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Decoding subjective pain perception from functional magnetic resonance imaging (fMRI)
data using machine learning technique is gaining a growing interest. Despite the well-
documented individual differences in pain experience and brain responses, it still remains
unclear how and to what extent these individual differences affect the performance of
between-individual fMRI-based pain prediction. The present study is aimed to examine
the relationship between individual differences in pain prediction models and between-
individual prediction error, and, further, to identify brain regions that contribute to
between-individual prediction error. To this end, we collected and analyzed fMRI data
and pain ratings in a laser-evoked pain experiment. By correlating different types of
individual difference metrics with between-individual prediction error, we are able to
quantify the influence of these individual differences on prediction performance and
reveal a set of brain regions whose activities are related to prediction error. Interestingly,
we found that the precuneus, which does not have predictive capability to pain, could
also affect the prediction error. This study elucidates the influence of interindividual
variability in pain on the between-individual prediction performance, and the results
will be useful for the design of more accurate and robust fMRI-based pain prediction
models.

Keywords: pain prediction, individual difference, fMRI decoding, machine learning, between-individual prediction

INTRODUCTION

Pain is a subjective unpleasant experience (Loeser and Treede, 2008). Self-report is the golden
standard in clinical applications. Studies have found that physiological signatures of pain could be
used to develop new pain assessment tools that complement self-report (Wager et al., 2013; Woo
et al., 2017; Reddan and Wager, 2018). Thus, identifying objective physiological signatures of pain
is highly desired in clinical practice and basic research. Functional magnetic resonance imaging
(fMRI) studies have showed that painful nociceptive stimuli evoked blood oxygen level dependent
(BOLD) responses in the “pain matrix,” which includes the primary somatosensory cortex, anterior
cingulate cortex, and insula, etc. (Ingvar, 1999; Iannetti and Mouraux, 2010; Legrain et al., 2011).
Consequently, decoding an individual’s subjective pain perception from BOLD responses in the
“pain matrix” is considered to be a potential and promising pain assessment technique (Marquand
et al., 2010; Brown et al., 2011; Brodersen et al., 2012; Schulz et al., 2012).
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Basically, fMRI-based pain decoding has two phases: (1)
training a prediction model from a group of individuals with
labeled data (single-trial pain-evoked BOLD responses with
corresponding pain ratings), (2) applying the pain prediction
model to pain-evoked BOLD responses from another group
of individuals. Such a prediction scheme is referred to
as “between-individual prediction,” which is in contrast to
“within-individual prediction” (i.e., to train and apply a model
in the same group of individuals) (Tu et al., 2016). Studies
have shown that remarkable individual differences in subjective
pain perception as well as in neural responses could lower the
accuracy of between-individual pain prediction (Huang et al.,
2013; Hu and Iannetti, 2016). Various advanced machine learning
techniques, such as multi-task learning (Marquand et al., 2014)
and random-forest (Vijayakumar et al., 2017), have been used to
boost the performance of between-individual pain prediction. In
Lindquist et al. (2017), group-level priors were incorporated into
individual prediction models to improve their accuracy when
being used for new individuals. In an electroencephalographical
(EEG) study (Bai et al., 2016), one individual’s pain-evoked EEG
responses were normalized by this individual’s rest EEG to reduce
the individual difference in EEG features, which can significantly
increase the accuracy of between-individual prediction.

All above new prediction methods attempted to build
a more robust and general between-individual prediction
model by minimizing the differences in neural features or
prediction models. These methods do have improved the
accuracy of between-individual pain prediction to some
extent, but their performance and applications are still
limited. A key reason underlying this limitation is the little
knowledge about the relationship between individual differences
in fMRI-based prediction models and between-individual
prediction performance. Actually, an in-depth examination
on how and to what extent these individual differences
synergistically determine the between-individual prediction
accuracy is still lacking. For instance, it still remains unclear
whether only those pain-related regions (such as the pain matrix)
determine the between-individual prediction error, or other
cortical regions also play a role. A thorough investigation of the
relationship between various types of individual differences and
between-individual prediction error is of key importance. It can
provide meaningful information about the neural mechanisms
of pain perception at the individual level, and can be useful in
guiding the design of a better between-individual pain prediction
model.

The present study is aimed to quantitatively analyze the
relationship between individual differences in pain prediction
models and between-individual prediction error, and more
specifically, to identify cortical regions that determine the
prediction error of between-individual prediction. To achieve
this, we collected fMRI data and pain ratings in a laser-evoked
pain experiment and measured the individual differences in
subjective pain ratings and in BOLD responses. Then we trained
a prediction model from single-trial BOLD responses and ratings
for each individual and applied this model to another individual.
Prediction error metrics were calculated and correlated with
different types of individual difference metrics to quantify how

and to what extent these individual difference metrics determine
between-individual prediction performance.

