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Abstract. Variational mode decomposition (VMD) is a recently introduced adaptive signal 
decomposition algorithm with a solid theoretical foundation and good noise robustness compared 
with empirical mode decomposition (EMD). There is a lot of background noise in the vibration 
signal of diesel engine. To solve the problem, a denoising algorithm based on VMD and Euclidean 
Distance is proposed. Firstly, a multi-component, non-Gauss, and noisy simulation signal is 
established, and decomposed into a given number K of band-limited intrinsic mode functions by 
VMD. Then the Euclidean distance between the probability density function of each mode and 
that of the simulation signal are calculated. The signal is reconstructed using the relevant modes, 
which are selected on the basis of noticeable similarities between the probability density function 
of the simulation signal and that of each mode. Finally, the vibration signals of diesel engine 
connecting rod bearing faults are analyzed by the proposed method. The results show that 
compared with other denoising algorithms, the proposed method has better denoising effect, and 
the fault characteristics of vibration signals of diesel engine connecting rod bearings can be 
effectively enhanced. 
Keywords: variational mode decomposition, Euclidean distance, diesel engine, vibration signal, 
denoising algorithm. 

1. Introduction 

Vibration signal processing has been an effective way of monitoring mechanical equipment 
for many years. However, mechanical vibration signal are usually masked by significant 
background noise, which have motivated many studies into developing denoising methods [1]. 
The vibration signals should be processed to reduce noise and improve the quality before further 
analyzing [2]. Many researchers in this field have made thorough explorations. Wavelet denoising 
is a very effective denoising method in recent years, among which wavelet threshold denoising is 
the most commonly used method [3-6]. However, the denoising effect of this method is affected 
by the selection of basis functions and depends on the subjective experience of the designer, which 
has uncertainty. 

In order to solve the above problems, Huang et al. introduced an adaptive signal processing 
technique called empirical mode decomposition (EMD) [7, 8], which has demonstrated 
outstanding performance in dealing with nonlinear and nonstationary signals. This technique has 
been applied in many fields, such as biomedical image analysis [9], fault diagnosis of rolling 
element bearings [10], signal de-noising [11-13], and voice signal analysis [14]. According to the 
principle of wavelet threshold denoising, EMD threshold denoising is put forward [15, 16].  

Euclidean distance, as an old method, is widely used to judge the similarity between vectors 
and image recognition and so on. Many researchers have studied the Euclidean distance in depth. 
Wang [17] et al. used Euclidean distance for image recognition. Wu [18] et al. used Euclidean 
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distance to identify objects and scenes. Santhanam [19] et al. used Euclidean distance for image 
denoising. In addition, EMD denoising combined with the Euclidean distance (ED) is proposed in 
document [20]. All these methods have achieved good denoising effect. However, EMD still has 
some disadvantages, such as mode mixing and the lack of an exact mathematical model of the 
process.  

In recent years, Konstantin Dragomiretskiy et al. proposed variational modal decomposition 
[18], which is essentially composed of several adaptive Wiener filters and has good noise 
robustness. Compared with EMD, VMD has strong mathematical theory basis. So, it can 
effectively alleviate or avoid a series of problems that exist in EMD, and has higher operation 
efficiency. VMD is widely used in various engineering fields [21-25]. An X. L. et al. applied VMD 
to the bearing fault diagnosis of the wind turbine, and realized the effective discrimination of the 
bearing fault [26]. By combining VMD with detrended fluctuation analysis (DFA), Liu et al. 
successfully extracted gear fault characteristics [27]. By combining VMD with independent 
component analysis (ICA), Yao et al. successfully separated the piston knock and combustion 
noise of the engine [28]. Zhang M. et al. proposed a denoising method based on VMD and 
correlation coefficient (VMD-CORR) [29]. However, because of the large amount of noise in the 
signal, it is easy to remove the useful components in the signal, which leads to the distortion of 
the signal. 

