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Breast cancer is a major public health problem which treatment needs new

pharmacological options. In the last decades, during the postgenomic era new theoretical

and technological tools that give us novel and promising ways to address these problems

have emerged. In this work, we integrate several tools that exploit disease-specific

experimental transcriptomic results in addition to information from biological and

pharmacological data bases obtaining a contextual prioritization of pathways and drugs

in breast cancer subtypes. The usefulness of these results should be evaluated in terms

of drug repurposing in each breast cancer molecular subtype therapy. In favor of breast

cancer patients, this methodology could be further developed to provide personalized

treatment schemes. The latter are particularly needed in those breast cancer subtypes

with limited therapeutic options or those who have developed resistance to the current

pharmacological schemes.

Keywords: drug repositioning, breast neoplasms, systems biology, databases, genetic, pathway analysis,

personalized medicine

1. INTRODUCTION

Breast cancer is a major public health concern and a main cause of death in young women
worldwide (Ferlay et al., 2015). Breast cancer is characterized by an heterogeneous nature at the
histological, molecular, and systemic levels. To cope with this heterogeneity, multiple prognostic
and therapeutic approaches have been developed to handle this disease. From classifications
based on clinical parameters or histopathologic markers (for example estrogen receptor[ER],
progesterone receptor [PR], and epidermic human growth factor receptor [HER2]) (Prat et al.,
2015) to molecular classifications based on gene expression values of the samples, such is the case
of PAM50 classification (Parker et al., 2009).

The four breast cancer intrinsic subtypes (Luminal A, Luminal B, Basal, and Her2-enriched)
defined by PAM50 offer more accurate clinical information than the classifications based on
histopathologic parameters (Prat et al., 2015). The predictive power of PAM50 regarding patient
prognosis is an example of this increase in accuracy (Prat et al., 2014, 2015). Furthermore, the new
breast cancer international guidelines (Coates et al., 2015; Senkus et al., 2015) not only mention the
utility of PAM50 intrinsic subtypes, but the latter states that they are indeed a central piece of the
therapeutic and classification algorithms.
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It is worth mentioning that the scarcity of effective therapeutic
options, in particular for certain subtypes—such as basal, or
triple-negative tumors—still present a challenge for clinicians
who often have to resort to highly unspecific cytotoxic therapies.

In order to help solve this problem, theoretical and
methodological advances are aimed at the development of
improved therapeutic options firmly based on a deeper biological
understanding of the disease. Three of these advances are
particularly important in our view.

First, high throughput technologies capable of retrieve a huge
amount of biological data; for example, expression microarrays
or RNAseq which allow us to approach the study of the
transcriptome, i.e., the set of RNAmolecules present in biological
entities. Second, The conception that generally speaking, a
biological function of the living cell is a result of many interacting
molecules; It can not be attributed to just a single gene or
a single molecule. The above can be represented as a set of
genes in the genome linked through a network of interacting
molecules in the cell, such as a “Pathway,” representing a higher
order biological function (Kanehisa and Goto, 2000). Third, the
development of areas such as pharmacogenomics, which try to
analyze by means of a global approach all the genes involved
in the response to a certain drug in a variety of conditions
(Pirmohamed, 2001). Such pharmacogenomics approach has
evolved from a view centered on isolated genes to one based on
pathways (García-Campos et al., 2015). Pharmacogenomics has
progressively adopt a variety of high throughput technologies
including genomics, transcriptomics, proteomics, and others, to
enhance its capacity for generating and testing hypotheses and
transfer these hypotheses to the clinical practice (Wang, 2010).

