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Abstract. Taking a representative metro station in Beijing as example, this research has newly developed a random 
coefficient model to predict the short-term passenger flows with sudden increases sometimes into an urban rail transit 
station. The hierarchical Bayesian approach is iteratively applied in this work to estimate the new model and the esti-
mation outcomes in each of the iterative calibrations are improved by sequential Bayesian updating. It has been proved 
that the estimation procedure is able to effectively converge to rational results with satisfying accuracies. In addition, 
the model application study reveals that besides sufficient preparations in manpower, devices, etc.; the information of 
the factors affecting the passenger flows into an urban rail transit station should be timely transferred in advance from 
important buildings, road intersections, squares and so on in neighborhood to this station. In this way, this station is 
able to cope with the unexpectedly sharp increases of the passenger flows into the station to ensure its operation safety. 
Keywords: random coefficient modeling; Bayesian estimation and updating; short-term forecast; passenger flow; urban 
rail transit station; operation safety.

Introduction 

The amount of the passengers entering an urban rail 
transit station is very likely to have a substantial increase 
in almost only a few minutes as a result of a large-scale 
entertainment or commercial activity, a sudden change 
in weather and so on (Tian et al. 2013). Such a passenger 
volume outburst is easy to cause operation safety acci-
dents of a rail transit station if its response measures 
are not sufficient or timely enough due to a poor early 
warning. Therefore, a successful short-term forecast of 
the passenger flows into a rail transit station is crucial 
in particular for a busy urban rail transit station to take 
countermeasures in advance to adequately improve its 
safety capacity in time in case of an unexpected travel 
demand increase. 

Short-term forecasting techniques in transporta-
tion field have received a widespread attention from 
researchers and engineers (Ma et al. 2014). Various 
methods including Wavelet Analysis (Huang 2003), 
Time Series (Williams, Hoel 2003), Bayesian Network 
(Sun et al. 2006), Fuzzy Neural Networks (Tsai et al. 
2009), Support Vector Machine (Zhang, Liu 2009) and 
so forth have been applied for rational predictions of 

short-term changes of travel demands. Different fore-
casting approaches can be generally categorized into 
parametric and non-parametric techniques referring to 
the functional dependency assumed between independ-
ent and dependent variables (Vlahogianni et al. 2004; 
Wei, Chen 2012). Until now, it is still controversial to say 
which approach is able to globally obtain best predictive 
performance among alternatives (Tsai et al. 2009). How-
ever, it has been recognized that short-term shocks on 
the prediction trend component frequently cause devia-
tions of demand from its underlying growth path (Scar-
pel 2014). Accordingly, various efforts have been made 
to avoid such deviations. For instance, Ozyildirim et al. 
(2010) employ leading indicators to anticipate changes 
on future travel demand trend with cyclical character-
istics. Moreover, Chen and Wei (2011) make use of the 
Hilbert–Huang transform (Huang, Attoh-Okine 2005) 
to analyze time variants of short-term passenger flow 
in a metro system. In a further, hybrid models are com-
monly used today for the improvement of the short-
term forecast accuracy (Zhang et al. 2006; Tan et al. 
2009; Zhang, Liu 2011; Wei, Chen 2012; Ma et al. 2014; 
Xie et al. 2014). 
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Although many relatively effective short-term 
forecasting approaches have been put forward, the pre-
dictions without the assumptions of linearity and sta-
tionarity on the short-term passenger volume changes 
still need further explorations especially for an urban 
rail transit station with huge passenger flow pressures. 
In other words, owing to its random characteristics, a 
sudden change of a short-term travel demand (such as 
a passenger flow into an urban rail station) is very hard 
to be rationally predicted. As a result, this research de-
velops a random coefficient model estimated by hier-
archical Bayesian approach to forecast the short-term 
passenger flows with abrupt increases into an urban 
transit station from the nonlinearly dynamic perspective 
of random changes. As a busy metro station which has 
usually huge passenger flows with frequent unexpected 
short-term increases especially on weekends, Xidan Sta-
tion (XS) on Beijing metro network has been taken as 
example in this work. In view of their dynamically sharp 
increases in comparison to the relative stability of the 
passenger flows mainly consisting of the commuters 
into XS during weekdays, the passenger flows into XS 
on Sunday have been studied in detail. 