MATERIALS AND METHODS

Experiments
This study included 32 healthy participants (20 females),
aged years 22.1 ± 2.0 (mean ± SD). The initial inclusion
and exclusion criteria were based on the general health
questionnaire, pain safety screening form, and fMRI safety
screening form. Participants reported no history of chronic
pain, psychiatric, or neurological disorders. The experimental
procedures were approved by the local ethics committee
(Approval No. SWU20140607). All participants gave written
informed consent. They were familiarized with the experiment
paradigm before the experiment. Painful laser stimuli were
delivered to participants when they were lying in the MRI scanner
and fMRI scans were on. Radiant-heat stimulus energies included
four levels (E1: 2.5J; E2: 3.0J; E3: 3.5J; E4: 4.0J), and 10 laser
pulses at each of the four energies were delivered in a random
order on the dorsum of the left hand, with a total of 40 pulses
per individual. The duration of a laser stimulus was 0.5 s.
The inter-stimulus interval ranged from 27 to 33 s (uniformly
distributed), which consisted of two periods: the time interval
between one stimulus and its rating was 15–18 s (uniformly
distributed) and the time interval between the rating and the
next stimulus was 9–18 s (uniformly distributed). Participants
reported pain intensity using a visual analog scale ranging from
0 to 10 (0: no pain; 10: pain as bad as it could be). The total
duration of the experiment was around 25 min. Two participants
were excluded from subsequent analyses because they did not
show large variations in pain perception. More precisely, these
two participants had a small range of pain ratings (<4) and were
regarded as outliers, while other 30 participants had a range of
pain ratings 8.2 ± 1.5 (mean ± SD). Different analyses of the
same dataset were published in Tu et al. (2016, 2018).

Magnetic resonance imaging (MRI) data were collected using
a Siemens 3.0 Tesla Trio scanner with a standard head coil.
Functional images were acquired with echo planar imaging (EPI)
sequence with the following parameters: 255 mm thick slices
and 0.5 mm inter-slice gaps, TR = 1500 ms, TE = 29 ms,
filed of view = 192 mm × 192 mm, 64 × 64 matrix,
3 mm× 3 mm× 3 mm voxels, flip angle = 90◦. A high-resolution
T1-weighted structural image (1 mm3 isotropic voxel MPRAGE)
was acquired after functional imaging.

fMRI Data Preprocessing and Feature
Extraction
Functional MR images were analyzed using SPM81. For each
participant, fMRI data were slice-timing corrected, head motion
corrected, normalized to the Montreal Neurological Institute
(MNI) space (voxel size = 3 × 3 × 3) by mapping T1-weighted
structural images to the MNI template, and then smoothed with
an 8 mm FWHM Gaussian kernel. A high-pass filter was applied

1http://www.fil.ion.ucl.ac.uk/spm/
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(cut-off frequency = 1/128 Hz) to the BOLD time-series to
remove low-frequency drifts. BOLD responses were normalized
by subtracting and then dividing their baseline values at stimulus
onset (Brown et al., 2011). The maximum BOLD responses (4th

scan after stimulus onset) were extracted as fMRI features for
prediction of subjective pain ratings.

Identification of Pain Predictive Brain
Regions
We used partial least squares regression (PLSR) (Hu et al.,
2014) to model the trial-by-trial relationship between whole-
brain BOLD features and pain ratings for each individual.
PLSR can well address the problems of high dimensionality and
multicollinearity of fMRI features and is a suitable model for pain
prediction (Tu et al., 2016). For the j-th individual, the PLSR
model is formulated as:

R(j)
i = B(j)

i a(j) (1)

where R(j)
i is the pain rating of the i-th trial, B(j)

i is the whole-brain
BOLD features (the maximal responses at the 4th scan after
stimulus onset) of the i-th trial, and a(j) is the PLSR model
coefficient vector. Each coefficient in the PLSR coefficient vector
a(j) represents the predictive capability of the pain-evoked BOLD
responses at the corresponding voxel. The SIMPLS algorithm
was used to compute the PLSR model coefficients (De Jong,
1993). SIMPLS first constructed a set of linear combinations of
the inputs, which are known as the latent variables, in order to
reduce the dimensionality of data. Then, the response variables
would be regressed on these latent variables. The number of
latent components in the PLSR analysis was estimated using
the coefficient of determination, which calculates the percentage
of the variance of the values fitted by the latent components
and the total variance of the dependent variables. A Matlab
function “plsregress”2 was used for the implementation of PLSR
in MatlabR2018a (MathWorks, Natick, MA, United States).

