾 (𝑍 − 𝑍 ) + 𝑀 𝑔, (6)

where 𝐶  is the damping coefficient of HSLDS vibration isolator; 𝐾  and 𝐾  are the linear and 
cubic stiffness coefficients of HSLDS vibration isolator, respectively. 𝐶  is the damping 
coefficient of damper between the 𝑀  and fixed plane; 𝐾  is the stiffness coefficient of the linear 
stiffness between the 𝑀  and fixed plane. 𝐹  and Ω  are the amplitude and frequency of the 
harmonic excitation, respectively. 

 
Fig. 3. HSLDS-VIS with elastic base. a) Coordinates not at the equilibrium state,  

b) Coordinates at the equilibrium state 

Note that the origins are not the equilibrium points of the system in Fig. 3(a), which is 
inconvenient for further analysis, and hence the coordinate transformation should be carried out. 
As is shown in Fig. 3(b), the origins of the new coordinates are set at the equilibrium state and the 
relations between the old and new coordinates are: 𝑍 = 𝑋 + ℎ , 𝑍 = 𝑋 + ℎ . In the 
equilibrium state, the gravitation terms in Eq. (6) can be eliminated by the following relations: 𝑀 𝑔 + 𝑀 𝑔 = 𝐾 ℎ  and 𝑀 𝑔 = 𝐾 𝐻 + 𝐾 𝐻 , where 𝐻 = ℎ − ℎ . The governing equations of 
Eq. (6) are given by: 𝑀 𝑋 = −𝐶 (𝑋 − 𝑋 ) − (𝐾 + 3𝐾 𝐻 )(𝑋 − 𝑋 ) − 3𝐾 𝐻(𝑋 − 𝑋 )        −𝐾 (𝑋 − 𝑋 ) + 𝐹cosΩ𝑇, 𝑀 𝑋 = −𝐶 𝑋 − 𝐾 𝑋 + 𝐶 (𝑋 − 𝑋 ) + (𝐾 + 3𝐾 𝐻 )(𝑋 − 𝑋 )        +3𝐾 𝐻(𝑋 − 𝑋 ) + 𝐾 (𝑋 − 𝑋 ) . (7)

Setting 𝐾 = 𝐾 + 3𝐾 𝐻 ,  𝐵 = 𝐾 𝐾⁄  and introducing dimensionless parameters:  𝑥 = 𝑋 𝐵⁄ , 𝑥 = 𝑋 𝐵⁄ , Ω = 𝐾 𝑀⁄ , 𝑡 = Ω 𝑇 , 𝜔 = Ω Ω⁄ , 𝑤 = 𝑀 𝑀⁄ , 𝜉 = 𝐶 (𝐾 𝑀 )⁄ , 𝜉 = 𝐶 (𝐾 𝑀 )⁄ ,  𝛾 = − 3𝐾 𝐻 (𝐾 𝐵)⁄ ,  𝑓 = 𝐹𝐵 𝐾⁄ ,  𝑘 = 𝐾 𝐾⁄ ,  the first-order of the 
dimensionless motion equations are given by: 𝑥 = −𝜉 (𝑥 − 𝑥 ) − (𝑥 − 𝑥 ) + 𝛾(𝑥 − 𝑥 ) − (𝑥 − 𝑥 ) + 𝑓cos𝜔𝑡, 𝑥 = −𝑤𝜉 𝑥 − 𝑤𝑘 𝑥 + 𝑤𝜉 (𝑥 − 𝑥 ) + 𝑤(𝑥 − 𝑥 ) − 𝑤𝛾(𝑥 − 𝑥 ) + 𝑤(𝑥 − 𝑥 ) . (8)

a)  b)  
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Therefore, the HSLDS-VIS with elastic base is a coupled nonautonomous dynamic system 
with quadratic and cubic nonlinearities. 

4. Standard form of the motion equations 

Standard form of the motion equations refers to the vector fields are proportional to the small 
perturbation parameter 𝜀. Here, assume the nonlinear stiffness coefficients, damping coefficients 
and the amplitude of excitation force are small quantities and introduce an additional parameter 𝜀 
into the equations. Setting 𝑥 = 𝑧 , 𝑥 = 𝑧 , 𝑥 = 𝑧 , 𝑥 = 𝑧 , Eq. (8) can be rewritten in the 
general form: 𝑑𝐳𝑑𝑡 = 𝐀𝐳 + 𝜀𝐅(𝐳, 𝜔𝑡), (9)

where: 𝐳 = 𝑧 𝑧 𝑧 𝑧 , 
𝐀 = 0 1 0 0−1 0 1 00 0 0 1𝑤 0 −𝑤 − 𝑤𝑘 0 , 
𝐅(𝛾𝑡) = 𝐹𝐹𝐹𝐹 = 0−𝜉 (𝑧 − 𝑧 ) + 𝛾(𝑧 − 𝑧 ) − (𝑧 − 𝑧 ) + 𝑓cos𝜔𝑡0−𝑤𝜉 𝑧 + 𝑤𝜉 (𝑧 − 𝑧 ) − 𝑤𝛾(𝑧 − 𝑧 ) + 𝑤(𝑧 − 𝑧 ) . 