Despite these advances, for many breast cancer patients
prognosis remains poor for both survival and quality of life
(which is further affected by side effects of the pharmacological
treatment itself). New, more effective and less harmful
therapeutic options are needed, especially for certain subgroups
of breast cancer patients, for example, those who suffer from
basal subtype or from a tumor which develop resistance to
usual therapeutic schemes (Prat et al., 2014; Yu and Jones, 2016;
Friese et al., 2017). Some causes of this deficit of therapeutic
options are the high economic and logistic costs involved,
not only in traditional drug development (i.e., the path from
concept to drug’s approval), but also in the clinical evaluation
of its usefulness in diseases for which the drug was not initially
conceived, or drug repurposing assessment. In both cases, a more
accurate selection of pharmacological targets is crucial to achieve
viability and high rate of success. For all of the aforementioned
reasons, a main goal of the present study is to answer the
question: is it possible to identify new associations between
pharmacological targets and their respective pathways to each
breast cancer molecular subtype? In order to answer this, we
propose a computational analysis based on the systematic inquiry
of all relevant deregulated pathways specific for each breast
cancer subtype, and the assessment of target genes (belonging
to the aforementioned pathways), which are susceptible to
pharmacological modulation. This approach relies on large,
well-curated gene expression datasets from high throughput
technologies coming from the two flagship projects (TCGA and

METABRIC) of transcriptomic characterization of mammary
tumors. Such projects are hence the gold standard reference in
terms of quality and quantity of samples. Adding to this, the use
of state of the art computational methods will allow us to develop
a reliable, trustworthy study that supports the results that will be
presented.

2. MATERIALS AND METHODS

2.1. Outline
The analysis pipeline followed in the present work is depicted in
Figure 1. Briefly, we obtained two data sets of gene expression
experiments, one data set came from METABRIC (Curtis et al.,
2012) repository and the other one from TCGA (Ciriello et al.,
2015). Each data set was build up trough different technologies,
namely Microarrays (METABRIC) and RNAseq (TCGA). Then,
the samples were classified in its respective molecular breast
cancer subtype according the PAM50 algorithm (Parker et al.,
2009). After that, we identified the most deregulated pathways
in each breast cancer subtype through Pathifier algorithm
(Drier et al., 2013). Each deregulated molecular pathway was
associated to its known pharmacological targets according to
information from pharmacological databases. Finally, these
drug-subtype relations were classified according to information
available in both the pharmacological databases as well as
information from the gene expression data of the samples
themselves. Supported by these analyses we develop a Database
Based Drug Repurposing (DBDR) method that allows for the
implementation of precision medicine approaches, that may
be applied even at the individual (personalized medicine)
level.

2.2. Data Sources
As already discussed, our analysis is supported with information
coming from the largest, more reliable whole-genome breast
cancer gene expression datasets available, the ones provided
by the METABRIC and TCGA consortia, respectively. We will
briefly describe those datasets—at the level used here—. For
more detailed information, please consult the original sources as
referenced.

METABRIC (Molecular Taxonomy of Breast International
Consortium) is a collection of over 2,000 clinically annotated
primary fresh-frozen breast cancer specimens from tumor banks
in the UK and Canada, more details about those data can be
found in Curtis et al. (2012). To minimize batch effects, we only
use the “discovery set” consisting in expression data from 997
samples of women with breast cancer and the “control set” a set
of expression data from 144 samples from adjacent normal breast
tissue.

Data were provided under request through the following
download platform:

https://www.ebi.ac.uk/ega/about/your_EGA_account/
download_streaming_client.

TCGA (The Cancer Genome Atlas) is a specialized database
that stores high throughput technology data of at least 33 types of
breast cancer obtained frommore than eleven thousand patients.
This big database is a reference point in terms of quality and

Frontiers in Pharmacology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 905

https://www.ebi.ac.uk/ega/about/your_EGA_account/download_streaming_client
https://www.ebi.ac.uk/ega/about/your_EGA_account/download_streaming_client
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Mejía-Pedroza et al. Drug Repositioning in Breast Cancer Subtypes

FIGURE 1 | Pipeline performed in this study: (A) We obtained two data sets of gene expression experiments, one data set from METABRIC (Microarrays) and the

other one from TCGA (RNAseq). Each dataset was analyzed independently using this pipeline. (B) Samples were classified in their respective molecular breast cancer

subtype according the PAM50 algorithm. (C) From Pathway databases (PDB) we identified the most deregulated pathways in each breast cancer subtype through

Pathifier algorithm. (D) For each pathway, genes known as pharmacological targets were identified, as well as the nature of said drug-target interaction according to

pharmacological databases (DrugDB). (E) Differential expression analysis was performed comparing each molecular subtype against control samples. (F) Finally,

information regarding the aforementioned steps was integrated.

sample size. We used the data set generated and published
by Ciriello et al. (2015) which come from 808 biopsies of
women with breast cancer and 112 from adjacent normal breast
tissue.