In order to identify pain predictive brain regions at the group
level, we further used a one-sample t-test against zero to assess
the significance of these model coefficients across individuals.
To account for multiple comparisons, the significance level was
corrected using family-wise error (FWE) rate (Hochberg, 1988).
Hereinafter, brain regions whose coefficients were significantly
different from zero were referred to as “predictive regions,” while
other regions were “non-predictive regions.”

Quantification of Between-Individual
Prediction Error
In the scheme of between-individual pain prediction, BOLD
responses and pain ratings of all trials from one individual
were used to train a prediction model using PLSR, and this
model was then applied on BOLD responses of all trials from
another participant. Because we had in total 30 participants, the
individual-by-individual pain prediction scheme resulted in 900
pairwise individual-by-individual pain prediction results, 870 of
which were between-individual prediction and 30 of which were

2https://www.mathworks.com/help/stats/plsregress.html

within-individual prediction. The prediction error of each pair of
individuals was measured by two metrics: mean absolute error
(MAE) and mean prediction bias (MPB). MAE and MPB are
respectively calculated as:

MAEt,s =
1
I

I∑
i=1

|R̂(t;s)
i − R(t)

i | (2)

MPBt,s =
1
I

I∑
i=1

(R̂(t;s)
i − R(t)

i ) (3)

where R(t)
i is the true pain rating of the i-th trial of the t-th

individual, R̂(t;s)
i is the corresponding predicted pain rating

estimated from the model trained from the s-th individual,
and I is the total number of trials of the t-th individual. Note
that, MAE and MPB are related but represent different aspects
of the prediction error. MAE is a positive number and is a
measure of the overall distance between predicated and true
values. On the other hand, MPB is a signed number: a positive
MPB means the predicted pain rating is greater than the actual
value and a negative MPB means the predicted value is smaller
than the actual value. In another word, MPB denotes an overall
increase or decrease of predicated pain ratings, with respect to
actual pain ratings. We also compared these two prediction error
metrics between between-individual prediction (870 pairs) and
within-individual prediction (30 pairs) using a two-sample t-test.

Quantification of Individual Differences
in Pain Prediction Models
There were two types of individual differences in a pain
prediction model and they were respectively calculated from class
labels (i.e., pain ratings, R in the prediction model) and features
(i.e., pain-evoke BOLD responses, B in the prediction model).
For each type of individual differences, we can calculate two
individual difference metrics: the distance (a positive number)
between the training individual and the test individual and
the difference (a signed number) by subtracting values of the
training individual from values of the test individual. The
Bhattacharyya distance was used to calculate the distance between
the training individual and the test individual. Bhattacharyya
distance can reflect the degree of dissimilarity between any two
probability distributions and is more reliable than, for example,
Mahalanobis distance (Bhattacharyya, 1943; Ali and Silvey, 1966).
Bhattacharyya distance has been very popularly used in a wide
range of biomedical and engineering applications, such as feature
extraction of medical signals (Taghizadeh-Sarabi et al., 2015),
image segmentation (Ning et al., 2010) and speech recognition
(Lee et al., 2011). For each pair of individuals, we calculated the
following four individual difference metrics.

1. Distance of pain ratings (DISTPAIN): calculated as the
Bhattacharyya distance of pain ratings between multiple trials
of two individuals;

2. Difference of pain ratings (DIFFPAIN): calculated as the
difference of across-trial averaged pain ratings between two
individuals (test individual – training individual);
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3. Distance of BOLD responses (DISTBOLD): at each voxel,
calculated as the Bhattacharyya distance of normalized BOLD
features between multiple trials of two individuals;

4. Difference of BOLD responses (DIFFBOLD): at each voxel,
calculated as the difference of across-trial averaged normalized
BOLD features between two individuals (test individual –
training individual).

Relationship Between Individual
Differences and Prediction Error
Subsequently, we explored the relationship between the
individual difference metrics (DISTPAIN, DIFFPAIN, DISTBOLD,
DIFFBOLD) and prediction error metrics (MAE and MPE), with
the aim to identify how individual differences in pain prediction
models determine the between-individual prediction error.
To this end, we correlated two sets of unsigned metrics (i.e.,
DISTPAIN/DISTBOLD and MAE) and correlated two sets of signed
metrics (i.e., DIFFPAIN/DIFFBOLD and MPB) by calculating the
Pearson’s correlation coefficients across 870 pairs of different
individuals. It should be noted that, the correlation analyses
between prediction error metrics and individual difference
metrics of BOLD responses were carried out in a voxel-wise
manner. The multiple comparisons problem was corrected by
using FWE.