The derivative equation of Eq. (9) is: 𝑑𝐳𝑑𝑡 = 𝐀𝐳. (10)

No damping and nonlinear force in the matrix 𝐀, suppose it has only simple purely imaginary 
eigenvalues ±𝜔 𝑖, ⋯ , ±𝜔 𝑖 . The special solution of the homogeneous part with ±𝜔  are as 
follows: Re (𝜔 𝑡) = 𝜑 (𝜔 𝑡) = 𝑃 sin(𝜔 𝑡) − 𝑄 cos(𝜔 𝑡),Im (𝜔 𝑡) = 𝜑∗ (𝜔 𝑡) = 𝑃 sin(𝜔 𝑡) + 𝑄 cos(𝜔 𝑡),     (𝑖 = 1,2,    𝑠 = 1,2,3,4),     (11)

where 𝑃  and 𝑄  are real constants. 
Setting 𝑧 (𝑡) = 𝐴 𝑒 , 𝑧 (𝑡) = 𝐴 𝑒 , 𝑧 (𝑡) = 𝐴 𝑒 , 𝑧 (𝑡) = 𝐴 𝑒 , where 𝐼 = √−1, 

substitute them into Eq. (11): 𝐼𝐴 𝜔 = 𝐴 ,     𝐼𝐴 𝜔 = −𝐴 + 𝐴 ,     𝐼𝐴 𝜔 = 𝐴 ,     𝐼𝐴 𝜔 = 𝜇(𝐴 − 𝐴 𝑘 − 𝐴 ). (12)

Substituting 𝐴 = 1 into Eq. (12), one may obtain: 𝑧 (𝑡) = cos(𝜔𝑡) + 𝐼sin(𝜔𝑡),      𝑧 (𝑡) = 𝐼𝜔 cos(𝜔𝑡) + 𝐼sin(𝜔𝑡) , 𝑧 (𝑡) = (1 − 𝜔 ) cos(𝜔𝑡) + 𝐼sin(𝜔𝑡) ,     𝑧 (𝑡) = 𝐼(1 − 𝜔 )𝜔(cos(𝜔𝑡) + 𝐼sin(𝜔𝑡), (13)

where 𝜔 , = 1 + 𝑤 + 𝑤𝑘 ± 𝑤 𝑘 + 2𝑤 𝑘 + 𝑤 − 2𝑤𝑘 + 2𝑤 + 1 2⁄  are the natural 
frequencies of the derived system. Substituting 𝜔 ,  into Eq. (13) and separating the result into 
real and imaginary parts, yield the special solution of Eq. (10): 
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𝜑 = cos(𝜔 𝑡),       𝜑 = −𝜔 sin(𝜔 𝑡),      𝜑 = (1 − 𝜔 )cos(𝜔 𝑡),     𝜑 = (𝜔 − 1)𝜔 sin(𝜔 𝑡), 𝜑∗ = sin(𝜔 𝑡),       𝜑∗ = 𝜔 cos(𝜔 𝑡), 𝜑∗ = (1 − 𝜔 )sin(𝜔 𝑡),     𝜑∗ = (1 − 𝜔 )𝜔 cos(𝜔 𝑡). (14)

The same procedure may be easily adapted to obtain the special solution of the conjugate 
equation of Eq. (10), that is 𝑑𝐳 𝑑𝑡⁄ = −𝐀 𝐳: 

𝜓 = cos(𝜔 𝑡),        𝜓 = − sin(𝜔 𝑡)𝜔 , 𝜓 = (1 − 𝜔 )cos(𝜔 𝑡)𝑤 ,        𝜓 = (𝜔 − 1)sin(𝜔 𝑡)𝑤𝜔 , 𝜓∗ = sin(𝜔 𝑡), 𝜓∗ = cos(𝜔 𝑡)𝜔 , 𝜓∗ = (1 − 𝜔 )sin(𝜔 𝑡)𝑤 , 𝜓∗ = (1 − 𝜔 )cos(𝜔 𝑡)𝑤𝜔 . 
(15)

Introducing the coordinate transformation: 

𝑧 (𝑡) = 𝑎 𝜑 (𝜃 ) + 𝑧∗(𝑡),    (𝑖 = 1,2), (16)

where 𝜃 = 𝜔 𝑡 , 𝑧 (𝑡)  and 𝑧∗(𝑡)  are the general solution and special solution of Eq. (9), 
respectively. If 𝑎 = const and 𝑑𝜃 𝑑𝑡⁄ = 𝜔 , yield: 