In this paper, a denoising algorithm, called the VMD-Euclidean distance (VMD-ED), is 
presented for vibration signal of diesel engine. Firstly, a multi-component, non-stationary and 
non-Gauss simulation signal is established, and the Gauss white noise is added. Secondly, the 
simulation signal is decomposed by VMD to obtain the band limited intrinsic mode functions 
(BLIMFs). Then the probability density functions (PDF) of the simulation signal and each BLIMF 
are calculated respectively, and the ED between the PDF of the simulation signal and that of each 
BLIMF is calculated. A smaller ED value means that more features are contained in the signal 
under comparison; the relevant modes are thus selected to reconstruct the signal. To validate the 
denoising effect of the proposed scheme, several denoising methods are compared with VMD-ED 
under different evaluation criteria, including the root mean square error (RMSE), mean absolute 
error (MAE), and the output signal-to-noise ratio (SNR out). Compared with the denoising 
methods of document [20, 29], the method proposed in this paper has better denoising effect. 
Finally, the noise of the fault signals of diesel engine connecting rod bearings is effectively 
eliminated by using VMD-ED, and the fault characteristic is highlighted. 

2. Variational mode decomposition 

The VMD algorithm defines the intrinsic mode function as a non-stationary AM-FM signal. 
The intrinsic mode is considered as follows: 𝑢 (𝑡) = 𝐴 (𝑡)cos 𝜑 (𝑡) , (1) 

where the phase 𝜑 (𝑡) shall satisfy the following condition:𝜑 (𝑡) ≥ 0; the envelope line 𝐴 (𝑡) 
should satisfy the following condition:𝐴 (𝑡) ≥  0; the instantaneous frequency 𝜔 (𝑡)  should 
satisfy the following condition:𝜔 (𝑡) = 𝜑 (𝑡) . 𝐴 (𝑡)  and 𝜔 (𝑡)  change slowly, and 𝜑 (𝑡) 
changes more rapidly. 

The Hilbert transform is performed for each modal function 𝑢 (𝑡), and exponential correction is 
applied to obtain 𝐾 modal functions. Then the frequency spectrum of the modal function is corrected 
to the estimated central frequency, and the bandwidth of the modal component is calculated by using 
Gauss smoothing. The variational constraint problem can be defined as follows: 

min, 𝑎 𝛿(𝑡) + 𝑗𝜋𝑡 ∗ 𝑢 (𝑡) 𝑒 ,    𝑠⋅𝑡⋅ 𝑢 (𝑡) = 𝑓(𝑡), (2) 
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where 𝑢  is the modal component, 𝜔  is the central frequency for the modal component, 𝛿(𝑡) is 
the unit pulse function, and * is the convolution symbol. 

In the VMD algorithm, the secondary penalty factor and the Lagrangian multiplication 
operator are used. Then, the alternating direction method is introduced. 𝑢 , 𝜔 , and 𝜆  are 
constantly updated, so that the optimal solution of the variational constraint problem can be solved. 
The expression for the modal component 𝑢  is: 

𝑢 = argmin∈ 𝛼 𝑎 𝛿(𝑡) + 𝑗𝜋𝑡 ∗ 𝑢 (𝑡) 𝑒 + 𝑓(𝑡) 𝑢 (𝑡) + 𝜆(𝑡)2 , (3) 

where 𝛼 is the penalty factor, and 𝜆 is the Lagrange multiplier. 
The expression for the modal component 𝑢  in frequency domain is: 

𝑢 (𝜔) = 𝑓(𝜔) 𝑢 (𝜔) + 𝜆(𝜔)2 11 + 2𝛼(𝜔 − 𝜔 ), (4) 

where 𝜔  is the center of the modal component power spectrum. The Wiener filter is introduced, 
which makes the VMD algorithm have better noise robustness. 

Similarly, the expression for the central frequency 𝜔  is: 

𝜔 (𝜔) = 𝜔|𝑢 (𝜔)| 𝑑𝜔|𝑢 (𝜔)| 𝑑𝜔 . (5) 

The stopping condition of the iteration is: 𝑢𝑘𝑛+1 − 𝑢𝑘𝑛 22‖𝑢𝑘𝑛‖22
𝐾

𝑘=1 < 𝑒. (6) 

The VMD algorithm is a linear transformation, so the signal can be reconstructed. The 
reconstructed signal can be represented as: 

𝑓(𝑡) = 𝑢 , (7) 

where 𝑢  is the final modal component, after the iteration is stopped. 