RESULTS

Behavioral Data Analyses
As shown in Figure 1, these participants had largely different
levels of pain perception in responses to the same set of painful
stimuli. Averaged pain ratings ranged from 2.63 ± 2.11 to
7.63 ± 2.23. Using Pearson’s correlation analyses, we found that
neither the age nor the weight was significantly correlated with

the averaged pain ratings (age and rating: R = −0.175, P = 0.356;
weight and rating: R = 0.0978, P = 0.607). Also, males and females
did not have significant difference in their averaged pain ratings
(two-sample t-test, P = 0.428). Therefore, age, weight, and gender
cannot explain between-individual differences in subjective pain
ratings in the present study. But the number of participants in
this study is still small and a large-sample study should be carried
to produce more significantly powerful results.

Between-Individual Pain Prediction Error
The PLSR analyses revealed that BOLD responses within a
wide range of brain regions were predictive of pain perception,
as shown in Figure 2. These predictive regions included the
primary somatosensory cortex (S1), supplementary motor area
(SMA), medial prefrontal cortex (mPFC) and insula, all of which
were well-documented in literature as the pain-related regions.
Among these predictive regions, S1, SMA, and insula had BOLD
responses that were positively predictive of pain ratings and only
the mPFC had BOLD responses that were negatively predictive
of pain ratings. Hence, S1, SMA, and insula were also called
as positively predictive regions, while mPFC was a negatively
predictive region.

We next compared the prediction error metrics, MAE
and MPB, between within-individual prediction and
between-individual prediction. The probability density functions
of MAE and MPB were approximated using kernel density
estimation (Parzen, 1962). As shown in Figure 3, both MAE
and MPB were significantly different between two prediction
schemes. Between-individual prediction had greater MAE
values and greater MPB values (in the magnitude) than
within-individual prediction (MAE: P = 5.06 × 10−8; MPB:
P = 0.038). Within-individual prediction had very small MPB
close to zero (−0.023 ± 0.13), while MPB of between-individual
prediction was much dispersed (−0.53± 1.29).

FIGURE 1 | Individual pain ratings of all participants. Gray dots indicate single-trial pain ratings, and red lines represent individuals’ averaged pain ratings.
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FIGURE 2 | Brain regions whose pain-evoked BOLD responses (4th scan after stimulus onset) were predictive of subjective pain ratings in PLSR models
(PFWE < 0.05). These regions were called “predictive regions,” while other regions were “non-predictive regions.” Brain regions: S1, primary somatosensory cortex;
SMA, supplementary motor area; mPFC, medial prefrontal cortex.

FIGURE 3 | Comparison of probability density functions of MAE (A) and MPB (B) between within-individual prediction and between-individual prediction. MAE
values of between-individual prediction and within-individual prediction were significantly different (P = 5.06 × 10−8, paired t-test), and MPB values of
between-individual prediction and within-individual prediction were also significantly different (P = 0.038, paired t-test).

Figure 4 shows the pairwise between-individual prediction
error as measured by MAE and MPB. It can be seen that
the between-individual prediction error was generally large and
widely dispersed (MAE: 2.57 ± 0.80; MPB: −0.53 ± 1.29). If
MPB is either too large or too small (or say, MPB is large in the
magnitude), the corresponding MAE will be large.

Relationship Between Individual
Difference in Pain Ratings and Prediction
Error
Figures 5A,B show the DISTPAIN matrix and the DIFFPAIN
matrix, respectively. It can be seen that most values in these two
matrices were in a relatively small range (DISTPAIN: 0.12 ± 0.14;
DIFFPAIN: 2.04± 1.70), but some individuals had extremely large
or small pain ratings so that their differences in pain ratings with
others were pronounced (shown as some rows and columns with
largely different colors). Figures 5C,D show that, the relationship

between DISTPAIN and MAE and the relationship between
DIFFPAIN and MPB were both very significant (DISTPAIN and
MAE: R = 0.58, P = 1.45× 10−79; DIFFPAIN and MPB: R =−0.92,
P = 4.94× 10−324).

Relationship Between Individual
Differences in BOLD Responses and
Prediction Error
Figure 6 shows the brain regions at which DISTBOLD or
DIFFBOLD was significantly correlated with MAE or MPB
(using different statistical thresholds for detecting significant
regions). In Figure 6A, DISTBOLD at thalamus, the anterior
cingulate cortex (ACC), S1, SMA, insula, and precuneus were
correlated with MAE. In Figure 6B (PFWE < 0.05) and Figure 6C
(PFWE < 10−20), DIFFBOLD at ACC, S1, SMA, insula, thalamus,
mPFC, and precuneus were correlated with MPB. Basically,
most of the MPB-related regions shown in Figure 6B can also
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FIGURE 4 | (A) Mean absolute error (MAE) of between-individual pain prediction for all pairs of individuals. (B) Mean prediction bias (MPB) of between-individual pain
prediction for all pairs of individuals.