𝑑𝜑 (𝜃 ) 𝑑𝜃⁄ = −𝜑∗ (𝜃 ),      − 𝑎 𝜑∗ (𝜃 ) = 𝑎 𝑎 𝜑 (𝜃 ). 
Substitute Eq. (16) into Eq. (9) and one may obtain: 𝑎 (𝑡)𝑑𝑡 𝜑 (𝜃 ) − 𝑎 (𝑡)𝜑∗ (𝜃 ) 𝑑𝜃𝑑𝑡 − 𝜔 = 𝜀𝐅(𝑣𝑡, 𝑎, 𝜃, 𝜀). (17)

Based on the orthogonality [13] between Eq. (14) and Eq. (15): 

𝜑 (𝜃 ) 𝜓 (𝜃 ) = 𝜑∗ (𝜃 ) 𝜓∗ (𝜃 ) = 0, 
𝜑 (𝜃 ) 𝜓∗ 𝜃 = 𝛿 ,    𝜑∗ (𝜃 ) 𝜓 𝜃 = −𝛿 . (18)

If 𝑖 = 𝑗, 𝛿 = 1, else if 𝑖 ≠ 𝑗, 𝛿 = 0. Multiplying Eq. (17) by 𝜓  and 𝜓∗ , respectively, and 
then summing 𝑠 from 1 to 4, the standard form of Eq. (9) was obtained as follows: 𝑑𝑎𝑑𝑡 = 𝜀 1Δ 𝐹 (𝛾𝑡, 𝑎, 𝜃, 𝜀)𝜓 (𝜃 ) = − 𝜀sin𝜃 (𝑤𝐹 + 𝐹 − 𝜔 𝐹 )𝑤𝜔 Δ , 𝑑𝜃𝑑𝑡 = 𝜔 + 𝜀Δ 𝑎 𝐹 (𝛾𝑡, 𝑎, 𝜃, 𝜀) 𝜓∗ (𝜃 ) = 𝜔 + 𝜀cos𝜃 (𝑤𝐹 + 𝐹 − 𝜔 𝐹 )𝑤𝑎 𝜔 Δ , (19)
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where Δ , = (𝜔 , − 2𝜔 , + 𝑤 + 1) 𝑤⁄ , 𝑅  and 𝑆  are periodic functions of 𝑡 and 𝜃 with period 2𝜋 𝜔⁄ . 

5. Single-variable bifurcation equation based on the averaging method 

Applying the singularity theory, we can reveal all possible bifurcation behaviors when the 
original system is subjected to a small perturbation. While the singularity theory is only suitable 
for autonomous system, it is essential to obtain the single-variable bifurcation equation by using 
the averaging method. For the system with multiple DOFs, perhaps there exists internal resonance. 
Introducing the first-order KB transformation: 𝑎 = 𝑦 + 𝜀𝑈 (𝑡, 𝑦, 𝜐),    𝜃 = 𝜔 𝑡 + 𝜙 + 𝜀𝑉 (𝑡, 𝑦, 𝜐), (20)

where 𝜔 = 𝜔 + 𝜀𝜎 , 𝑝 𝜔 + 𝑝 𝜔 = 𝑞𝜔, 𝜎  is detuning parameters, 𝑝  (𝑖 = 1, 2) and 𝑞 are 
nonzero integers. 𝑈  and 𝑉  are periodic function of 𝜐 and 𝑡. This paper focuses the second order 
primary resonance and 1:2 internal resonance, which means 𝜔 , 𝜔  and 𝜔  should meet  𝜔 = 𝜔 + 𝜀𝜎  and 𝜔 = 2𝜔 + 𝜀𝜎 . The derivatives of the new parameters should satisfy the 
conditions below: 𝑑𝑦𝑑𝑡 = 𝜀𝑌 (𝑦) + 𝜀 𝑌∗(𝑡, 𝑦, 𝜙),     𝑑𝜙𝑑𝑡 = 𝜀𝜎 + 𝜀𝑍 (𝑦) + 𝜀 𝑍∗(𝑡, 𝑦, 𝜙), (21)

where 𝑌  and 𝑍  do not contain 𝑡 , 𝑌∗  and 𝑍∗  are periodic function of 𝜐  and 𝑡 . Applying the 
averaging method, substitute Eq. (20) and Eq. (21) into Eq. (19) and collect terms of the first order 
in 𝜀: 