Data were downloaded with their respective clinical
information from the following internet address:

http://www.cbioportal.org/study?id=brca_tcga_pub2015#
summary.

2.3. Preprocessing
In METABRIC Each RNA transcriptional profiling was
extracted through the Illumina HT-12 v3 microarray

platform. The consortium provides the data in the form of
preprocessed expression matrices. The detailed description of
the preprocessing performed in the data can be found in the
original publication (Curtis et al., 2012).

Similarly to the previous case, the data used for TCGA are
provided as preprocessed expression matrices. Details about
data preprocessing could be found in the original publication
(Wilkerson et al., 2014). Briefly (As reported by the author),
RNA sequencing was performed on Illumina HiSeq. Resulting
sequencing reads were aligned to the human hg19 genome
assembly using MapSlice (Wang et al., 2010). Gene expression
was quantified for the transcript models corresponding to the
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TABLE 1 | Table Distribution of subtypes by database.

Database Control Basal Her2 Lumina A Luminal B Sum

METABRIC 144 118 87 466 268 1,083

TCGA 112 136 65 411 171 895

Sum 256 254 152 877 439 1,978

TCGA GAF 2.13 using RSEM4 and normalized within samples
to a fixed upper quartile. Upper quartile normalized RSEM data
were log2 transformed.

2.4. Subtyping
Samples were classified through PAM50 (Parker et al., 2009)
algorithm by METABRIC and TCGA consortiums themselves.
The proportions of samples per subtype inside each database are
shown in Table 1.

2.5. Functional Enrichment Analysis
To identify the most deregulated molecular pathways we use
Pathifier (Drier et al., 2013). Pathifier is an algorithm
that integrates experimental data from high throughput
technologies and pathway information from biological databases
(Supplementary Material).

Pathifier provides as a result a deregulation value for each
molecular pathway in each sample. This deregulation value is
called “Pathway Deregulation Score” or PDS. This methodology
has been used previously to observe deregulated pathways in
breast cancer samples from TCGA (Drago-García et al., 2017).
Importantly, Pathifier assigns a PDS for each individual sample,
which in our case is a fundamental feature for choosing this
method to assess the deregulation level for pathways of each
breast cancer subtype.

In our case we use the molecular pathways defined by KEGG
(Kanehisa and Goto, 2000) and the analysis was performed
independently in each database (METABRIC and TCGA) for
each tumor subgroup of breast cancer comparing it against its
corresponding control group. Figure 2 shows the result of the
calculation of Pathifier for the basal subtype of METABRIC
against its respective controls.

In order to identify the most deregulated pathways by subtype
we performed a z-score transformation over the PDS that
belonged to each pathway(row). This transformation allow us
to compare the deregulation scores (called “PDSz” here after)
between different molecular pathways as described by the author
of the method (Livshits et al., 2015). We looked for those
pathways whose patients exhibited the highest PDSz consistently
in both databases. This was done as follows: the algorithm returns
“n” PDSz values (one PDSz per each patient) for a given pathway.
We used the median thus obtaining only one deregulation
value per molecular pathway in each database. then we sort
the values and got the intersection in METABRIC and TCGA
data of top 30 most deregulated pathways. Results are shown in
Table 2.

2.6. Drug Target Associations
The aim of this procedure was to identify which of the
studied genes (in the broad sense of the word) could be
considered as pharmacological targets by virtue of a drug
acting upon it, according to pharmacological databases. Drug-
target associations were identified through a tool known as The
Drug-Gene Interaction Database (www.dgidb.org). This platform
integrates information of at least 15 pharmacological databases
which include information about drugs, pharmacological targets,
type of drug-target interaction, data sources, and other
characteristics. That tool was used through its implementation
as bioconductor package which name is RDGIdb (Wagner et al.,
2015).

