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Cellular identity between generations of developing cells is propagated through the
epigenome particularly via the accessible parts of the chromatin. It is now possible
to measure chromatin accessibility at single-cell resolution using single-cell assay
for transposase accessible chromatin (scATAC-seq), which can reveal the regulatory
variation behind the phenotypic variation. However, single-cell chromatin accessibility
data are sparse, binary, and high dimensional, leading to unique computational
challenges. To overcome these difficulties, we developed PRISM, a computational
workflow that quantifies cell-to-cell chromatin accessibility variation while controlling
for technical biases. PRISM is a novel multidimensional scaling-based method using
angular cosine distance metrics coupled with distance from the spatial centroid. PRISM
takes differences in accessibility at each genomic region between single cells into
account. Using data generated in our lab and publicly available, we showed that PRISM
outperforms an existing algorithm, which relies on the aggregate of signal across a set
of genomic regions. PRISM showed robustness to noise in cells with low coverage for
measuring chromatin accessibility. Our approach revealed the previously undetected
accessibility variation where accessible sites differ between cells but the total number of
accessible sites is constant. We also showed that PRISM, but not an existing algorithm,
can find suppressed heterogeneity of accessibility at CTCF binding sites. Our updated
approach uncovers new biological results with profound implications on the cellular
heterogeneity of chromatin architecture.
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INTRODUCTION

One of the great mysteries in developmental biology is how the same genome can be read by
cellular machinery, giving rise to the plethora of different cell types required for eukaryotic
life (Stunnenberg et al., 2016). The versatility of our genome is closely related to the myriad
ways of packaging of DNA sequence into the chromatin, which is also referred to as the
epigenome. Advances in sequencing technologies over the last decade enabled the genome-wide
characterizations of the epigenome in many cell types and tissues. The availability of unbiased
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measurements of the chromatin suggest that the epigenome
represents a second dimension of the genomic sequence and
is pivotal for maintaining cell-type specific gene expression
patterns.

Despite the inherently repressive state of the chromatin
making most of the genome unreadable, in every cell type, a
small segment is organized into cis-regulatory modules, known
as promoters and enhancers, controlling the transcriptional
output of the cell (Monticelli and Natoli, 2017). The emerging
theme from recent studies is that the cis-regulatory landscape
is organized hierarchically where every layer is regulated by
distinct groups of transcription factors. The first layer consists
of a small number of lineage-determining transcription factors,
also referred to as pioneer factors, who act first on the chromatin
and either alone or in cooperation with other proteins can access
their binding sites even if they are inaccessible by nucleosomes
through the recruitment of chromatin-remodeling enzymes and
exposing the underlying DNA. Other layers in this organization
are controlled by majority of transcription factors, which can
bind to the primed and accessible chromatin regions (Garber
et al., 2012; Vahedi et al., 2012; Ostuni et al., 2013), determining
functional characteristics of every cell type.

Because the conventional population-average epigenomic
measurements rely on thousands to millions of cells, it is unclear
if transcription factors act similarly across individual cells.
Although it is appreciated that gene expression is a fundamentally
stochastic process (Raj and van Oudenaarden, 2008; Raj et al.,
2010; Symmons and Raj, 2016), with randomness leading to
cell-to-cell variations in mRNA and protein levels, much less is
known about how randomness of transcription factor binding
can be linked to cell-to-cell variations. Would the precise
coordination of development demand transcription factors with
certain biochemical properties to confer a deterministic impact
on the chromatin of individual cells following a certain trajectory?

The advent of single-cell genomics, which has enabled
unbiased profiling of the genetic and molecular states of ever-
growing number of individual cells, paved the way to address
these fundamental questions (Tanay and Regev, 2017). Whereas
single-cell RNA sequencing (scRNA-seq) has been at the forefront
of these methods, single-cell chromatin accessibility assays such
as scATAC-seq are constantly being optimized for increasing
throughput, robustness, and complexity (Buenrostro et al.,
2015; Cusanovich et al., 2015, 2018; Corces et al., 2016; Lake
et al., 2018; Preissl et al., 2018). Complexity is particularly
challenging for scATAC-seq, which must target single-copy
molecules and, unlike single-cell RNA-seq, cannot buffer partial
sampling through the analysis of high-copy-number molecules
(Tanay and Regev, 2017). Only 0, 1, or 2 reads can be generated
from elements within a diploid genome. Hence, scarcity is an
intrinsic feature of these types of measurements, which hinders
studying the role of transcription factors in establishing the
chromatin accessibility landscape at the single cell level. Thus,
new computational methods incorporating the scarcity of data
and the assay’s inherent bias are required.