3. Euclidean distance 

The vibration signals of vehicle structures are mostly symmetrical non-Gauss signals. The PDF 
is calculated according to the Gauss curve stitching method based on empirical information, which 
is proposed by Steinwolf [30]. The PDF can fully reflect the statistical characteristics, the 
distribution law, the cumulant and the statistical moments of each order for non-Gauss signals. By 
comparing the ED between the PDF of the simulation signal and that of each BLIMF, the real 
BLIMFs can be selected to reconstruct the signal. 

The PDF of the signal can be regarded as a point in the 𝑁 dimensional space, and the ED 
between the point A and the point B can be represented as: 
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𝐸𝐷 = (𝑎 − 𝑏 ) , (8) 

where the coordinates of the point A are (𝑎 , 𝑎 , …, 𝑎 ), and the coordinates of the point B are 
(𝑏 , 𝑏 , …, 𝑏 ). The ED reflects the similarity of the two signals as the basis for signal 
reconstruction. 

4. Proposed method 

Vibration signal analysis is usually used for condition monitoring and fault diagnosis.  
However, due to the complex structure of diesel engines, the vibration signals of diesel engines 
are usually multi-component, non-stationary and non-Gauss. In addition, there is a large amount 
of background noise in the vibration signals of diesel engines. Therefore, it is very difficult to 
extract fault characteristics from the vibration signals of diesel engines. 

VMD is a recently proposed signal decomposition method, which is essentially composed of 
a number of adaptive Wiener filters and has good noise robustness. Compared with the EMD 
method, the VMD method has a solid mathematical theoretical foundation, and can effectively 
alleviate or avoid a series of shortcomings in the EMD method. To verify the efficiency of the 
proposed method, several experiments on diesel engine connecting rod bearings faults are 
performed. The detailed experimental scheme is shown in Fig. 1. Firstly, a signal channel vibration 𝑥(𝑡), which is a wearing fault of the diesel engine connecting rod, is collected by the acceleration 
sensor vertically fixed on the diesel engine block. Secondly, the collected vibration signal 𝑥(𝑡) is 
decomposed into six BLIMFs by VMD method. Thirdly, the PDFs of the collected vibration signal 
and each BLIMF are calculated respectively, and the ED between the PDF of the collected 
vibration signal and that of each BLIMF is calculated. Lastly, the relevant modes, which have 
smaller ED values, are thus selected to reconstruct the signal. 

 
Fig. 1. Detailed experimental scheme. BLIMF, band limited intrinsic mode functions;  

PDFs, probability density functions; ED, Euclidean distance 
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5. Experimental results 

5.1. Simulation 

Because of the complex structure of diesel engine, the number of vibration excitation source 
is large, and the vibration source signal is modulated by several components. Therefore, the 
established simulation signal must be multi-component and non-Gauss. According to document 
[31], the simulation signals are performed to verify the effectiveness of the proposed method, 
expressed in Eq. (13)-(18). The mixed signal 𝑆  consists of three components, and the fault 
characteristic frequencies of the mixed signal are 50, 150 and 250 Hz. In addition, the mixed signal 𝑆  consists of four components, and the fourth component is the Gauss white noise: 𝑠 = 1.6cos(2𝜋 ⋅ 50𝑡) ⋅ sin(2𝜋 ⋅ 30𝑡), (9) 𝑠 = cos(2𝜋 ⋅ 150𝑡), (10) 𝑠 = 0.8cos(2𝜋 ⋅ 250𝑡), (11) 𝑠 = randn size(𝑠 ) , (12) 𝑠 = 𝑠 + 𝑠 + 𝑠 , (13) 𝑠 = 𝑠 + 𝑠 + 𝑠 + 𝑠 , (14) 

where 𝑆   is the original simulation signal before adding noise, and 𝑆   is the noisy 
simulation signal after adding noise. The waveforms of the four components are shown in Fig. 2. 

 
Fig. 2. Source simulation signals 

The sampling frequency is 2048 Hz, and the number of sampling points is 2048. The two 
mixed signals in the time domains are shown in Fig. 3. As we can see from Fig. 3, the shock 
component in the signal 𝑆   is weakened and the simulation signal becomes very cluttered, 
which is not convenient for fault feature extraction. 

Then, according to the detailed experimental scheme shown in Fig. 1, the mixed signal 𝑆  
is first decomposed into nine BLIMFs by the VMD method. The nine BLIMFs are shown in Fig. 4. 