The contents of this paper are organized as follows. 
Section 1 introduces XS and the modeling data surveyed 
in the area of XS. Section 2 makes the random coef-
ficient modeling research on the short-term forecast of 
the passenger flows into XS. According to the forecast 
model developed in Section 2, the extreme cases about 
the sharp increases of the passenger flows into XS are 
analyzed in Section 3. Finally, last section makes conclu-
sions and indicates some future research issues. 

1. Data Survey

The urban rail transit lines in Beijing have got a total 
length of 442 kilometers till the end of 2012 and 261 sta-
tions have been put into operation (Guo et al. 2013). XS 
located in a very prosperous business district of Beijing 
is the transfer station of Line No. 1 and Line No. 4 on 
Beijing metro network. This metro station is surrounded 
by department stores, entertainment venues, banks, of-
fice buildings, and so on. Owing to the big sales in the 
department stores usually on weekends and holidays, the 
flows of the metro passengers arriving at and departing 
from XS in the afternoon of such a day always become 
huge. Meanwhile, especially the volume of the passen-
gers entering XS is very likely to have a relatively sharp 
increase in a short time interval. Due to such quick in-
creases of big passenger flows into XS from the buildings 
in neighborhood, sometimes XS had to strictly limit the 
number of the passengers entering the station to reduce 
the risks of its operational security if the increases are 
sustained. On account of the big passenger flows into 
XS and their often sudden increases, the volumes of the 
passengers entering XS through its main entrances in 
various time periods on Sunday have been surveyed for 
the modeling study in this research. 

The survey was made on 27 October 2013. Accord-
ing to the introduction of the management staff of XS in 
the survey, the entrance F1 and entrance B of XS repre-
sentatively face up to the intense passenger flows into XS 

on weekends and holidays. Furthermore, the passenger 
flows into XS before 11:30 and after 20:00 in such a day 
are extremely small. Therefore, the volumes of the passen-
gers entering XS through these two entrances have been 
recorded in successive short time intervals (i.e., 5 min-
utes in this study) which are smaller than the smallest 
time span of the successive sudden increases of the pas-
senger flows from 11:30 to 20:00. Moreover, making im-
portant contributions to the passenger flows into XS, the 
related factors (i.e. the amounts of the people utilizing 
the escalators rolling downstairs from the second floors 
in two neighboring department stores named Juntai and 
Hanguang respectively, and the people walking towards 
XS from a nearby road intersection represented by RI in 
this study) have also been investigated in every 5 minutes 
from 11:30 to 20:00 for the modeling study in this work. 

It is presented in Fig. 1 that the volumes of the pas-
sengers entering XS through F1 and B both generally 
first increase and then decrease with time passed. In 
the whole process, suddenly considerable increases of 
the passenger volumes obviously happen from time to 
time. The value changes of the related factors in every 
5 minutes, as indicated in Fig. 2, follow similar trends 
of those of the passenger volumes shown in Fig. 1. It is 
also found that the sudden value increases of each of 
the related factors always take place at some time cor-
respondingly before those of either the passenger flows. 
The relative locations of F1, B, Juntai, Hanguang and RI 
and the passenger flows into F1 and B from Juntai, Han-
guang and RI are approximately described in Fig. 3. It is 
revealed that Juntai and Hanguang principally affect the 
volume of the passengers entering F1 and the passenger 
flow into B is primarily affected by RI. According to the 
field survey, the time used for walking to B and F1 from 
RI and the escalators rolling downwards to the first floor 
in Juntai and Hanguang respectively is basically equal to 
the time between the sudden increases of the passenger 
flows and the corresponding increases of their related 
factors’ values. 