The current leading method for measuring cell-to-cell
variation from scATAC-seq measurements, chromVAR (Schep
et al., 2017), measures total accessibility in an individual cell at

a set of DNA sequences unified by a common feature. Total
accessibility refers to the number of open chromatin regions
in a cell. A common feature can be defined as binding events
of a transcription factor, enrichment of a set of DNA binding
motifs, or deposition of a combination of histone modifications.
It then measures how much total accessibility differs from what
is expected by calculating a technical bias-corrected Z-score for
each cell. The standard deviation of these Z-scores constitutes
the cell-to-cell variation in chromatin accessibility. However, an
ensemble of cells can have similar total accessibility (i.e., number
of accessible sites in a cell) yet be accessible at completely different
regulatory elements. Thus, chromVAR is poorly equipped to
handle chromatin accessibility variation in certain cases as stated
in the original paper (Schep et al., 2017).

Here, we present PRISM, an R package for calculating cell-to-
cell variation in chromatin accessibility using cosine similarity.
Instead of measuring variation in total accessibility between two
cells, PRISM measures whether two cells are accessible at the
same set of regulatory elements using angular cosine distance. It
then exploits principal coordinate analysis to measure how much
each cell differs from the group norm for chromatin accessibility.
Here, we demonstrate that PRISM outperforms chromVAR on
various simulations when total accessibility is not varied, when
signal is low, or when technical noise is high, in addition to
real biological data. Together, PRISM can be used to construct
a global and high-resolution view of epigenomic regulation in
development and disease.

MATERIALS AND METHODS

Inferring Chromatin Accessibility
Variation Prior to Bias Correction
PRISM requires the scATAC-seq data to be binarized such that
accessible genomic regions are scored 1 and inaccessible ones are
scored 0. Every cell is plotted as a vector with coordinates given
by the binary representations of accessibility at a pre-defined set
of genomic regions unified by a common characteristic – for
example, binding events of a transcription factor measured by
ChIP-seq or sequences enriched for transcription factor binding
motifs (Figure 1). We then evaluate the difference in chromatin
accessibility between a pair of cells at these genomic regions by
calculating the cosine distance between every two vectors. More
specifically, where A and B are binary accessibility vectors, the
angular cosine distance is calculated by Equation (1), which can
be seen as taking the angle between two vectors and dividing it by
a normalizing factor of π/2:

Cosine distance (A,B) =
cos−1 A·B

||A|| ||B||

π/2
(1)

We calculate how different every cell is from the group
norm and center the cosine distance matrix by subtracting
column and row means while adding the overall mean. We
then spectrally decompose the centered cosine distance matrix
to define principal coordinates, mapping vectors of chromatin
accessibility to full principal coordinate space, and identifying
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FIGURE 1 | Workflow for quantifying chromatin accessibility variation and generating simulated heterogeneity. (A) To measure how different any two cells are in
terms of chromatin accessibility, we measure the angle between their vectors. A larger angle implies the two cells are more different in chromatin accessibility. As
there are many possible pairs of cells, we form a matrix of cosine distances between cells. To measure how variable the cells are as a whole with respect to
accessible chromatin landscape, we perform principal coordinate analysis. Each cell is now plotted as a point in space. The Euclidean distance between any two
cells is equal to the angle between their vectors. This specifies a unique point (cell) configuration in space and the centroid of the cells (points) is further calculated.
Each cell’s distance from the centroid is measured. Then the average distance from each cell to the centroid constitutes the chromatin accessibility variation.
Subsequent steps correct for technical biases. (B) We simulated heterogeneity within single cell chromatin accessibility maps using two models. While model 1
synthesizes heterogeneity assuming comparable levels of total accessibility between individual cells at a set of genomic regions, model 2 captures cell populations
with large differences in total accessibility among cells. The simulated heterogeneity is then created by titrating the number of cells with the original or GC-matched
peaks. This approach leads to a mixture of cells containing varying percentages of original versus GC-matched peaks. The rationale to mix peaks rather than cells of
different types is to prevent confounding factors such as differences in cell lysis affecting our assessment of cell-to-cell variability. We expect variability to maximize
when the data is a roughly 50–50 mixture of original and GC-matched peaks, and to minimize when data is completely original or GC-matched peaks, forming an
inverse-U (concave down) shape.