2.7. Prioritization of Pharmacological
Targets
Drugs were classified according to the following criteria. First, if
there was a molecular pathway with which the drug interacts—
i.e., if the drug has any kind of physicochemical effect in at
least one of the pathway’s elements, having a noticeable effect in
the pathway itself—. Second, if that molecular pathway resulted
highly and consistently deregulated in a breast cancer molecular
subtype (as it is found by applying pathway deregulation
calculations in both gene expression datasets under study). Third,
if the pharmacological target gene was differentially expressed
in that breast cancer subtype in relation to healthy controls.
Fourth, depending the type of interaction of the drug with the
pharmacological target, in particular whether the effect of the
drug (a) leads to a return of the target gene basal expression
level (for presentation purposes,we will call homeostasis), (b)
given an overexpressed/underexpressed target, leads to a higher
overexpression/underexpression (anti-homeostasis), or (c) leads
to an undetermined behavior of the target.

2.8. Differential Expression Analysis
Differential expression analysis is a procedure which allows
to identify if the same gene holds different expression levels
with respect to two conditions (in our case a breast cancer
subtype compared to adjacent normal breast tissue). In this study,
differential expression analysis was made through the limma
(Ritchie et al., 2015) bioconductor (Gentleman et al., 2004)
package for the case of METABRIC data and with DeSeq2 (Love
et al., 2014) in the case of TCGA data. Threshold parameters used
for those analysis were a absolute log fold chance (base 2) >1,
a Benjamini-Hochberg adjusted p-value lesser than 0.001 and a
FDR lesser than 0.1. All the code was developed using the Emacs
speak statistics package (Rossini et al., 2004)

2.9. Individualized Proof-Of-Concept
Since Pathifier provides a PDS per sample, the deregulation of
any given pathway is different for each patient. The final section
is composed by two examples of deregulated pathways in two
patients with basal subtype. There we show the PDS for their
most deregulated pathways, the genes which are susceptible to
pharmacological modulation, and also the drugs that modulate
these targets and concomitantly, the associated pathways, paying
special attention to those drugs that have a mechanism of action
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FIGURE 2 | Heatmap depicting the PDS for the Basal subtype (basal samples are marked with a pink label) and normal breast tissue (gray labels) in the METABRIC

study, rows correspond to molecular pathways and columns are individual samples.
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TABLE 2 | Concordance between the most deregulated pathways.

Molecular

subtype

Deregulated pathways

Basal Olfactory transduction, Hedgehog signaling pathway, Cell cycle,

Base excision repair, ErbB signaling pathway, Neurotrophin

signaling pathway, Metabolic pathways, Apoptosis, Oocyte

meiosis, Drug metabolism - other enzymes

Her2 Toll-like receptor signaling pathway, Apoptosis,

Vasopressin-regulated water reabsorption, Aldosterone-regulated

sodium reabsorption, Glycine, serine and threonine metabolism,

DNA replication, ErbB signaling pathway, Melanogenesis

LumA Jak-STAT signaling pathway, NF-kappa B signaling pathway,

Glycerolipid metabolism, Fatty acid degradation, TNF signaling

pathway, Fc epsilon RI signaling pathway, Leukocyte

transendothelial migration, Osteoclast differentiation,

ECM-receptor interaction, Ascorbate and aldarate metabolism,

FoxO signaling pathway

LumB Steroid biosynthesis, Retinol metabolism, cAMP signaling

pathway, Vasopressin-regulated water reabsorption, Adrenergic

signaling in cardiomyocytes, Progesterone-mediated oocyte

maturation, Thyroid hormone synthesis, GnRH signaling pathway,

Glutamatergic synapse

of direct and selective interaction with the identified target, thus
reducing the undesired side effects.

3. RESULTS

3.1. Deregulated Pathways by Breast
Cancer Subtype
3.1.1. Deregulated Pathways Were Consistent Across

Different Technologies
The deregulated pathways by subtype were consistent across
different technologies. Unsupervised hierarchical clustering was
performed to see if the set of pathway deregulation levels related
to one particular breast cancer subtype was consistent with the
subtype itself or instead it was consistent with the technology
where the data come from. Before carrying out this procedure,
were calculated the PDSz (the level of deregulation associated to
each pathway in each tumoral subtype) as described in section
Materials and Methods. Thus, there were eight sets of PDSz,
considering four tumoral subtypes and two different data sources.
After that, unsupervised hierarchical clustering was applied. The
result of this analysis is shown in Figure 3, where it can be seen
that data do not group according to the technology by which they
were obtained, instead they group according to the biological
condition from which they come.