Fig. 1. Changes of the passenger flows into XS with time
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2. Modeling Study 

It is interpreted by Eq. (1) that the log-transformed ex-
pression of Cobb-Douglas function as its typical gener-
alization form for its solution (Labini 1995; Vilcu 2011) 
is adopted in this work to interpret the short-term 
change of the passenger flow into a certain entrance of 
a metro station in different time intervals:

( ) ( )−= α +α +α +0 1 1 2ln lni iQ Q T

−∆
=

 β + ε 
 ∑

1
ln

j

n
j

j ii
j

X ,  (1)

where: Qi represents the volume of the passengers enter-
ing the station in the time interval i (i ∈ N); −1iQ  stands 
for the volume of the passengers entering the station 
in the time interval i – 1; T is the time-trend variable; 

−∆ j

j
iX  represents the value of the j-th related factor in 

the time interval i – Dj (Dj ∈ N and Dj < i); n denotes the 
number of all the related factors; ei is the error term fol-
lowing the prior probability distribution of ( )σ2 0,  N

 
; 

a0, a1, a2 and bj (j = 1, 2, …, n) are the parameters. 
With Gibbs sampling (Arnold 1993), the hierarchi-

cal Bayesian approach (Gelman et al. 2013) based on 
Markov Chain Monte Carlo (Brooks et al. 2011) is ap-
plied in this work to calibrate the parameters in Eq. (1). 
This approach assumes the prior probability distribu-
tions of the parameters and yields a chain for making 
their point or interval estimates according to the suc-
cessive sampling from their posterior probability dis-
tributions (Chikaraishi et al. 2010). The joint posterior 
probability distribution of all the parameters in Eq. (1) 
is explained by Eq. (2):

( )π α β Γ σ ∞, ; ; ,Q X

( )−∆ −∆ α β σ∏ 1
1, ,..., , ;

n
n

i i i
i
g Q X X

( ) ( ) ( )α β Γ Γ σ,P P P ,  (2)

where: a stands for a0, a1 and a2; b denotes b1, b2, …, 
bn; Q represents the passenger volumes; X denotes the 
values of the related factors; G is the variance-covariance 
matrix of the multivariate normal distribution followed 
by the random components of a0, a1, a2, b1, b2, …, bn; 
s represents the standard deviation of the prior prob-
ability distribution of ei; ( )⋅g  is the likelihood function; 
( )ΓP  represents the prior probability distribution of G; 
( )σP  stands for the prior probability distribution of s. 

Because of insufficient prior information, the as-
sumption of a non-informative prior probability distri-
bution – i.e. a non-committal prior probability distribu-
tion, e.g. typically a rectangular distribution, over the 
feasible set of values (Upton; Cook 2008) – is initially 
made in this research for each of the parameters in Eq. 
(1). Moreover, the prior probabilities of G and s are 
assumed here to respectively follow inverted Wishart 
distribution and inverted Gamma distribution. As in-
terpreted by Eq. (3), the posterior distributions of the 
estimated parameters can be improved with new inputs 
by sequential Bayesian updating (Ntzoufras 2009) on the 
basis of Bayes’ Rule (Stone 2013):

+ + −∆
 π α β Γ σ ∞ 
 1 1, ; ; , , ,

j

j
i iQ X Q X

( )+ + −∆ + −∆ α β σ
1

1
1 1 1, ,..., , ;

n
n

i i ig Q X X

( )π α β Γ σ, ; ; ,Q X .  (3)

Based on the data surveyed on 27 October 2013, 
the estimations to all the parameters in Eq. (1) are it-
eratively made according to the hierarchical Bayesian 
approach with taking the posterior distributions in last 
calibration as the prior distributions in the next itera-
tion. In order to ensure effective convergences, the num-
ber of the iterative calibrations of the parameters is set to 
be 1 million times in this study according to the tests of 
convergence computations. If the calibrations have not 
converged after 1 million times of the iterations, another 
1 million times of the iterative calibrations will be con-

Fig. 2. Changes of the values of the related factors with time 

Fig. 3. Locations of F1, B, Juntai, Hanguang and RI  
and the passenger flows
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tinually made until the convergence of the estimations. 
In addition, on the basis of the sequential Bayesian up-
dating, the posterior distributions of the estimates are 
updated in each of the iterative calibrations with the data 
from a supplementary survey made on 15 June 2014, 
for certain representative daily operation time of XS in 
view of the effect of climate change and so on. After the 
iterative estimations, 1000 sets of the updated posterior 
probability distributions of the parameters are succes-
sively extracted randomly from every 100 sets of the out-
comes obtained in the last 100 thousand calibrations. 
These extracted updated posterior distributions are used 
to not only identify the convergence of the iterative es-
timations by Geweke’s tests (Ntzoufras 2009) but also 
compute the final values of the parameters by Eq. (4). 
The whole process of the iterative estimations to the pa-
rameters is shown in Fig. 4. 