the vectors’ centroid (Figure 1). Finally, the average distance of
all vectors to the centroid is used by PRISM as a measure of
variability of chromatin accessibility among individual cells at the
genomic regions of interest.

Correcting for Technical Biases
The above formulation Equation (1) can be used to compare the
impacts of different transcription factors in terms of inducing or
reducing stochasticity of chromatin accessibility across individual
cells. However, inherent differences among genomic subsets such
as the GC content or average accessibility can also introduce
technical variations. To overcome such limitations and normalize
for the GC contents, we calculate variability as described in
Equation (1) at a set of “normalizing background peaks” with
GC contents comparable to the genomic set of interest. The
normalizing background peaks are selected randomly from the
set of genomic regions lacking the feature of interest based on

their GC contents. The process of background peak selection is
repeated for a user-defined number of times and the mean of
variability for multiple sets of background peaks is used as a
normalization factor. All background peaks are also selected to
be within ±0.01 of the overall mean accessibility of the original
peaks.

We controlled for technical biases as follows:

Bias corrected variation=
Original variation

Mean (background variations)
(2)

To measure accessibility variation beyond GC content, we
calculate accessibility variation for a user-defined number of
randomly selected subsamples of peaks lacking the genomic
feature of interest, for example, regions not bound by a
transcription factor while correcting for technical biases in the
control peak set. Each subsample has the same number of peaks as
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the original peak set. The negative control variations are further
used to generate Z-scores and p-values for the observed variation.
The final variation is calculated by PRISM as:

Final variation=
Bias corrected variation

Mean (biased corrected negative control variations)
(3)

PRISM’s variability equal to 1 implies that the feature of
interest for example a transcription factor or enrichment of a
certain motif is associated with no more variation than negative
control. PRISM’s variability below 1 implies that the feature of
interest is associated with less variation than negative control,
and variability above 1 implies greater variation than negative
control. It is worth to point out that the idea behind PRISM is to
assess the difference between cells at transcription factor-bound
sites compared with the unbound regions (or regions lacking
the genomic feature of interest). However, the two sets are not
required to have identical GC-contents. To address this issue, the
transcription factor-binding peak set and negative control peak
set are each normalized for their GC-contents, which will require
separate background peak selections.

Benchmarking PRISM
We synthesized heterogeneity in chromatin accessibility across
single cells following two models. In model 1, we assumed
comparable levels of total accessibility between individual
cells at a set of genomic regions. To recapitulate conditions
favorable to chromVAR’s assumptions, we developed model 2
and incorporated differences in total accessibility among cells.
To model the genomic regions of interest, we randomly selected
500 (or 1000) peaks from ∼50,000 open chromatin regions.
Relying on the central limit theorem, the randomly selected
original and GC-matched peaks in model 1 comprise comparable
levels of average accessibility across individual cells. Simulated
heterogeneity is then created by titrating the number of cells
with the original or GC-matched peaks. This approach leads to a
mixture of cells containing varying percentages of original versus
GC-matched peaks (Figure 2A). The rationale to mix peaks
rather than cells of different types is to prevent confounding
factors such as differences in cell lysis affecting our assessment
of cell-to-cell variability. We expect that when cells contain only
original peaks (or GC-matched peaks), the variability should be at
a minimum. In contrast, when half of cells contain original peaks,
the variability should be at a maximum. Based on how mixing
of cells is controlled, we expect an inverse-U or concave shape
for our measure of variability, peaking at around 50–50 mixed
peaks.