3.1.2. Agreement Between the Most Deregulated

Pathways
For each tumoral subtype the 30 pathways with higher
deregulation score were taken and then we selected the ones
which coincided in both databases (from now on called the
most deregulated pathways by breast cancer subtype). These are
mentioned in Table 2.

Finally, information regarding the deregulation value of the
pathway associated to the pharmacological target for the breast

cancer subtype, the differential gene expression status of the
pharmacological target, type of interaction between drug and
pharmacological target, the relationship between the type of
drug-target interaction and the differential expression status of
the latter, is presented in Supplementary Material.

A brief example of the above mentioned database is provided
in Table 3. Columns show several criteria by means of which the
pharmacological targets were classified: Drug associated to the
pharmacological target, Gene associated to the target, Pathway
to the molecular pathway which pharmacological target belongs
to. logFC refers to the logarithmic differential expression ratio
of the pharmacological target gene in the breast cancer subtype
relative to its controls. InteractionType to the type of interaction
between the drug and the pharmacological target. Homeostasis is
a term determined according to the differential expression status
of the pharmacological target gene and the type of drug-target
interaction. Finally, Source refers to the database from which the
information was obtained.

3.2. Pharmacological Targets Are
Associated to Specific Molecular Subtypes
Pharmacological target were selected from the pathways that are
the most deregulated for a specific subtype of breast cancer and
also coincide in both databases. Additionally, the target has to be
differentially expressed.

The selected pathways and the number of associated
pharmacological targets are shown inTable 4. There, rows are the
most deregulated molecular pathways in both databases by breast
cancer subtype as shown in Table 2. Columns are PAM50 breast
cancer subtypes and number of pharmacological targets that are
also differentially expressed in each subtype of breast cancer.

We can notice that there are many more pharmacological
targets associated to each molecular subtype than those currently
used for their clinical treatment. In Figure 4 we can see a
multipartite network of pathways-targets-drugs for basal tumors.
A number of potential therapies (not currently used) is evident,
as is the redundancy of the network, which could be indicative
for flexible therapeutic approaches.

Seventy-nine drugs leading to homeostasis over eight highly
deregulated pathways have been found for the Basal breast cancer
subtype. This acquires particular relevance since this subtype is
closely associated to triple negative tumors, for which directed
(i.e., non-purely cytotoxic) pharmacological therapies are scarce.

The fact that a high number of drugs already in the
market (i.e., after passing phase I, II, and III clinical trials and
receiving legal approval) are able to target directly some of the
most deregulated pathways in this hard-to-treat tumors points
out to the actual scope of pathway-based drug repurposing
approaches. A further application of these findings on the
road to personalized medicine is shown in the Discussion
section.

4. DISCUSSION

Breast cancer is a public health problem which treatment require
new pharmacological options. In the present study, For each
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FIGURE 3 | Deregulated pathways were consistent across different technologies. The data are the level of deregulation associated to each pathway in each breast

cancer subtype (as is described more detailed in functional enrichment analysis subsection). Color scale corresponds to the level of deregulation in each pathway

where red is very deregulated and blue is little deregulated. Rows correspond to KEGG molecular pathways, columns to subtypes of breast cancer according to the

database of provenance (MET means METABRIC). We can observe that the breast cancer subtypes traditionally considered as more aggressive have higher levels of

deregulation. Also we can seen that the data (sets of PDSz) do not group according to the technology by which they were obtained, instead they group according to

the biological condition from which they come.
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TABLE 3 | Example of the information contained in the database.