=
γ = γ∑

1

1 m
l

k k
lm

,  (4)

where: γk  is the final value of the k-th parameter in 
Eq. (1); m represents the number of all the extracted 
iterations; γlk  stands for a random value of the k-th es-
timated parameter following its posterior distribution 
updated in the l-th extracted iteration. 

The final estimation results of Eq. (1) for the pre-
dictions of the passenger flows into XS through F1 and B 
are provided in Table 1 and Table 2 to explain the trends 
of their respective increases and decreases with the suc-
cessive time intervals. As for the forecast of a passenger 
flow into XS in its increase time trend, the related factors 
are successively the amounts of the people utilizing the 
escalators rolling downstairs from the second floors of 
Juntai and Hanguang, and the people walking towards 

XS from RI. By contrast, the prediction of the volume 
of the passengers entering XS in its decrease trend with 
time passed focuses only on the numbers of the peo-
ple on the escalators rolling downstairs from the second 
floor of Juntai and the people from RI in succession. 
These different factors work independently. It is shown 
in both these two tables that the estimated values of the 
parameters are all logically reasonable and each of their 
Geweke’s test values, i.e. the Z-values, is between –2.00 
and 2.00, which proves the effective convergences of the 
estimations. In addition, the model estimation accura-
cies represented by the R-square values for F1 and B are 
both satisfying enough. 

Table 1. Model estimation results for the increased time-trend 

Parameters
F1 B

Estimated 
values Z-values Estimated 

values Z-values

a0 0.52 –0.28 0.58 –0.09
a1 0.67 –0.81 0.57 –0.28
a2 0.01 0.66 0.01 0.44
b1 0.11 –0.20 0.11 –1.92
b2 0.07 0.62 0.08 0.76
b3 0.19 0.70 0.29 0.24
s 0.19 0.21 0.19 0.21
R2 0.93 0.93

Table 2. Model estimation results for the decreased time-trend

Parameters
F1 B

Estimated 
values Z-values Estimated 

values Z-values

a0 2.70 –0.40 2.69 –0.22
a1 0.29 –1.08 0.23 –0.41
a2 –0.01 0.59 -0.01 –0.17
b1 0.25 1.85 0.24 0.18
b2 0.33 –0.57 0.33 0.65
s 0.13 1.49 0.13 1.49
R2 0.86 0.93

3. Case Analysis

It is clarified in Fig. 1 that the maximum intensities of 
the passenger flows per 5 minutes into B and F1 on Sun-
day are stably more than respectively 350 and 250 and 
take shape at around 16:00 and 18:00 correspondingly. 
Given additional sharp increases of the passenger flows 
in such time because of abrupt contributions from near-
by important buildings (i.e. Juntai, Hanguang and RI), 
the operation safety of XS will be under serious threat 
if countermeasures of XS are not fully taken in time. In 
the light of the field survey, the biggest numbers of the 
people using the escalators going downstairs from the 
second floors of Juntai and Hanguang, and the people 
walking towards XS from RI are able to in extreme cor-
respondingly exceed 740, 740 and 1800 in 5 minutes. 
Taking the lower limits of the maximum stable passen-Fig. 4. Flowchart of the estimation process
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ger flows (i.e. 350 and 250) explained above as the pas-
senger flows in last time interval, the random coefficient 
model estimated in Section 2 is utilized here to analyze 
the extreme effect of the related factors on the short-
term passenger flows into B and F1 in subsequent time 
intervals. The designed service capacities of some facili-
ties and equipments adopted in a metro station in China 
under ideal conditions are introduced in Table 3 accord-
ing to the works of Mao (2011) and BUEDRI (2003). 