As we can see from Fig. 4, pseudo component appears in the nine BLIMFs. Then the PDFs of 
the mixed signal 𝑆   and each BLIMF are calculated respectively. The PDFs are shown in  
Fig. 5. 

As we can see from Fig. 5, the PDFs of different BLIMF are not the same. In order to compare 
the differences among the BLIMFs more accurately, the Euclidean distance between the PDF of 
each BLIMF and that of the mixed signal 𝑆  is calculated respectively. Similarly, the Euclidean 
distance between the PDF of each IMF and that of the mixed signal 𝑆  is calculated by the 
EMD-ED method, and the correlation coefficient between each BLIMF and the mixed signal 𝑆  is calculated by the VMD-CORR method, as shown in Fig. 6 and Table 1. 
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a) 

 
b) 

Fig. 3. Simulation signals: a) waveform of the mixed signal 𝑆 ,  
b) waveform of the mixed signal 𝑆  

 
Fig. 4. BLIMFs decomposed by the VMD method 

As can be seen from Fig. 6 and Table 1, for the proposed method, the Euclidean distance of 
the first 3 BLIMFs is obviously smaller than that of other BLIMFs, which is consistent with the 
composition of the mixed signals. According to the experimental analysis, the Euclidean distance 
threshold is set to 20, and the BLIMFs with Euclidean distance less than 20 are used as the 
component of the reconstructed signal. Therefore, the first 3 BLIMFs are selected to reconstruct 
the signal to obtain the denoised signal. Similarly, using the EMD-ED and VMD-CORR methods 
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mentioned above, the denoised signal is obtained. A part of the reconstructed signal is selected, 
and the reconstructed signals obtained by different methods are shown in Fig. 7. 

 
a) BLIMF 1 

 
b) BLIMF 2 

 
c) BLIMF 3 

 
d) BLIMF 4 

 
e) BLIMF 5 

 
f) BLIMF 6 

 
g) BLIMF 7 

 
h) BLIMF 8 

 
i) BLIMF 9 

Fig. 5. Superposition of the PDF of 𝑆  and those of its BLIMFs 

Table 1. Comparison of different methods 
VMD  Euclidean distance EMD Euclidean distance VMD  Correlation coefficient 

BLIMF1 11.63 IMF1 24.65 BLIMF1 0.60 
BLIMF2 8.62 IMF2 12.19 BLIMF2 0.63 
BLIMF3 13.68 IMF3 10.47 BLIMF3 0.45 
BLIMF4 92.37 IMF4 16.15 BLIMF4 0.41 
BLIMF5 108.7 IMF5 22.12 BLIMF5 0.15 
BLIMF6 111.4 IMF6 25.87 BLIMF6 0.14 
BLIMF7 102.6 IMF7 86.37 BLIMF7 0.15 
BLIMF8 97.58 IMF8 173.2 BLIMF8 0.15 
BLIMF9 97.81 IMF9 313.4 BLIMF9 0.14 

As we can see from Fig. 7, the reconstructed signal obtained by the proposed method is more 
similar to the mixed signal 𝑆 . The noise in the signal is effectively removed, and the shock 
component is highlighted. Therefore, the method proposed in this paper is more effective in 
denoising. In the reconstructed signals obtained by EMD-ED, VMD-CORR and wavelet, there are 
many spikes, which are very different from the original signal. Thus, the denoising effect of the 
three methods is not as good as the proposed method. 

In order to evaluate the performance of different methods more comprehensively, different 
intensities of noise signals (–10-30 dB) are added to the simulation signals. The signal to noise 
ratio (SNR), the root mean square error (RMSE) and the mean absolute error (MAE) of the 
reconstructed signals obtained by different methods are calculated respectively, as shown  
in Fig. 8. 

As we can see from Fig. 8, the SNR of the proposed method is significantly higher than that 
of the other three methods, and RMSE and MAE are significantly lower than those of the other 
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three methods. Therefore, the method proposed in this paper is better than other three methods in 
denoising. 

 
a) VMD-ED 

 
b) EMD-ED 

 
c) VMD-CORR 

Fig. 6. Comparison of different methods 

5.2. Experiment condition  

The structure of diesel engine is complex and the working environment is abominable. As a 
result, it is prone to malfunction. The connecting rod bearing is located inside the engine, so it is 
difficult to diagnose the fault. In this paper, vibration signals are collected from the vibration 
sensors on the experimental stand, as shown in Fig. 9. The basic parameters of the vibration sensor 
are shown in Table 2. The engine on the experimental stand is Cummins 6BT diesel engine, and 
its parameters are shown in Table 3. 