Pathway Gene Drug Interaction type Source logFC Effect

hsa00230 Purine metabolism HPRT1 AZATHIOPRINE Inhibitor DrugBank 1.623 Homeostasis

hsa00230 Purine metabolism PNP CLADRINE Inducer DrugBank 1.628 Anti-homeostasis

hsa00230 Purine metabolism PDE2A TOFISPAM Inhibitor DrugBank −3.962 Anti-homeostasis

hsa00230 Purine metabolism PDE8B KETOTIFEN Inhibitor DrugBank −2.509 Anti-homeostasis

hsa00310 Lysine degradation ALDH2 DISULFIRAM Inhibitor DrugBank −2.363 Anti-homeostasis

hsa00100 Steroid biosynthesis SQLE NAFTIFINE Inhibitor DrugBank 2.703 Homeostasis

hsa00100 Steroid biosynthesis SQLE TERBINAFINE Inhibitor DrugBank 2.703 Homeostasis

hsa00100 Steroid biosynthesis SQLE BUTENAFINE Inhibitor DrugBank 2.703 Homeostasis

hsa00100 Steroid biosynthesis SQLE ELLAGIC ACID Inhibitor DrugBank 2.703 Homeostasis

TABLE 4 | Pharmacological targets by tumor subtype.

Deregulated pathway Tumor

subtype

Number of

druggable

targets

Adipocytokine signaling pathway Luminal B 6

Aldosterone-regulated sodium reabsorption Her2+ 6

Apoptosis Basal 6

Apoptosis Her2+ 3

Ascorbate and aldarate metabolism Luminal A 1

Cell cycle Basal 7

Cell cycle Luminal B 4

Drug metabolism - other enzymes Basal 3

ECM receptor interaction Luminal A 4

ErbB signaling pathway Basal 4

ErbB signaling pathway Her2+ 5

Fatty acid degradation Luminal A 5

Fatty acid degradation Luminal B 5

Fc epsilon RI signaling pathway Luminal A 1

FoxO signaling pathway Luminal A 6

Glycerolipid metabolism Luminal A 3

Glycerophospholipid metabolism Luminal B 4

Glycine, serine and threonine metabolism Her2+ 6

Jak-STAT signaling pathway Luminal A 5

Leukocyte transendothelial migration Luminal A 2

Leukocyte transendothelial migration Luminal B 4

Melanogenesis Her2+ 2

Metabolic pathways Basal 46

Neurotrophin signaling pathway Basal 7

NF-κ signaling pathway Luminal A 1

Olfactory transduction Basal 1

Oocyte meiosis Basal 5

Osteoclast differentiation Luminal A 3

Osteoclast differentiation Luminal B 7

Steroid Biosynthesis Luminal B 1

TNF signaling pathway Luminal A 5

Toll-like receptor signaling pathway Her2+ 5

Notice that despite there are subtypes that present the same deregulated pathway, the

number of targets between subtypes is different.

breast cancer molecular subtype we looked for deregulated
pathways that are pharmacologically modulable and are not
currently used in the corresponding breast cancer subtype
therapy. We have identified new pharmacological targets (and
their respective pathways) that are potentially useful in breast
cancer subtypes treatment.

Significant amount of work has been dedicated to the
discovery of novel drug-disease associations. Previous efforts
have been made to associate drug response with gene signatures
(Lamb et al., 2006; Lee, 2017). However, those tools were designed
to be used in cell lines, their performance in real human
cells has not been explored. Furthermore, those approaches
were built up with a relatively small number of drugs, and
they were not built specifically in the context of breast
cancer.

With this in mind, we performed a data-driven approach
to the actual phenomenology of the different breast cancer
subtypes as represented by their distinctive gene expression
patterns, to look up for sets of patient-specific deregulated
pathways, then by resorting to molecular and drug databases.
We designed a methodology to find out druggable targets whose
associated drugs were already in the market, i.e., we built a drug
repositioning strategy.

4.1. New Relations Between Pathways and
Subtypes
Table 2 shows the set of the highly deregulated molecular
pathways associated to each subtype of breast cancer. The
description of how the associations were made is discussed in the
section Materials and Methods, as well as in the Results section.
Some of the associations found in the present study between
breast cancer subtypes and molecular pathways are already
known and intensively studied, in fact, there are pharmacological
targets belonging to these molecular pathways which are
currently employed for the treatment of the corresponding breast
cancer subtype. Some of these relationships will be mentioned
below.