FIGURE 5 | (A) Individual differences in pain ratings as measured by DISTPAIN (the Bhattacharyya distance of pain ratings between two individuals). (B) Individual
differences in pain ratings as measured by DIFFPAIN [the difference (test-training) of across-trial averaged pain ratings between two individuals]. (C) The Pearson’s
correlation coefficient between DISTPAIN and MAE (R = 0.58, P = 1.45 × 10−79). (D) The Pearson’s correlation coefficient between DIFFPAIN and MPB (R = –0.92,
P = 4.94 × 10−324). Each dot in (C) or (D) represents one pair of individuals and there are totally 870 pairs.

be observed in Figure 6C. Some regions, such as temporal
regions, were also found to be correlated with MPB in Figure 6B
where PFWE < 0.05 was used, though they cannot pass a stricter
threshold of PFWE < 10−20 (as shown in Figure 6C).

From Figure 6, it can be seen that most of the identified
regions were pain predictive regions, except for the precuneus,
thalamus, and ACC. ACC and thalamus were not identified
as pain-predictive in Figure 2, but they were reported to be
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FIGURE 6 | (A) Brain regions whose DISTBOLD (calculated as the Bhattacharyya distance of normalized BOLD features between multiple trials of two individuals)
were significantly correlated with MAE (PFWE < 0.05). (B) Brain regions whose DIFFBOLD [calculated as the difference of across-trial averaged normalized BOLD
features between two individuals (test-training)] were significantly correlated with MPB (PFWE < 0.05). (C) Brain regions whose DIFFBOLD were significantly correlated
with MPB (PFWE < 10−20). Brain regions: ACC, anterior cingulate cortex; S1, primary somatosensory cortex; SMA, supplementary motor area; mPFC, medial
prefrontal cortex.

pain-predictive in literature (Tu et al., 2016). Actually, these
two regions could be identified if we use a larger statistical
threshold (for example, by using false distortion rate for multiple
comparisons correction; not shown here), but they did not pass

a stricter FWE-corrected threshold (PFWE = 0.05), which may be
due to the limited number of participants in the experiment. We
can also see that, the regions identified in Figures 6A,C were
largely overlapped, except for that mPFC was not identified in
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Figure 6A. The absence of mPFC in Figure 6A may be due to
limited data samples and less statistical power. Actually, by setting
a larger threshold (for example, by using false distortion rate),
mPFC can also be observed in Figure 6A. Overall, by comparing
Figures 6A,B, we can see that there were more and larger brain
regions whose DIFFBOLD was correlated with MPB than those
regions whose DISTBOLD was correlated with MAE.

Furthermore, we can see from Figure 6A that all identified
regions were positively correlated with MAE. However, the
brain regions shown in Figure 6C could be either positively or
negatively correlated with MPB. At positive predictive regions
(such as S1, SMA, insula, thalamus, and ACC), DIFFBOLD
was positively correlated with MPB. On the contrary, at
the negatively predictive region (i.e., mPFC), DIFFBOLD was
negatively correlated with MPB.

Importantly, both Figures 6A,C revealed that the precuneus
was related to between-individual prediction error. If the
individual variability in BOLD responses as measured by
DISTBOLD or DIFFBOLD at the precuneus is larger, both MAE
and MPB will be larger. However, it is interesting to note
that, the precuneus was actually not predictive of subjective
pain perception (averaged PLSR coefficients in this regions are
0.0013 ± 0.014, which are not significantly different from zero).
This implies that the precuneus may modulate pain perception in
an indirect manner, which will be discussed in the next section.

DISCUSSION

It is well-known that the accuracy of between-individual
prediction is usually lower because of significant individual
differences in the subjective pain perception and neural
responses, but it remains unclear how and to what extent
these individual differences determine the between-individual
prediction error. In the present study, we performed an in-depth
examination of the relationship between individual variations
in fMRI-based pain prediction models and between-individual
prediction error. We found that the between-individual
prediction error was mainly determined by individual variability
in pain rating and was also affected by individual differences in
BOLD responses at a set of specific brain regions.