𝑌 + ∂𝑈∂𝑡 + ∂𝑈∂𝜐 (𝜔 − 𝜔 ) = 𝑅 (𝑦) + 𝑅 (𝑦)cos𝛼 + 𝑅 (𝑦)sin𝛼 , 
𝑍 + ∂𝑉∂𝑡 + ∂𝑉∂𝜐 (𝜔 − 𝜔 ) = 𝑆 (𝑦) + 𝑆 (𝑦)cos𝛼 + 𝑆 (𝑦)sin𝛼 , (22)

where 𝑅 (𝑦), 𝑅 (𝑦), 𝑅 (𝑦), 𝑆 (𝑦), 𝑆 (𝑦), 𝑆 (𝑦) are generalized Fourier series coefficients of 𝑅  and 𝑆 , 𝛼 = 𝑝 𝜔 + 𝑝 𝜔 + 𝑝 𝜔 𝑡 + 𝑝 𝜐 + 𝑝 𝜐 . 𝑌  and 𝑍  are the slowly changing 
functions, while + ∑ (𝜔 − 𝜔 )  and + ∑ (𝜔 − 𝜔 )  are the fast changing 
functions. The following average equations are obtained: 𝑑𝑑𝑡 𝑦 (𝑡) = 𝜀 − 12 𝜔 𝜔 𝛾𝑦 𝑦 sin(2𝜐 − 𝜐 )Δ + 12 𝐵 𝑦 , 𝑑𝑑𝑡 𝑦 (𝑡) = 𝜀 − 12 𝑓sin(𝜐 )Δ 𝜔 + 14 𝜔 𝜔 𝛾𝑦 sin(2𝜐 − 𝜐 )Δ + 12 𝐵 𝑦 , 𝑑𝑑𝑡 𝜐 (𝑡) = 𝜀 𝜎 + 𝜔 −3𝜔 𝑦 − 6𝜔 𝑦 + 4𝜔 𝛾𝑦 cos(2𝜐 − 𝜐 )8Δ , 𝑑𝑑𝑡 𝜐 (𝑡) = 𝜀 𝜎 + 2𝜔 𝜔 𝑦 cos(2𝜐 − 𝜐 ) + 4𝑓cos(𝜐 ) − 6𝜔 𝑦 𝑦 − 3𝜔 𝑦8Δ 𝜔 𝑦 , 

(23)

where 𝐵 , = (2𝜉 𝜔 , − 𝜉 𝜔 , − 𝜉 𝜔 , − 𝜉 ) Δ ,⁄ .  Letting 𝑑𝑦 (𝑡) 𝑑𝑡⁄ ,  𝑑𝑦 (𝑡) 𝑑𝑡⁄ , 𝑑𝜐 (𝑡) 𝑑𝑡⁄ , 𝑑𝜐 (𝑡) 𝑑𝑡⁄  be zero, one may obtain: 
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cos(2𝜐 − 𝜐 ) = 3𝜔 𝑦 + 6𝜔 𝜔 𝑦 − 8Δ 𝜎4𝜔 𝜔 𝛾𝑦 ,    sin(2𝜐 − 𝜐 ) = 𝐵 Δ𝜔 𝜔 𝛾𝑦 . (24)

Supposing 𝑦 = 𝑌  and 𝑦 = 𝑌 , the Eq. (24) is further recast as follows: (3𝜔 𝑌 + 6𝜔 𝜔 𝑌 − 8Δ 𝜎 )16𝜔 𝜔 𝛾 𝑌 + 𝐵 Δ𝜔 𝜔 𝛾 𝑌 = 1. (25)

The governing equations of Eq. (25) are given by: 

𝑌 = −6𝜔 𝜔 𝑌 + 8Δ 𝜎 + 4 𝜔 𝜔 𝛾 𝑌 − 𝐵 Δ3𝜔 . (26)

Substituting 𝑚 = 𝜔 𝜔 𝛾 𝑌 − 𝐵 Δ  into Eq. (26) results in: 

𝑌 = − 2(𝐵 Δ + 𝑚 )𝜔 𝛾 + 8Δ 𝜎 + 4𝑚3𝜔 ,    𝑌 = 𝐵 Δ + 𝑚𝜔 𝜔 𝛾 . (27)

The same procedure may be easily adapted to obtain the following equations: 

cos(𝜐 ) = 6𝜔 𝑌 + 6𝜔 𝜔 𝑌 𝑌 + 8𝜔 Δ 𝑌 𝜎 − 3𝑌 𝜔 − 16Δ 𝑌 𝜔 𝜎8𝑓 𝑌 , sin(𝜐 ) = 𝐵 Δ 𝑌 𝜔 + 2𝐵 Δ 𝑌 𝜔2𝑓 𝑌 . (28)

Substituting Eq. (27) into Eq. (28), the steady-state solution of Eq. (23) is obtained: 

𝑏 𝑚 = 0, (29)

where the detailed 𝑏  are shown in Appendix A1. Setting 𝑚 = 𝑥 + 4𝛾𝜔 , Eq. (29) can be written 
as follows: 𝐺(𝑥, 𝜇, 𝛼 , 𝛼 , 𝛼 , 𝛼 ) = 𝑥 − 𝜇 + 𝛼 𝑥 + 𝛼 𝑥 + 𝛼 𝑥 + 𝛼 𝑥 = 0, (30)

where 𝛼 ~𝛼  is the universal unfolding parameters related to the stiffness coefficients, damping 
coefficients, tune parameters and so on, 𝜇 is the bifurcation parameter related to the amplitude of 
excitation force. The detailed 𝛼 ~𝛼  and 𝜇 are shown in Appendix A2. 