With regard to Her2-enriched subtype, in our study, it is
associated to the ErbB signaling pathway one of the most studied
pathways for this subtype (the name of this subtype of breast
cancer is due to the relationship with this pathway). The ErbB2
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FIGURE 4 | Pharmacological targets of the most deregulated pathways for basal breast cancer subtype. In gray the most deregulated molecular pathways by PDS

are shown. In green color, we represent the differentially expressed pharmacological targets that had a drug which lead to homeostasis. Finally, in apricot color we

show the drugs that affect expression of such pharmacological targets. We can observe that there are many more pharmacological targets associated to this specific

tumoral subtype than those currently used for their clinical treatment.

receptor is the mainstay of pharmacological treatment in patients
with the Her2-enriched breast cancer subtype (Senkus et al.,
2015). In the present study we also associate the Her2-enriched
subtype with the molecular pathway of apoptosis and DNA

replication, where it has already been described in the literature
to detail how the overexpression of Her2 leads to uncontrolled
cell proliferation and suppression of apoptosis (Carpenter and
Lo, 2013).
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FIGURE 5 | Pharmacological targets of ErbB2 signaling pathway in Her2-enriched subtype. The figure shows the five differentially expressed pharmacological targets

(more than those currently exploited in the clinic) obtained with our approach.

Regarding the basal subtype, its association with themolecular
pathways of apoptosis and cell cycle is not new; the increase in
cell proliferation and apoptosis is a well-known characteristic of
this subtype (Choo and Nielsen, 2010). Moreover, lapatinib (a
Her2 inhibitor) has been shown to be useful in treatment when
combined with other agents in breast cancer models of the basal
phenotype (Liu et al., 2011), therefore the association of this
molecular subtype with Her2 signaling pathway is not entirely
new.

Although several associations found in the present study
between molecular pathways and subtypes of breast cancer
are under intense study, here we propose novel associations
that do not have been previously reported, based on the
present study. This strategy results promising to evaluate their
usefulness in generating knowledge regarding breast cancer
treatment.

4.2. New Relations Between
Pharmacological Targets and Subtypes
We found different pharmacological targets associated to each
breast cancer subtype. The number of pharmacological targets
associated to each breast cancer subtype is shown in Table 4

and how they were associated is described in the Results
section. In that table we can note that even in the cases
where two breast cancer subtypes share the same deregulated
molecular pathway, the number of differentially expressed
pharmacological target genes is different. By observing Table 4

we see that in themolecular subtypeHer2-enriched themolecular
pathway “ErbB signaling” has five deregulated pharmacological
targets. These are shown in detail in Figure 5. However
only one of these five pharmacological targets is currently
indicated in the clinical practice guidelines for breast cancer:
ErbB2.

Currently, 1–5 pharmacological targets are typically used in
clinic, depending on the molecular subtype of the patient. In
this work we show that more than a dozen pharmacological
targets are associated to each breast cancer subtype. Therefore,
a subsequent evaluation of these new pharmacological targets
may lead to some new therapeutic options, needed in the
clinic environment. Finally, it is worth to mention that each
pharmacological target may have several (up to dozens) drugs
or chemical compounds that exert actions over it. Such
condition amplifies the ways to modulate the therapeutic
effect.
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4.3. DBDR in the Age of Personalized
Medicine
In what follows we will present, as a proof-of-concept,
an application of the DBDR approach to two individual
breast cancer patients (within our datasets) with known gene
expression profiles. Based on such expression profile, specific
molecular subtype and main deregulated pathways can be
known.

We decided to focus these examples in the basal subtype,
since the scarcity of non-cytotoxic therapeutic options and
the poor prognosis of patients having this phenotype. In
the two following boxes we show the deregulated pathway
with their respective PDS, their associated target genes,
and the drugs that lead to homeostasis of said pathways.
Each proposed drug set was checked so that all of the
drug pairs do not have any known drug interaction.
Finally we discussed a personalized set of drugs for each
individual.