Between-Individual Pain Prediction in the
Context of Machine Learning
In the context of machine learning, pain ratings and BOLD
responses are respectively the class labels and features in the
prediction model linking whole-brain BOLD features to pain
ratings on a single-trial basis. Pain ratings and BOLD responses
of the training individual constitute a source domain, while pain
ratings and BOLD responses of the test individual constitute a
target domain. Whether a model trained in the source domain
can achieve good performance in the target domain is the central
issue studied in transfer learning (Pan and Yang, 2010), which is
an important branch of machine learning. If the class labels or
features in the source domain and target domain have different
distributions, applying a model trained in the source domain to
the target domain will normally end up with low performance.

Basically, different individuals have different pain prediction
models because their pain feelings and brain activities have
different distributions, which could be caused by a wide
range of factors, such as sociocultural variables and genetic
constitution (Nielsen et al., 2009). Either individual differences
in class labels or individual differences in features will lead
to different prediction models for individuals, and then cause
between-individual prediction error. Based on the PLSR models
used, the results on the correlations between individual difference
metrics and prediction error metrics could be interpreted as
follows.

First, we consider the influence of individual variability in
pain ratings on prediction error. Suppose the test and trainings
individuals have the same distributions for BOLD responses,
and, without loss of generality, assume the test individual has
higher pain ratings than the training individual, which means
DIFFPAIN is positive. Thus, the overall predictive capability of
the whole-brain BOLD responses of the test individual should
be larger than that of the training individual, which makes the
test individual have higher pain ratings. If we apply the model
trained in the training individual to the test individual, the
predicted pain ratings should be lower than the actual ones,
resulting in a negative MPB. As a result, the correlation between
DIFFPAIN and MPB is negative, which can be clearly seen in
Figure 5D.

Second, we discuss the influence of individual variations
in BOLD responses on prediction error. Suppose the test and
training individuals have the same distributions for pain ratings,
and, without loss of generality, assume the test individual
has stronger BOLD responses within the positively predictive
regions (SMA, S1, insula) than the training individual, which
means DIFFBOLD is positive. Because the training and test
individuals have the same pain ratings, the predictive capability
of BOLD within the positively predictive regions of the training
individual should be larger than that of the test individual.
If we apply the model trained in the training individual to
the test individual, the predicted pain should be greater than
the actual ones, resulting in a positive MPB. As a result, the
correlation between DIFFPAIN and MPB is positive. Similar
interpretation holds true for negatively predictive regions (i.e.,
mPFC).

Patterns of Influences of Individual
Differences in Pain Prediction Models on
Prediction Error
We now elucidate how individual differences in pain prediction
models influence between-individual prediction error. In short,
individual differences in pain ratings and individual differences
in BOLD responses jointly determined the between-individual
prediction error: larger the individual differences, larger the
prediction error.

From the results that DISTPAIN is positively correlated with
MAE and DIFFPAIN is negatively correlated with MPB, we
can see that large between-individual difference in pain ratings
leads to large prediction error. More precisely, if the test
individual has higher pain ratings than the training individual,
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then the predicted pain ratings are lower than the actual
ratings.

The patterns of influences of individual differences in BOLD
responses on between-individual prediction error are more
complicated and exhibit spatial heterogeneity. At thalamus,
ACC, S1, SMA, insula, and precuneus, large between-individual
distance in BOLD responses leads to large prediction error,
because at these regions DISTBOLD are positively correlated
with MAE and DIFFBOLD are positively correlated with MPB.
Specifically, if the BOLD responses within these regions of a
test individual are larger than those of a training individual,
then the predicted pain ratings will be greater than the actual
values. On the other hand, if the BOLD responses at the
mPFC, where DIFFBOLD is negatively correlated with MPB, of
a test individual are larger than those of a training individual,
the predicted pain ratings will be lower than the actual
values.

Among these individual difference metrics, individual
differences in pain ratings are the most important determinants
of the between-individual prediction error. It can be seen
from the results that the influence of individual differences
in BOLD responses on prediction error is much smaller (the
correlation coefficients between DISTBOLD and MAE are in the
range from 0.1735 to 0.3125 and the correlation coefficients
between DIFFBOLD and MPB are in the range from −0.4623 to
0.5500) than the influence of the individual differences in pain
ratings on prediction error (the correlation coefficient between
DISTPAIN and MAE is 0.5806 and the correlation coefficient
between DIFFPAIN and MPB is 0.9186). Because people have
largely different pain sensitivity, their feelings of pain can differ
significantly, which seriously degrades the performance of
between-individual pain prediction. It can also be seen from
Figure 3 that, for within-individual prediction where difference
in pain ratings is zero, the estimation bias MPB is close to zero.
On the other hand, although variations in BOLD responses are
also evident, their influence on prediction error is relatively
small.