6. Bifurcation analysis in the unfolding parameter space 

In the singularity theory [14], the bifurcation Eq. (30) is the universal unfolding of the normal 
form 𝑔 = 𝑥 − 𝜇 , and the codimension is 4. The functions 𝐺 , 𝐺  and 𝐺  can be given by 
differentiating: 𝐺 = 6𝑥 + 4𝛼 𝑥 + 3𝛼 𝑥 + 2𝛼 𝑥 + 𝛼 , 𝐺 = 30𝑥 + 12𝛼 𝑥 + 6𝛼 𝑥 + 2𝛼 , 𝐺 = −1. (31)

According to the definition of the transition set [15], it consists of bifurcation point set (BS), 
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hysteresis point set (HS), and double limit point set (DLS). 𝐵𝑆 = 𝛼 ∈ 𝑅 ∃(𝑥, 𝜇), 𝐺 = 𝐺 = 𝐺 = 0  at the point of (𝑥, 𝜇, 𝛼) . It is evident that 𝐵𝑆 = Φ. 𝐻𝑆 = 𝛼 ∈ 𝑅 |∃(𝑥, 𝜇), 𝐺 = 𝐺 = 𝐺 = 0  at the point of (𝑥, 𝜇, 𝛼) . Setting 𝜇 = 0  and  𝛼 = 𝛼 = 0, 𝐻𝑆 = 𝛼 ∈ 𝑅, 𝛼 = 0, 𝛼 = 0, 𝛼 ≠ 0  was obtained. Setting 𝑥 ≠ 0 and 𝜇 ≠ 0, 𝐻𝑆 = 𝛼 = , 𝛼 = ( ) , 𝛼 =  was obtained. 𝐷𝐿𝑆 = 𝛼 ∈ 𝑅 |∃(𝑥 , 𝜇)(𝑖 = 1,2), 𝑥 ≠ 𝑥 , 𝐺 = 𝐺 = 0 at the point of (𝑥, 𝜇, 𝛼) . Because (𝑥, 𝜇) = (0,0) is a limit point, 𝐷𝐿𝑆 = 𝛼 = −4𝑥 − 2𝛼 𝑥, 𝛼 = 3𝑥 + 𝛼 𝑥 , 𝛼 = 0, 𝑥 ≠ 0  
can be obtained. As for 𝜇 ≠ 0, 𝐷𝐿𝑆  will be discussed in the two-dimensions transition set. 

However, from the fact that the bifurcation of Eq. (31) is the universal unfolding with 
4-codimension, it is very different to analyze the bifurcation behavior in full detail. Therefore, it 
is necessary to discuss all forms of two parameter unfolding contained in Eq. (31), that is 𝛼 − 𝛼 , 𝛼 − 𝛼 , 𝛼 − 𝛼 , 𝛼 − 𝛼 , 𝛼 − 𝛼  and 𝛼 − 𝛼 . In this paper, only the transition sets and 
bifurcation diagrams in the 𝛼 − 𝛼  plane and 𝛼 − 𝛼  plane is presented. 

Ⅰ

Ⅱ

Ⅲ

Ⅳ

Ⅴ

Ⅵ

 
a) Transition set and its bifurcation diagrams in the 𝛼 − 𝛼  plane 

Ⅰ Ⅱ Ⅲ

 

Ⅵ Ⅴ Ⅳ

 
b) Bifurcation diagrams on different persistent regions in the 𝛼 − 𝛼  plane 

Fig. 4. Bifurcation diagrams of transition sets and persistent regions in the 𝛼 − 𝛼  plane 
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Setting 𝛼 = 𝛼 = 0,  one may obtain 𝐻𝑆 = 𝛼 ∈ 𝑅, 𝛼 ≠ 0 ,  𝐷𝐿𝑆 = (𝛼 2⁄ ) =(− 𝛼 2⁄ ) , 𝐻𝑆 = 𝛼 = −128𝛼 729⁄ , 𝐷𝐿𝑆 = 𝛼 ≤ 0, 𝛼 = 0 . The transition set in the 𝛼 − 𝛼  plane is Σ = 𝐻𝑆 ∪ 𝐷𝐿𝑆 ∪ 𝐻𝑆 ∪ 𝐷𝐿𝑆 , as shown in Fig. 4. The whole parametric 
plane was divided into six different persistent regions by the transition sets, corresponding to 
different type of the solutions. When 𝛼  and 𝛼  change anticlockwise, the bifurcation diagrams 
are completely symmetric about 𝜇 axis between I-𝐻𝑆 -II-𝐷𝐿𝑆 -III and VI-𝐻𝑆 -V-𝐷𝐿𝑆 -IV. 