We further synthesize heterogeneous data using model 2
relying on the same approach except that GC-matched peaks
are drawn from peaks with greater than 75th percentile in
mean accessibility compared to all other peaks. In other words,
model 2 assumes the presence of a significant difference in
total accessibility between cells underscoring a larger degree
of cellular heterogeneity. We further augmented each model
to have subtypes A and B such that subtype A utilized cells
with highest accessibility in contrast with subtype B that relied

on lowest accessible cells. While subtype A is the most robust
measurement and reflects an ideal sequencing coverage, subtype
B tests the method’s sensitivity to technical noise. Together, model
1 is built such that heterogeneity is not caused by differences
in total accessibility between cells, simulating cases where an
ensemble of cells contains comparable total accessibility levels
across the genome but accessibility can occur at completely
different regulatory elements (Supplementary Figure S1). On
the other hand, model 2 aims to simulate cases where a major
difference exists in the total accessibility of cells at genomic
regions of interest (Supplementary Figure S1).

In order to see how well a simulation result fits an inverse-
U shape (concave curve), a test of concavity was designed.
The metric, referred to as U statistic, measures the difference
between variability of successive proportions of cells containing
the original peaks. Then the Spearman correlation of this
ordering with the decreasing numbers 49 through 1 was
calculated. This procedure checks if the derivative (slope) is
continuously decreasing. Using this definition, test of concavity
values (U statistic) close to 1 are ideal. We also measured each
algorithm’s mean squared error (MSE) from its local polynomial
regression (LOESS) curve. This assessed the degree to which an
algorithm was susceptible to random fluctuations or noise. We
further compared the values of variability across the simulated
heterogeneous data as measured by chromVAR (Schep et al.,
2017).

Publicly Available Single-Cell Chromatin
Accessibility Data
The raw files for scATAC-seq data were generated in mouse
forebrain tissue at E11.5 (GSM2668117) (Preissl et al., 2018),
mouse double-positive thymocytes (GSE99159) (Johnson et al.,
2018), and human AML cells (GSE96769) (Corces et al.,
2016). Single-cell accessibility data and ChIP-seq data for 139
transcription factors in K562 cell line were downloaded from
ENCODE.

RESULTS

The PRISM Algorithm
We introduce PRISM for estimating cell-to-cell variation at the
level of chromatin accessibility. Unlike chromVAR, PRISM infers
cell-to-cell variability by capturing differences in accessibility of
every genomic region of interest across individual cells. It is
possible that a comparable total number of accessible sites occur
in a cell, yet accessibility happens at non-overlapping regulatory
elements (Supplementary Figure S1). Our algorithm takes
binarized read counts of individual cells and calculates variation
of open chromatin across single cells at DNA sequences unified
by an annotation such as transcription factor binding events or
enrichment of motifs (i.e., a set of peaks). PRISM then represents
each cell in a high-dimensional space as a vector (Figure 1).
Each coordinate in the vector corresponds to accessibility of a
regulatory element. To measure how different any two cells are
at a given group of genomic regions, PRISM calculates the pair-
wise angular cosine distance or the angle between two vectors
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FIGURE 2 | Simulations of cell-to-cell heterogeneity in mouse forebrain tissue. PRISM outperforms chromVAR for data generated under two models. (A) In model 1
subtype A, chromVAR does not conform to an inverse-U shape while PRISM does. In model 2 subtype A, chromVAR deviates from the curve of best fit more than
PRISM. In order to see how well a simulation fit an inverse-U shape (concave curve), a test of concavity (U statistic) was designed. The difference between variability
of successive proportions of cells expressing original peaks was calculated. Then the Spearman correlation of this ordering with the decreasing number sequence 49
through 1 was calculated. This can be seen as checking to see if the derivative (slope) is continuously decreasing. Values close to 1 are ideal. (B) PRISM’s
measurements were also significantly less noisy (stochastic) compared to chromVAR. To measure noise, we calculated the mean squared error (MSE), or average
squared distance of each point from the LOESS curve. PRISM showed orders of magnitude smaller MSE values. The MSE is plotted on −log10 scale.