Non-predictive Regions Influence
Between-Individual Prediction Error
It is not surprising that the individual differences of BOLD
responses in those pain predictive regions (S1, SMA, and
insula) determine between-individual prediction error,
because variances of BOLD responses introduce differences
in the feature space for different individuals, as discussed in
Section “Between-Individual Pain Prediction in the Context of
Machine Learning.” But we also found that a non-predictive
region, the precuneus, also affected the prediction error.
More precisely, DIFFBOLD and DISTBOLD in the precuneus
respectively determined the prediction error in terms of MAE
and MBP.

We first discuss the possible functional role of the precuneus
in pain perception. Conventionally, the precuneus is not
considered as a core region of pain perception, because it is
not activated by pain stimulation in various pain experiments
(Tu et al., 2016). Although some fMRI studies have found
that the precuneus [as part of the default mode network

(DMN)] was deactivated by painful stimulation (Atlas et al.,
2014) and its activity strength was negatively correlated with
pain intensity (Porro et al., 1998), the deactivation results were
not consistent in literature (Koyama et al., 2005; Kong et al.,
2010). In the present study, we found that the mPFC, which
is also an important part of DMN, had negative predictive
capability to pain but the precuneus had no predictive capability.
However, it is still well-documented that the precuneus is
involved in the modulation of pain perception. For instance,
an EEG study showed the EEG activation at the precuneus
was correlated with the pain sensitivity (Goffaux et al., 2014).
It was suggested that, because the precuneus is engaged in
continuous information gathering, its activity could be related
to the saliency of external stimulation (Goffaux et al., 2014).
Saliency of stimulation can largely determine subjective pain
perception and evoke brain activities (Iannetti et al., 2008).
Therefore, the precuneus activity may modulate subjective pain
ratings and neural responses through processing salient events
in an individual-specific manner. That is, different individuals
have different patterns of saliency detection and evaluation,
which leads to different levels of pain experience in response
to the same sets of stimulation. As a consequence, individual
differences in the precuneus activity could (partially) determine
between-individual pain prediction error, even though the
precuneus activity is not directly predictive of pain ratings. It
is also important to mention that, the modulation effect of
the precuneus activity on pain prediction error should not be
specific to pain, because it is more closely related to salience
processing.

Further, we would like to argue that, the precuneus’s
pain-predictive capability does exist for individuals, but it
cannot be identified at the group level because this region
may modulate pain perception in different directions (i.e., PLSR
model coefficients in this region have different signs across
individuals). In another word, unlike those pain-predictive
regions (S1, SMA, Insula) at which the activities are positively
correlated with pain intensity and the positive correlation is
consistent across individuals, the precuneus’s BOLD responses
could be positively or negatively related to pain perception so its
group-level effect is not significant.

Actually, the mean value of the model coefficients in the
precuneus (as defined in Figure 2) is −0.0011 ± 0.0137,
which is not significantly different from zero (P = 0.65,
one-sample t-test) and is much smaller than those of
predictive regions as defined in Figure 2 (S1: 0.043 ± 0.032,
P = 3.66 × 10−8; SMA: 0.035 ± 0.023, P = 3.38 × 10−9; Insula:
0.026 ± 0.015, P = 3.15 × 10−10; mPFC: −0.053 ± 0.038,
P = 2.70 × 10−8). But the mean absolute values of model
coefficients in the precuneus is 0.0284 ± 0.0072, which is
comparable to those of predictive regions (S1: 0.025 ± 0.0095;
SMA: 0.026 ± 0.012; Insula: 0.023 ± 0.0082; mPFC:
0.056 ± 0.024). Anyway, it is still not clear why individuals
have different directions for the precuneus’s predictive
capability.

In addition, it is also possible that the precuneus modulates
subjective pain perception as an important part of the DMN,
which consists of PCC, mPFC, angular gyrus, etc. Actually, it
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has been reported that the anatomical and functional features of
DMN are correlated with pain sensitivity and pain perception.
A structural MRI study reported that individuals with high
pain sensitivity have less gray matter in the precuneus and
PCC (Emerson et al., 2014). Regarding functional neural
correlates of individual differences in pain, fMRI studies have
shown that, individual variability in pain could be caused
by differences in the levels of attention and expectation to
painful stimuli, which are reflected in DMN’s activation or
deactivation (Kucyi and Davis, 2015). For example, the DMN
exhibited decreased activation in proportion to the intensity
of expected pain (Koyama et al., 2005). When attention was
focused away from pain, the DMN was engaged and showed
pain-induced deactivation (Wiech, 2016). However, we did not
find other parts of DMN, such as PCC and angular gyrus,
modulate an individual’s pain perception and the between-
individual prediction error the same way as the precuneus.
Hence, different parts of DMN may have different effects on
subjective pain perception, so the role and mechanism of the
precuneus in pain perception may not be generalized to other
DMN regions.