Setting 𝛼 = 𝛼 = 0, one may obtain 𝐻𝑆 = 𝐷𝐿𝑆 = Φ,𝐻𝑆 = (−𝛼 15)⁄ = (𝛼 24)⁄  
and 𝐷𝐿𝑆 = 𝛼 = 0, 𝛼 ≤ 0 . The transition set in the 𝛼 − 𝛼  plane is Σ = 𝐻𝑆 ∪ 𝐷𝐿𝑆 , 
as shown in Fig. 5. The whole parametric plane was divided into four different persistent regions 
by the transition sets, corresponding to different type of the solutions. When 𝛼  and 𝛼  change 
anticlockwise, the bifurcation diagrams are completely symmetric about 𝜇 axis between I-𝐻𝑆 -II 
and IV-𝐻𝑆 -III. 

ⅠⅡ

Ⅲ Ⅳ

 
a) Transition set and its bifurcation diagrams in the 𝛼 − 𝛼  plane 

Ⅰ Ⅱ Ⅳ Ⅲ

 
b) Bifurcation diagrams on different persistent regions in the 𝛼 − 𝛼  plane 

Fig. 5. Bifurcation diagrams of transition sets and persistent regions in the 𝛼 − 𝛼  plane 

Figs. 4-5 show that the bifurcation of HSLDS-VIS with elastic base with 1:2 internal resonance 
are considerable complex. There are qualitative difference of bifurcation diagrams between the 
different transition sets and persistent regions. If the unfolding parameters lying in the transition 
sets, a small perturbation is likely to cause a qualitative change in the bifurcation diagrams, which 
means that are degraded. While the unfolding parameters lying in the persistent regions, any 
perturbation is unable to cause a qualitative change in the bifurcation diagrams, which means that 
are universal. 

7. Bifurcation analysis in the physical parameter space 

Considering the HSLDS-VIS with elastic base under actual engineering background, the 
unfolding parameters and bifurcation parameters may be constrained by some conditions, which 
are called boundary induced transition sets. For example, the force amplitude, damping ratio and 
stiffness coefficient should be non-negative. Therefore, in order to obtain some results for the 
engineering application, it is essential that the bifurcation analysis is transferred from the 
unfolding parameter space to the physical parameter space. In this paper, only the transition sets 
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and bifurcation diagrams in the 𝛼 − 𝛼  plane are presented, whose physical parameter space 
consists of 𝜎 , 𝜎 , 𝜉  and 𝜉 . Setting 𝛼 = 𝛼 = 0, one may obtain: 

𝜎 = 243𝐵 Δ − 32𝛾 𝜔216𝜔 𝛾 Δ ,    𝜎 = 𝜔 (16𝜔 𝛾 + 243𝐵 Δ )432𝜔 𝛾 Δ . (32)

Substitute Eq. (32) into 𝛼  and 𝛼  in Appendix A2: 

𝛼 = 64𝜔 𝜔 𝛾 𝐵 Δ − 128𝜔 𝜔 𝛾 𝐵 𝐵 Δ Δ + 64𝜔 𝛾 𝐵 Δ − 243𝜔 𝐵 Δ324𝜔 , 𝛼 = 64𝜔 𝛾 𝐵 Δ (2𝜔 𝐵 Δ − 𝜔 𝐵 Δ )729𝜔 . (33)

Substituting Eq. (33) into Σ , 𝐷𝐿𝑆 = Φ and 𝐻𝑆  are obtained in the physical parameter 
space as follows: 

𝐻 =
⎩⎪⎪⎨
⎪⎪⎧ 𝜎 = 243𝐵 Δ − 32𝛾 𝜔216𝜔 𝛾 Δ ,   𝜎 = 𝜔 (16𝜔 𝛾 + 243𝐵 Δ )432𝜔 𝛾 Δ ,

𝐵 = 2𝜉 𝜔 − 𝜉 𝜔 − 𝜉 𝜔 − 𝜉Δ ,    𝐵 = 2𝜉 𝜔 − 𝜉 𝜔 − 𝜉 𝜔 − 𝜉Δ ,27(64𝜔 𝜔 𝛾 𝐵 Δ − 128𝜔 𝜔 𝛾 𝐵 𝐵 Δ Δ + 64𝜔 𝛾 𝐵 Δ − 243𝜔 𝐵 Δ )= −13107200000(𝜔 𝜔 𝛾 𝐵 Δ (𝐵 Δ 𝜔 − 2𝐵 Δ 𝜔 ) ) ⎭⎪⎪⎬
⎪⎪⎫. (34)

Setting 𝑤 = 0.3 and 𝛾 = 0.1, yield 𝑘 = 10.3529, 𝜔 = 0.9387, 𝜔 = 1.8774, Δ = 1.0471, Δ = 22.2469, 𝐵 = −0.7417𝜉 − 0.0449𝜉 , 𝐵 = −0.5584𝜉 − 0.2865𝜉 . Substituting them 
into Eq. (34), the transition sets in the damping space are obtained, as shown in Fig. 6. 