Table 2. Vibration sensor parameters 

Model Sensitivity Frequency range  
(±3 dB) Range Resolution Temperature 

range Weight Output  
connector 

603C01 100 mV/g 0.5 Hz-10 KHz ±50 g 350 μg –54-121℃ 51 g Top 

Table 3. Basic parameters of the engine 
Engine type 6BT5.9-G2 Fuel type Diesel oil Type Inline 6 cylinders 

Rated power (KW) 118 Compression ratio 17.5:1 Ignition sequence 153624 

Rated speed (RPM) 2600 Continuous power 
(KW) 86 Maximum  

torque (N·m) 558 

Radius (mm) 
× Distance (mm) 102×120 Maximum torque  

Speed (r/min) 1600 

The fourth connecting rod bearings of Cummins EQ6BT diesel engine are set with different 
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clearance (0.10 mm, 0.14 mm, 0.20 mm, 0.34 mm) to simulate the normal, minor, moderate and 
severe wear of the connecting rod bearing. Vibration signals are collected on the left side of the 
fourth main bearings on the surface of the engine block. The sampling frequency is 20000 Hz and 
the sampling points are 4096 points. 

Testing temperature is important when acquiring vibration signals. In the experiment, the 
temperature of cooling water is measured to reflect the internal temperature of diesel engine. The 
temperature is controlled at 60-70 °C. 

 
a) Original signal 

 
b) VMD-ED 

 
c) VMD-CORR 

 
d) EMD-ED 

 
e) Wavelet 

Fig. 7. The reconstructed signals obtained by different methods 

5.3. Data acquired  

The acquisition system is composed of collector, computer, sensor and connecting circuit, as 
shown in Fig. 10. According to document [4], the optimum diagnostic speed of this type of diesel 
engine is 1800 r/min. In addition, four speeds were collected in the experiment: 800 r/min, 
1300 r/min, 1800 r/min, and 2100 r/min. The experiment proved that 1800 r/min is the most 
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suitable for the fault diagnosis speed. Therefore, the acquisition system set the speed of the engine 
to 1800 r/min. 

 
a) SNR 

 
b) RMSE 

 
c) MAE 

Fig. 8. Comparison of denoising effects of different methods 

 
Fig. 9. Measuring position of vibration sensor 

The vibration signals of the engine under different wear conditions are collected, as shown in 
Fig. 11. In Fig. 11, there is a large amount of background noise in the vibration signals of different 
wear conditions of the connecting rod, which is unfavorable to the extraction of fault features. The 
signal energy values of different wear conditions are then calculated, as shown in Table 4. 

Diesel 
engine

Speed sensor

Vibration sensor

Oil pressure 
sensor

Speed measuring 
device

A/D converter
Computer

 
Fig. 10. Vibration signal acquisition system 
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a) Normal wear 

 
b) Minor wear 

 
c) Moderate wear 

 
d) Severe wear 

Fig. 11. Vibration signals of connecting rod bearing under different wearing conditions 

From Table 4, it can be seen that there is no regularity in the signal energy of different wear 
conditions. Therefore, the fault features of the signal can not be extracted, and the signal needs to 
be further processed. 

Table 4. The signal energy of different wear conditions before the signal de-noising 
Wear condition Normal wear Minor wear Moderate wear Severe wear 
Signal energy 1027.9 989.3 999.2 940.6 

5.4. Experimental data processing  

The vibration signal of connecting rod bearing is analyzed according to the method proposed 
in this paper. The Euclidean distance between the PDF of each BLIMF and that of the vibration 
signals under different wear conditions is shown in Fig. 12 and Table 5. 