Implications for Improving Performance
of Between-Individual Pain Prediction
This study revealed how individual differences in subjective pain
ratings and in BOLD responses determine the between-individual
prediction error. Based on these findings, it is possible to
develop new between-individual prediction methods that
can overcome the adverse influence of individual differences.
One straightforward approach is to minimize the difference
of the features or class labels between training and test
individuals. Minimizing the difference of feature spaces
between test individuals and training individuals is relatively
simple and it can be realized by using feature normalization
(Bai et al., 2016) or domain adaptation methods (such as
covariate shift) (Pan and Yang, 2010). But, it is difficult, or
even impossible, to minimize the difference in pain ratings
across individuals, because the ratings of test individuals
are generally unknown in clinical practice. As discussed
earlier, individual differences in pain ratings have a much
larger impact on the between-individual prediction error
than individual differences in BOLD responses. This implies
that, only minimizing the distance of feature spaces may
not be able to achieve significantly improved prediction
accuracy, because it is the differences in pain ratings that
predominantly influence the between-individual predication
error.

Another possible approach is to select a subset of training
individuals, who have similar pain ratings (or, in general,
pain sensitivity) as those of a given test individual, to build
a model for this test individual. For example, if a signature
of pain sensitivity can be easily measured and we know
the test individual has a high sensitivity to pain from this
signature, we can then only select individuals with similar
levels of pain sensitivity as the test individual to train a
prediction model. Optimizing training set could potentially
improve the accuracy of the between-subject pain prediction,

and it could also reduce the time for data collection and
computation.

Limitations and Future Work
Individual differences in pain experience and brain activities are
attributed to a wide range of factors, such as psychophysiological
states, genetic variables, experiences, and resting-state brain
activity. For example, people in difference mental states (such as
drowsy, anxiety, depression) have largely different pain ratings
and brain activities. Also, if an individual has ever participated
in a similar experiment, his/her performance in the second
experiment may be different from the first experiment, because
pain is modulated by experience. But this experiment did not
record these types of variables and only examined how the
individual differences in pain-evoked BOLD signals and pain
ratings affect the prediction error. Thus, the determinants of
between-individual pain prediction error are still limited in
these two types of variables (pain ratings and evoked BOLD
signals). It is necessary and possible to collect more types
of behavioral and demographic data as well as multi-modal
neurophysiological signals to provide a more comprehensive
picture of the determinants of between-individual prediction
error.

Similarly, subjective pain ratings are not only correlated
by pain-evoked BOLD responses, but also related to many
other variables (such as gender and sociocultural variables) and
neural activities (such as resting-state brain connectivity and
pre-stimulus neural oscillations). Including more independent
variables (features) in the pain prediction model may improve the
prediction accuracy, but it becomes more difficult to disentangle
the contributions of various types of features to prediction error
because there is complex dependency among these features.
In the present study, we built the pain prediction model only
using pain-evoked BOLD responses as features to ensure the
relationship between individual differences in BOLD features and
pain prediction error can be well-elucidated.

Lastly, the number of individuals and the number of trials
per individual in this experiment are not large, which limits the
statistical power of the results. Here, we have analyzed data from
30 individuals. Increasing the number of individuals will make
the data contain more possible variations across individuals,
which will make our conclusion more robust and generalized. For
example, this study showed that age, weight, and gender were not
related to subjective pain ratings. But the number of participants
in this study is still small and a large-sample study should
be carried out to produce more significantly powerful results.
The number of trials per individual is also very important in
training a model, because more training trials will produce a more
accurate and robust prediction model. However, participants may
exhibit adaptability to a large number painful stimulation. For
example, in our experiments, the correlation coefficient between
pain ratings and trial numbers is significantly smaller than 0
(R = −0.17 ± 0.24, P = 1.95 × 10−4, one-sided t-test), which
means that pain ratings decreased after a number of trials and
the subjects may present adaptation to pain. Hence, it will be
interesting to investigate why pain ratings are decreased with
the trial numbers and whether pain-related BOLD responses also
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change with the trial numbers, which may lead to a better
pain prediction model. In addition, it is necessary to deliver
painful stimuli in a larger range of intensity so that the
evoked pain ratings could also have a wider range, which
will make class labels of the prediction model more complete
and will lead to a more accurate and general prediction
model.
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