4
1HS

1
1HS2

1HS

3
1HS

 
Fig. 6. Transition set in the damping space 

The analysis should be carried out with considering 𝜉 ≥ 0  and 𝜉 ≥ 0  in the actual 
engineering. Therefore, only the 𝐻𝑆 , II, and III are presented. Then, the bifurcation diagrams 
will also be transferred from the unfolding parameter space to the physical parameter space, whose 
procedure consists of two steps: first, the bifurcation analysis is transferred from the 𝑥 − 𝜇 plane 
to the 𝑥 − 𝑓 plane, and then, the bifurcation analysis is transferred from the 𝑥 − 𝑓 plane to the 𝑦 − 𝑓 plane. A point lying in 𝐻𝑆  is used as an example to illustrate the above process. Setting 𝜉 = 0.05  and substituting it into Eq. (31), yield 𝜉 = 0.49,  𝐵 = −0.0437,  𝐵 = −0.1696 ,  𝜎 = 0.2713 , 𝜎 = 0.0514  and 𝜇 =  –9.234×10-9+5.093×10-9 𝑓 ,  and then, the bifurcation 
diagrams in the 𝑥 − 𝑓 plane are obtained. Considering 𝑦 ≥ |𝐵 Δ (𝛾𝜔 𝜔 )⁄ | and according to 
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(𝑥 + 4𝛾 𝜔 9⁄ ) = 𝜔 𝜔 𝛾 𝑦 − 𝐵 Δ , the bifurcation diagrams in the 𝑦 − 𝑓  plane are 
obtained. The bifurcation diagrams in the physical parameter space are shown in Fig. 7. When (𝜉 , 𝜉 ) lying in 𝐻 , all of the bifurcation diagrams have a hysteresis point. When (𝜉 , 𝜉 ) lying in 𝐻  and region III, the multiple solutions cannot coexist on the system; while (𝜉 , 𝜉 ) lying in 
region II, the same 𝑓 corresponds to two or three amplitudes in some areas. The system has three 
different bifurcation behaviors in the physical parameter space, therefore, the beneficial movement 
mode can be selected by adjusting the parameters, which offers a theoretical guidance for design 
and application of the HSLD-VIS with elastic base. 

x - f z - f y - f

 
a) (𝜉 , 𝜉 ) lying in 𝐻  

x - f z - f y - f

 
b) (𝜉 , 𝜉 ) lying in region III 

x - f z - f y - f

 
c) (𝜉 , 𝜉 ) lying in region II 

Fig. 7. Bifurcation diagrams in the physical parameter space 

8. Conclusions 

In this work, the restoring force of the HSLDS-VIS was approximated to linear and cubic 
stiffness and the motion equations of HSLDS-VIS with elastic base were established. The 
averaging method was applied to obtain the single-variable bifurcation equation for the 
HSLDS-VIS with elastic base in case of primary resonance and 1:2 internal resonance. According 
to singularity theory, the transition sets and bifurcation diagrams in the unfolding parameter space 
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were studied. For the engineering application, the transition sets were transferred back to the 
physical parameter space, thus to obtain the bifurcation behaviors of the amplitude with respect to 
the external force. Analytical results show that local bifurcations of HSLDS-VIS with elastic base 
in case of 1:2 internal resonance are considerable complex and should be analyzed in engineering 
with considering the constrained conditions of the physical parameters. Additionally, the 
excitation force may change the values of unfolding parameters and the types of the bifurcations, 
which can provide a theoretical guidance for design and application of the HSLDS-VIS with 
elastic base. 
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Appendix 