(Figure 1). The pair-wise differences between cells are then used
to measure how different every cell is from the group “average”:
Each cell is plotted as a point in principal coordinate space
such that the Euclidean distance between two points (cells) is
equal to the original angular cosine distance between two vectors.
PRISM then finds the centroid of this unique point configuration.
Every point’s distance from the centroid is calculated, and then
these distances are averaged. This can be seen as each cell’s
distance from the group norm for chromatin accessibility and
constitutes our measure of cell-to-cell variation prior to technical
bias correction (Figure 1A). Our proposed method scales linearly
with heterogeneity, in contrast to average angular cosine distance.

To account for technical biases, a user-defined number of
“background” sets of peaks are identified for every set of genomic
regions. The background peak sets are matched for peak number,
overall mean accessibility, and peak-for-peak GC content to
the original peak set. Using the procedure outlined above,
accessibility variation for each background peak set is calculated.
The variations of the background sets are then averaged. To
obtain the bias-corrected variation, the variation of the original
peak set is divided by the average variation of the background
peak set with matching mean accessibility and GC content. After

correcting for technical biases, a negative control is developed:
a user-defined number of sets of peaks are randomly selected,
each with equal peak number to the original peak set. The
bias-corrected variation of each negative control peak set is
calculated. Then the bias-corrected variation of the original peak
set is divided by the average of the user-defined number of
negative control peak sets. This measures cell-to-cell variation in
chromatin accessibility in units of background noise. A calculated
variation equal to 1 implies that a chromatin feature is associated
with equal variation to background noise. Together, unlike the
previously proposed method chromVAR (Schep et al., 2017),
which relies on differences in the aggregate of accessibility
across a set of peaks between cells, PRISM takes differences in
accessibility at each genomic region between single cells into
account.

Evaluating PRISM by Simulating
Heterogeneity in Single Cell Chromatin
Accessibility
To benchmark the performance of PRISM and chromVAR, we
simulated heterogeneity in single-cell chromatin accessibility
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FIGURE 3 | Simulations of cell-to-cell heterogeneity in mouse double-positive T cells. PRISM outperforms chromVAR for data generated under two models when
heterogeneity was generated for mouse double positive T cells (Johnson et al., 2018). (A) In model 1 subtype A, chromVAR does not conform to an inverse-U shape
while PRISM does. In model 2 subtype A, chromVAR deviates from the curve of best fit more than PRISM. In order to see how well a simulation fit an inverse-U
shape (concave curve), a test of concavity (U statistic) was designed. The difference between variability of successive proportions of cells expressing original peaks
was calculated. Then the Spearman correlation of this ordering with the decreasing number sequence 49 through 1 was calculated. This can be seen as checking to
see if the derivative (slope) is continuously decreasing. Values close to 1 are ideal. (B) PRISM’s measurements were also significantly less noisy (stochastic)
compared to chromVAR. To measure noise, we calculated the mean squared error (MSE), or average squared distance of each point from the LOESS curve. PRISM
showed orders of magnitude smaller MSE values. The MSE is plotted on −log10 scale.

data. We exploited three independent publicly available datasets
generated by two leading experimental protocols, that is, the
automated microfluidic platform (Buenrostro et al., 2015; Corces
et al., 2016; Johnson et al., 2018) and the combinatorial indexing
assay (Cusanovich et al., 2015, 2018; Preissl et al., 2018). The data
sets used for our study were generated in acute myeloid leukemia
(AML) cells in humans (Cusanovich et al., 2015), in addition to
double-positive T cells in the thymus (Johnson et al., 2018) and
forebrain tissue (Preissl et al., 2018) in mice.