4.3.1. Individual Therapy Designed for Patient

[MB.3058]
This is a patient classified as having a basal tumor with the
following deregulated pathways:

Pathway PDS Target Drug

Steroid biosynthesis 0.937 SQLE TERBINAFINE

Pyrimidine metabolism 0.466 TYMS PEMETREXED

or

Capecitabine

Sphingolipid

metabolism

0.628 SPHK1 SK1-I

Olfactory transduction 0.736 NA NA

Apoptosis 0.398 BIRC5 ALVOCIDIB or

Paclitaxel

Oocyte meiosis 0.406 AURKA,

CDK1

ALISERTIB,

DINACICLIB

Cell cycle 0.328 CDK1 DINACICLIB

Neurotrophin signaling

pathway

0.765 NA NA

ErbB signaling pathway 0.783 NA NA

Drug metabolism–other

enzymes

0.712 NA NA

In view of this particular set of deregulated pathways and gene
expression patterns, individualized therapy for this patient may
include the following drugs: TERBINAFINE, PEMETREXED,
or CAPECITABINE, and SKI-1. Alvocidib, paclitaxel, alisertib y
dinaciclib are not considered since the low PDS in their respective
pathways.

4.3.2. Individual Therapy Designed for Patient

[MB.5387]
This is a patient classified as having a basal tumor with the
following deregulated pathways:

Pathway PDS Target Drug

Steroid biosynthesis 0.597 SQLE TERBINAFINE

Pyrimidine metabolism 0.605 TYMS PEMETREXED

or

Capecitabine

Sphingolipid

metabolism

0.590 SPHK1 SK1-I

Olfactory transduction 0.500 NA NA

Apoptosis 0.712 BIRC5 ALVOCIDIB

or Paclitaxel

Oocyte meiosis 1 AURKA,

CDK1

ALISERTIB,

DINACICLIB

Cell cycle 0.718 CDK1 DINACICLIB

Neurotrophin signaling

pathway

0.839 NA NA

ErbB signaling pathway 0.616 NA NA

Drug metabolism–other

enzymes

0.846 NA NA

In view of this particular set of deregulated pathways and gene
expression patterns, individualized therapy for this patient may
include the following drugs: TERBINAFINE, PEMETREXED,
or CAPECITABINE, SK1-I, ALVOCIDIB, or PACLITAXEL,
ALISERTIB, andDINACICLIB.

4.4. Scope and Limitations
A systems biology approach such as the one presented here
is aimed at primary discovery and hypotheses generation. As
such, there is a need to test the findings obtained here—in
the context of the pharmacogenomics and lifestyles of actual
patients—before they can be fully beneficial in a general clinical
practice.

Considering the previous comments, we cannot stress enough
that this theoretical approach is still far from constituting
an actual aid to the clinician. For this reason, no further
considerations on dose, drug combinations and patient features
(other than tumor subtype, gene expression profile and
deregulated pathways) are being considered.

5. CONCLUSIONS

New molecular pathways and their respective pharmacological
targets of potential therapeutic utility were associated to
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each of the different breast cancer molecular subtypes. This
allows subsequent focused assessment of the pharmacological
targets associated to each subtype in order to find
new therapeutic options for the treatment of patients
suffering from this disease. The knowledge derived from
this approach will result particularly useful for those
patients that have developed pharmacological resistance to
canonical treatment and/or suffer from tumors with reduced
therapeutical options, such as basal or triple-negative breast
cancers.

Here we present an application of pathway-based analyses
based on the detailed study of two of the largest and more
trustworthy international cohorts, including whole genome
high quality transcriptomic data, coming from either RNASeq
or microarray technologies: The METABRIC and TCGA
collaborations. By analyzing high throughput gene expression
data for thousands of patients, using a robust probabilistic
approach to find the most deregulated pathways for each subtype
(even at the per-patient level) and assessing the findings by
crossing-out the information with highly curated knowledge-
based drug target databases, we have been able to develop
a methodology that allows for a detailed drug-repurposing
scheme to treat the different breast cancer tumor types and
that, in principle (as an introductory proof-of concept) may
even be extended up to the single patient design, thus paving
the way to personalized medicine to treat such complex
pathologies as breast cancer using a pragmatic drug re-use
approach.

Hopefully, the work presented here will contribute
to save considerable amounts of financial resources—
by resorting to drug repurposing strategies—, but
above all, may soon allow us to save more and
more lives of people suffering from this excruciating
disease.
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