A1. Detailed 𝒃𝒊 in Eq. (29) 𝑏 = 729𝜔 , 𝑏 = −1944𝜔 𝜔 𝛾 , 𝑏 = 1728𝜔 𝜔 𝛾 − 2592𝜔 𝜔 𝛾 Δ 𝜎 + 1296𝜔 𝜔 𝛾 Δ 𝜎 + 2187𝜔 𝐵 Δ , 𝑏 = −576𝜔 𝜔 𝛾 + 4320𝜔 𝜔 𝛾 Δ 𝜎 − 1728𝜔 𝜔 𝛾 Δ 𝜎 − 3888𝜔 𝜔 𝛾 𝐵 Δ , 𝑏 = 64𝜔 𝜔 𝛾 − 1920𝜔 𝜔 𝛾 Δ 𝜎 + 384𝜔 𝜔 𝛾 Δ 𝜎 +  1872𝜔 𝜔 𝛾 𝐵 Δ         +2187𝜔 𝐵 Δ − 288𝜔 𝜔 𝛾 𝐵 𝐵 Δ Δ − 2304𝜔 𝜔 𝛾 Δ Δ 𝜎 𝜎         +576𝜔 𝛾 Δ 𝜎 + 144𝜔 𝛾 𝐵 Δ  − 5184𝜔 𝜔 𝛾 𝐵 Δ 𝜎         +2592𝜔 𝜔 𝛾 𝐵 Δ Δ 𝜎 + 2304𝜔 𝜔 𝛾 Δ 𝜎 , 𝑏 = 4320𝜔 𝜔 𝛾 𝐵 Δ 𝜎 − 1728𝜔 𝜔 𝛾 𝐵 Δ Δ 𝜎 + 192𝜔 𝜔 𝛾 𝐵 𝐵 Δ Δ         −1536𝜔 𝜔 𝛾 Δ 𝜎 + 768𝜔 𝜔 𝛾 Δ Δ 𝜎 𝜎 + 256𝜔 𝜔 𝛾 Δ 𝜎         −1944𝜔 𝜔 𝛾 𝐵 Δ − 192𝜔 𝜔 𝛾 𝐵 Δ , 𝑏 = −144𝜔 𝜔 𝑓 𝛾 + 256𝜔 𝜔 𝛾 Δ 𝜎 − 384𝜔 𝜔 𝛾 𝐵 Δ 𝜎         −288𝜔 𝜔 𝛾 𝐵 𝐵 Δ Δ + 729𝜔 𝐵 Δ + 2304𝜔 𝜔 𝛾 𝐵 Δ 𝜎         −2304𝜔 𝜔 𝛾 𝐵 Δ Δ 𝜎 𝜎 + 384𝜔 𝜔 𝛾 𝐵 𝐵 Δ Δ 𝜎 + 144𝜔 𝜔 𝛾 𝐵 Δ         +576𝜔 𝛾 𝐵 Δ Δ 𝜎  − 2592𝜔 𝜔 𝛾 𝐵 Δ 𝜎         +1296𝜔 𝜔 𝛾 𝐵 Δ Δ 𝜎 + 144𝜔 𝛾 𝐵 𝐵 Δ Δ . 
A2. Detailed 𝜶𝟏~𝜶𝟒 and 𝝁 in Eq. (30) 

𝛼 = − 127 16𝜔 𝜔 𝛾 + 96𝜔 𝜔 𝛾 Δ 𝜎 − 48𝜔 𝛾 Δ 𝜎 − 81𝐵 Δ 𝜔𝜔 , 𝛼 = − 32729 𝛾 𝜔 (2𝜔 𝜔 𝛾 + 9𝜔 Δ 𝜎 − 18𝜔 Δ 𝜎 )𝜔 , 𝛼 = 1729𝜔 (64𝜔 𝜔 𝛾 + 768𝜔 𝜔 𝛾 Δ 𝜎   − 288𝜔 𝜔 𝛾 𝐵 𝐵 Δ Δ         −5184𝜔 𝜔 𝛾 𝐵 Δ 𝜎 − 384𝜔 𝜔 𝛾 Δ 𝜎 + 2304𝜔 𝜔 𝛾 Δ 𝜎         −2304𝜔 𝜔 𝛾 Δ Δ 𝜎 𝜎 + 576𝜔 𝛾 Δ 𝜎 − 720𝜔 𝜔 𝛾 𝐵 Δ         +2592𝜔 𝜔 𝛾 𝐵 Δ Δ 𝜎 + 2187𝜔 𝐵 Δ + 144𝜔 𝛾 𝐵 Δ ), 𝛼 = 3219683 𝜔 𝜂𝜔 (16𝜔 𝜔 𝛾 + 168𝜔 𝜔 𝛾 Δ 𝜎 − 192𝜔 𝜔 𝛾 Δ 𝜎         +432𝜔 𝜔 𝛾 Δ 𝜎 + 432𝜔 𝛾 Δ 𝜎 − 1080𝜔 𝜔 𝛾 Δ Δ 𝜎 𝜎         −54𝜔 𝜔 𝛾 𝐵 Δ − 54𝜔 𝜔 𝛾 𝐵 𝐵 Δ Δ + 108𝜔 𝛾 𝐵 Δ         −243𝜔 𝐵 Δ 𝜎 + 486𝜔 𝜔 𝐵 Δ Δ 𝜎 ), 𝜇 = 1531441𝜔 (1679616𝜔 𝜔 𝛾 𝐵 Δ Δ 𝜎 𝜎 + 104976𝜔 𝜔 𝛾 𝑓         −1679616𝜔 𝜔 𝐵 Δ 𝜎 𝛾 − 373248𝜔 𝜔 𝛾 𝐵 Δ 𝜎 + 1889568𝜔 𝜔 𝛾 𝐵 Δ 𝜎         −9216𝜔 𝜔 𝛾 Δ 𝜎 − 1024𝜔 𝜔 𝛾 + 18432𝜔 𝜔 𝛾 Δ 𝜎         +186624𝜔 𝜔 𝛾 𝐵 Δ Δ 𝜎 − 531441𝜔 𝐵 Δ − 82944𝜔 𝛾 Δ 𝜎  
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