We calculated variability of chromatin accessibility at the
single-cell level across the simulated sets of peaks using PRISM
and chromVAR. In data generated by combinatorial indexing
technique in thousands of cells in mouse forebrain tissue (Preissl
et al., 2018), we found an inverse-U shape in variability for
the two models using PRISM with 30 iterations for background
peak selection when scATAC-seq data from the mouse forebrain
tissue were used (Preissl et al., 2018) (Figure 2A). However,
chromVAR faltered under model 1 in the case that total
accessibility was comparable across cells with a very low test of
concavity U = 0.067. In model 2, PRISM also conformed better
to an inverse-U curve than chromVAR (0.65 vs. 0.43). Notably,
PRISM was significantly less noisy, with a mean-square-error

(MSE) between the fitted curve several orders of magnitude
lower than chromVAR (6 × 10−7 vs. 0.5) (Figure 2B).
We observed similar results when 40 or 50 iterations for
background peaks were used for normalization (Supplementary
Figure S2). PRISM further outperformed chromVAR in cells with
the lowest accessibility levels recapitulating noisier sequencing
conditions (Supplementary Figure S3). These differences were
reproduced under both models when the simulated heterogeneity
was evaluated for scATAC-seq data generated in hundreds
of double-positive T cells from mouse thymus or AML cells
in humans using the microfluidic technology (Figures 3, 4).
Together, PRISM outperforms chromVAR in assessing variability
of chromatin accessibility at the single-cell level across multiple
scATAC-seq datasets.

PRISM and ChromVAR Differ in
Predicting Cell-to-Cell Variability in
Biological Data
We next compared the predictions of PRISM and chromVAR
on the effect of 139 transcription factors using real transcription
factor binding data. Assessing cell-to-cell variability using the
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FIGURE 4 | Simulations of cell-to-cell heterogeneity in human AML cells. PRISM outperforms chromVAR for data generated under two models when heterogeneity
was generated for human AML cells (Corces et al., 2016). (A) In model 1 subtype A, chromVAR does not conform to an inverse-U shape while PRISM does. In
model 2 subtype A, chromVAR deviates from the curve of best fit more than PRISM. In order to see how well a simulation fit an inverse-U shape (concave curve), a
test of concavity (U statistic) was designed. The difference between variability of successive proportions of cells expressing original peaks was calculated. Then the
Spearman correlation of this ordering with the decreasing number sequence 49 through 1 was calculated. This can be seen as checking to see if the derivative
(slope) is continuously decreasing. Values close to 1 are ideal. (B) PRISM’s measurements were also significantly less noisy (stochastic) compared to chromVAR. To
measure noise, we calculated the mean squared error (MSE), or average squared distance of each point from the LOESS curve. PRISM showed orders of magnitude
smaller MSE values. The MSE is plotted on −log10 scale.

two methods revealed different predictions for 17 transcription
factors in K562 cell line (Figure 3A). Among transcription
factors that were reported differently between two methods,
chromVAR but not PRISM inferred that CTCF binding events
in K562 cell line could increase cell-to-cell variability at the
chromatin accessibility level (Figure 3B). However, numerous
studies mapping the genome-wide binding events of CTCF
at the population level across a wide variety of tissues
have shown the cell-type-invariant binding of this protein
acting as an insulator, supporting PRISM’s prediction (Schmidt
et al., 2012). On the other hand, several transcription factors
including MCM family proteins were associated with high
cell-to-cell variability by PRISM in contrast with chromVAR.
Of note, the two methods were consistent in assessing
variability at binding events of majority of transcription
factors (Figure 5). Together, our simulation results titrating
heterogeneity of chromatin accessibility at the single-cell level
together with the application of biological data suggest that
PRISM can infer cell-to-cell variability on the chromatin at

the single-cell level and outperforms the existing method
chromVAR.