 
Fig. 12. The Euclidean distance between the PDF of each BLIMF and  

that of the vibration signals under different wear conditions 

1 2 3 4 5 6 7 8 9
40

50

60

70

80

90

100

BLIMFs

E
uc

lid
ea

n 
di

st
an

ce

 

 
Normal wear
Minor wear
Moderate wear
Severe wear



2908. VARIATIONAL MODE DECOMPOSITION DENOISING COMBINED WITH THE EUCLIDEAN DISTANCE FOR DIESEL ENGINE VIBRATION SIGNAL.  
GANG REN, JIDE JIA, JIANMIN MEI, XIANGYU JIA, JIAJIA HAN 

2056 JOURNAL OF VIBROENGINEERING. AUGUST 2018, VOLUME 20, ISSUE 5  

Table 5. The Euclidean distance between the PDF of each BLIMF  
and that of the vibration signals under different wear conditions 

BLIMFs Normal wear Minor wear Moderate wear Severe wear 
BLIMF1 69.39 67.08 64.78 66.31 
BLIMF2 49.16 48.08 47.00 47.72 
BLIMF3 75.64 71.18 66.73 69.70 
BLIMF4 50.12 51.21 52.30 51.58 
BLIMF5 42.62 45.51 48.40 46.47 
BLIMF6 62.06 63.13 64.20 63.48 
BLIMF7 75.74 71.40 67.05 69.95 
BLIMF8 70.82 72.17 73.52 72.62 
BLIMF9 78.23 77.42 76.60 77.15 

As we can see from Fig. 12 and Table 5, the Euclidean distance of the BLIMF2, BLIMF4 and 
BLIMF5 is obviously smaller than that of other BLIMFs for the vibration signals under different 
wear conditions. According to the experimental analysis, the Euclidean distance threshold is set 
to 60, and the BLIMFs with Euclidean distance less than 60 are used as the component of the 
reconstructed signal. Therefore, the BLIMF1, BLIMF4 and BLIMF5 are selected to reconstruct 
the signal. A part of the reconstructed signal is selected, and the reconstructed signals under 
different wear conditions are shown in Fig. 13. 

 
a) Normal wear 

 
b) Minor wear 

 
c) Moderate wear 

 
d) Severe wear 

Fig. 13. The reconstructed signals under different wear conditions 

As we can see from Fig. 13, in the reconstructed signals under different wear conditions, the 
noise is reduced effectively. As compared with Fig. 11, the signals become smoother and the shock 
components are more obvious. In order to further investigate the denoising effect of the proposed 
method, the vibration signals and reconstructed signals of different wear conditions are 
transformed by Morlet wavelet, as shown in Fig. 14. The signal energy values of different wear 
conditions are then calculated, as shown in Table 6. 

Table 6. The signal energy of different wear conditions after the signal de-noising 
Wear condition Normal wear Minor wear Moderate wear Severe wear 
Signal energy 389.0 413.2 446.1 476.2 
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As we can see from Fig. 14, compared with the vibration signals, the noise is effectively 
suppressed in the reconstructed signals, and the fault characteristics are obviously enhanced. From 
Table 6, we can see that with the deterioration of the wear condition, the signal energy value 
increases gradually. Thus, the denoising method proposed in this paper is effective. 

 
a) Normal wear vibration signal 

 
b) Normal wear reconstructed signal 

 
c) Minor wear vibration signal 

 
d) Minor wear reconstructed signal 

 
e) Moderate wear vibration signal 

 
f) Moderate wear reconstructed signal 

 
g) Severe wear vibration signal 

 
h) Severe wear reconstructed signal 

Fig. 14. Time frequency analysis of vibration signals  
and reconstructed signals under different wear conditions 
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6. Conclusions 

A new method based on VMD and Euclidean distance is proposed for diesel engine vibration 
signals, which usually contain a large amount of background noise. Firstly, the vibration signals 
are decomposed into several BLIMFs. Secondly, the PDFs of the vibration signals and each 
BLIMF are calculated respectively, and the Euclidean distance between the PDF of each BLIMF 
and that of the vibration signals is calculated. Finally, the BLIMFs with smaller Euclidean distance 
value are selected to reconstruct the signal. Compared with EMD-ED and VMD-CORR, the 
denoising method proposed in this paper is more effective. The proposed method is applied to the 
vibration signals of diesel engine connecting rod bearing wear faults. The noise is effectively 
suppressed, and the fault characteristics are obviously enhanced. However, the proposed method 
needs a given number of BLIMFs when vibration signal is decomposed by VMD, which is a 
drawback currently. Future work will focus on further optimization of the proposed method. 
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