Table 3. Service capacities of some facilities and equipment

Facilities and equipment Service capacity 
(passengers per hour)

Ticket checking 
machine 

door-style 1800–2100
three-pole-style 1500–1800

Passage
(1 meter wide)

unidirectional 5000
bidirectional 4000

Stairway 
(1 meter wide)

unidirectional 
upstairs 3700

unidirectional 
downstairs 4200

bidirectional 3200

It is found that the intensities of the passenger flows 
into XS through B and F1 are possible within only about 
10 minutes to become close to 6600 and over 4400 per 
hour in extreme for certain operation time of XS after 
the sudden volume increases of the related factors in-
terpreted previously. It can be proved in computation 
based on the capacity values provided in Table 3 that 
even though only less than 50% of the service capaci-
ties of the passages, stairways and ticket checking ma-
chines can be truly utilized in reality (Yang 2010), these 
facilities and equipment in corresponding areas inside 
XS now are respectively as wide and many as enough 
to fully serve these two passenger flows. Nevertheless, 
in this case, the passenger flows will be gathered on the 
platforms of XS very quickly. This will make the secu-
rity of the passengers waiting for trains impossible to be 
guaranteed with full certainty due to the very limited 
areas of the platforms especially when the headways of 
the trains successively arriving at and departing from XS 
are not short enough to cope with the sharp increases of 
the passenger flows into XS. As a result, slowing down 
the speeds of the passenger flows into XS with effective 
countermeasures such as ordinarily extending the walk-
ing distances of the routes to the entrances of the station 
by, for example, setting temporary fences to certain dis-
tance from the entrances is indispensable at such time. 
In order to take the countermeasures in time before es-
pecially an extreme passenger flow attack, the dynamic 
information of the factors associated with the passenger 
flows into a station is also very essential to be promptly 
transferred from, for instance, busy department stores in 
neighborhood to the management authority of the sta-
tion under the premise of the standby of its spare man-
power, mobile facilities and so on.

Conclusions 

Based on the representatively dynamically abrupt 
changes of the passenger flows into Xidan Station (XS) 
in different time intervals of its daily operation on Sun-
day, a random coefficient model is newly developed in 
this research to forecast the short-term changes of the 
passenger flows into an urban rail transit station. The 
parameters of this model are iteratively calibrated with 
hierarchical Bayesian approach and updated by sequen-
tial Bayesian updating in each of the iterative calibra-
tions. It has been confirmed that the estimations to the 
parameters are able to effectively get their reasonable 
convergences with satisfactory accuracies. The case 
study with the application of the proposed random co-
efficient model shows that the newly developed model 
is capable of rationally predicting the exact short-term 
changes of the passenger flows into an urban rail transit 
station. This enables the rail transit station to quickly act 
moderately before the hits of sudden volume increases 
of the passenger flows into it if the station has adequate 
backup manpower, facilities and so on in particular for 
a special day with a huge passenger volume pressure. 
Furthermore, it is also suggested that the instant linkage 
of the information about different factors taking effect 
on the passenger flows into an urban rail transit station 
with nearby important buildings, squares, crossroads, 
etc. which are easily able to cause outbursts of the pas-
senger flows is very essential. This enables the station to 
take appropriate actions in advance for ensuring its op-
eration safety facing up to the threat of sharp increases 
of the passenger flows.

Only a representative metro station, i.e. XS, in Bei-
jing has been analyzed in this research. Moreover, due 
to the limited amount of the survey data, the types of 
the related factors on which this work focuses for the 
studied station are not rich at this stage. Therefore, many 
other different kinds of typical urban rail transit stations 
in the world need to be studied with much more passen-
ger flow data surveyed in future research to further valid 
the results of this research. Furthermore, the interactive 
effect of all the passenger flows into different entrances 
of an urban rail transit station at the same time on the 
safety of the passengers on the platforms of this station 
shall be analyzed as well. In addition, the comparative 
analyzes of the effect of the random coefficient model 
proposed in this study and other forecasting techniques 
for the predictions of short-term changes of various 
kinds of travel demands also ought to be made in the 
future to enrich this work. 
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