DISCUSSION

Since the discovery of the cell by Robert Hooke in 1665,
biologists and pathologists have been fascinated by the diversity
of cell types in our body. With the advent of molecular cell
biology, methods such as fluorescent protein reporters and
single-molecule detection of RNA or DNA have been developed
for measuring properties and functions of single cells at
increasing resolution (Kelsey et al., 2017). The utilization of these
techniques in multiple organisms revealed that gene expression
is a fundamentally stochastic process, with randomness in
transcription and translation leading to cell-to-cell variations
in mRNA and protein levels (Raj and van Oudenaarden,
2008; Symmons and Raj, 2016). But how can the reported
stochastic gene expression be reconciled with the determinism
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FIGURE 5 | PRISM reveals previously masked chromatin accessibility variation on K562 cells. (A) Transcription factor binding data were extracted for K562 cell line
using the ENCODE data. chromVAR and PRISM are consistent in inferring cell-to-cell variability in 122 transcription factors while predictions are different for 17
transcription factors (R = 0.49). (B) We found six transcription factors with high rank of variability by chromVAR but low rank by PRISM. Three of these TFs including
CTCF are shown. (C) Three transcription factors (MCM3, MCM7, and YBX1) were in the upper 25th percentile in variability for PRISM, but found neutral by
chromVAR. (D) PRISM and chromVAR were consistent on the majority (122/139) of transcription factors examples include ARNT, BCOR, and BMI1.

of cellular development? We postulate that development is
controlled by lineage-determining transcription factors, which as
their name implies confer less stochasticity in individual cells.
We recently generated scATAC-seq in double-positive T cells
and measured cell-to-cell variability using normalized cosine
distance. We found that the lineage-determining transcription
factor TCF-1 is associated with low level of variability across
individual cells following T cell trajectory (Johnson et al.,
2018). In this work, we presented our proposed computational
approach in detail along with an R package and comprehensively
compared this technique with the existing method chromVAR.
chromVAR aggregates chromatin accessibility across peaks
that share a common feature and assess the variability of
the aggregate of accessibility between individual cells. While
the aggregation of signal may address the variability of
some single-cell data sets with certain statistical properties,
this approach inherently masks heterogeneity within genomic
regions across individual cells. To address this limitation, we

developed PRISM a linear algebra-based method that takes into
account the differences between every cell pair at individual
genomic regions while correcting for GC-bias and average
accessibility.

To evaluate the performance of PRISM and compare it with
chromVAR in assessing variability of chromatin accessibility
across single cells, we devised a computational experiment
and generated heterogeneity in chromatin accessibility by
shuffling scATACseq data. Our framework generated simulated
scATAC data from the real measurements with various degrees
of heterogeneity, which were further used to evaluate the
performance of PRISM. While variability evaluated by PRISM
increased as heterogeneity increased, chromVAR failed to
perform in cases where heterogeneity existed between peaks and
across cells as a result of aggregating signal across all peaks (in
particular model 1). We further showed that PRISM but not
chromVAR can predict CTCF binding events to associate with
low level of variability across individual cells.
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We have shown that our method, named PRISM, is able
to overcome the obstacles in analyzing single-cell ATAC-seq,
caused by the inherent nature of such assays, and provide
a robust framework that assesses the effects of transcription
factor binding on the chromatin accessibility, at the single-cell
level. When compared to the state-of-the-art method, named
chromVAR, we have shown that PRISM facilitated the discovery
of lineage-determining transcription factors with the ability to
preserve low variability of chromatin accessibility at the single-
cell level.
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FIGURE S1 | Chromatin accessibility variation can exist even if total accessibility is
the same between cells. Measurements of an ensemble of cells can show similar
total level of accessibility within cells (i.e., comparable number of accessible sites
in a cell) yet accessibility can occur at non-overlapping regulatory elements. In this
hypothetical case, red represents an accessible sequence in a given cell, and
blue represents an inaccessible sequence. Each cell has three accessible
sequences (red) total, or a total accessibility of 3. Thus, the total accessibility is the
same between cells. But each cell is accessible at completely different DNA
sequences, which may have different functions. Existing algorithms, such as
chromVAR and Buenrostro et al.’s (2015) workflows, are built on the standard
deviation of total accessibility, hence they cannot measure variation in these
cases.

FIGURE S2 | PRISM outperforms chromVAR for multiple values of peak number
for background peaks. PRIMS outperforms chromVAR when 40 or 50 background
peaks are selected in calculating variability in mouse forebrain tissue, mouse
double-positive T cells and human AML cells.

FIGURE S3 | PRISM outperforms chromVAR under subtype B when cells with low
chromatin accessibility are selected. PRISM outperforms chromVAR under
subtype B when cells with low chromatin accessibility are selected in mouse
double-positive T cells and human AML cells.
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