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Notable sex-differences exist between neural structures that regulate sexually dimorphic
behaviors such as reproduction and parenting. While anatomical differences have been
well-characterized, advancements in neuroimaging and pharmacology techniques have
allowed researchers to identify differences between males and females down to the level
of the synapse. Disparate mechanisms at the synaptic level contribute to sex-specific
neuroplasticity that is reflected in sex-dependent behaviors. Many of these synaptic
differences are driven by the endocrine system and its impact on molecular signaling
and physiology. While sex-dependent modifications exist at baseline, further differences
emerge in response to stimuli such as stressors. While some of these mechanisms
are unifying between sexes, they often have directly opposing consequences in males
and females. This variability is tied to gonadal steroids and their interactions with
intra- and extra-cellular signaling mechanisms. This review article focuses on the
various mechanisms by which sex can alter synaptic plasticity, both directly and
indirectly, through steroid hormones such as estrogen and testosterone. That sex can
drive neuroplasticity throughout the brain, highlights the importance of understanding
sex-dependent neural mechanisms of the changing brain to enhance interpretation of
results regarding males and females. As mood and stress responsivity are characterized
by significant sex-differences, understanding the molecular mechanisms that may be
altering structure and function can improve our understanding of these behavioral and
mental characteristics.
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INTRODUCTION

Sex differences in behavior can be observed through both scientific inquiry and casual observations
in social settings. Although gender roles have been proposed to account for some of the variability
in behavior observed between males and females (Ruble et al., 1993; Aggen et al., 2011),
behavioral differences extend beyond socially defined roles to physiological differences and certain
well-established sexually dimorphic neural structures. Sex differences in neural structures have
been documented in humans (Swaab and Fliers, 1985; Allen et al., 1989; Ruigrok et al., 2014;
Catenaccio et al., 2016), but also in animals that do not have the social constructs of humans
that define genders, including rodents (Gorski et al., 1978; Campi et al., 2013) and avian species
(Nottebohm and Arnold, 1976; Balthazart et al., 2009). Some of the most notable sex differences
in neural structure are evident in the hypothalamus of the mammalian brain (Gorski et al., 1978)
and the song region in the avian brain (Nottebohm and Arnold, 1976). As these brain regions
drive sex-specific reproductive-related behaviors, these findings are somewhat unsurprising.
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However, sex differences in neural structures extend beyond
brain regions directly involved in reproduction and include
structures linked to stress responsivity (for review see McEwen,
2010; Bekhbat and Neigh, 2018) and mood (for review see
Bangasser and Valentino, 2014; Gobinath et al., 2015). Over the
last three decades, technology and experimental design have
advanced the wealth of knowledge regarding sex differences
in the brain. Improved imaging techniques along with the
elegant use of cell culture and pharmaceutical treatments, have
further elucidated sex differences in structure (Phan et al.,
2012; Farrell et al., 2015), connectivity (Ingalhalikar et al.,
2014), signaling (Skucas et al., 2013; Harte-Hargrove et al.,
2015), responsivity (Garrett and Wellman, 2009), and plasticity
(Gould et al., 1990; Parducz et al., 2006). Sex differences are
evident in adult neurogenesis, the birth of new neurons in
adulthood (Ormerod et al., 2004; Tanapat et al., 2005; Mak and
Weiss, 2010; Hyer et al., 2017). However, while sex-dependent
modifications in adult neurogenesis can have a significant impact
on synaptic plasticity (Galea et al., 2006; Livneh and Mizrahi,
2012; Vivar et al., 2016), that discussion is beyond the scope of
this mini-review (see: Kempermann et al., 2015). Although these
potential mechanisms are important to the understanding of
sex differences in neural function, this mini-review focuses
specifically on mammalian sex-differences in synaptic
plasticity that may contribute to sex differences in neural
function.

SEX DIFFERENCES IN STRUCTURAL
PLASTICITY

Spine density, sites for synaptic connections (Holtmaat and
Svoboda, 2009), and dendritic arborization reflect changes
in existing cell structure that can alter neural function and
behavioral outcomes. Chronic stress results in differential
patterns of dendritic remodeling in the hippocampus (Galea
et al., 1997), prefrontal cortex (PFC; Garrett and Wellman,
2009; Farrell et al., 2015) and basolateral amygdala (BLA,
Vyas et al., 2002). Clinical neuropsychiatric disorders related
to stress exposure, for instance depression (reviewed in Qiao
et al., 2016) and anxiety (reviewed in Leuner and Shors,
2013), occur concomitantly with changes in dendritic structure.
The prevalence and incidence of depression and anxiety differ
between the sexes (Piccinelli andWilkinson, 2000; Naninck et al.,
2011) andmay be, in part, driven by sex-dependent dendritic and
synaptic plasticity. Sex-differences have been noted in multiple
dimensions of neuronal plasticity including neuron structure,
dendritic arborization and spine density (Garrett and Wellman,
2009; Farrell et al., 2015) and sex steroids are sufficient to alter
many of these parameters (Figure 1).

Females
The influence of sex steroids on structural plasticity appears
to be more pronounced in females, likely due to cyclical
fluctuations in sex steroids. Concentrations of estrogens and
progesterone fluctuate across the estrous cycle with peak levels
appearing during proestrus and lower levels evident during

estrus, metestrus and diestrus (Butcher et al., 1974). The human
menstrual cycle shows fluctuations in ovarian steroids as well,
with estrogen being lowest early on, then peaking at the end of
the follicular phase to initiate ovulation. This peak is followed
by a gradual surge in progesterone and a slight rise in estrogen
throughout the luteal phase before both drop at the end of
the cycle (Protopopescu et al., 2008; Catenaccio et al., 2016).
Alterations in spine density are evident in response to changes in
ovarian steroid levels across the estrous cycle in female rats. Spine
density in area CA1 of the hippocampus peaks during proestrus
when ovarian steroids are highest, then declines through the
later stages (Woolley et al., 1990). Females generally have double
the spine density of males, yet when they are ovariectomized
no sex difference is evident, suggesting that the sex difference
may be attributable to the activational effects of sex steroids
(Gould et al., 1990; Shors et al., 2001). Ovariectomized females
display a dramatic decline in spine density in the CA1 region
of the hippocampus—a deficit which is reversed with estradiol
or progesterone treatment in as low as 40 min (Gould et al.,
1990; MacLusky et al., 2005). These changes in spine density
appear to have functional implications, such that ovariectomized
mice treated with low-dose estradiol demonstrate both improved
learning and increased spine density in the CA1 region (Phan
et al., 2012).

Sex differences in spine density are not limited to the
hippocampus. For instance, female rats have more large spines
in the nucleus accumbens than males (Forlano and Woolley,
2010). Sex differences in spine density have also been noted in the
BLA, but somewhat surprisingly, testosterone, and not estradiol
alone, appears to mediate these effects (Bender et al., 2017).
The aromatase enzyme cytochrome P450 (AROM), present
throughout the male and female BLA, is capable of converting
testosterone to estradiol (Zhao et al., 2007). Administration of
letrozole, an AROM inhibitor, to the BLA results in decreased
spine density and eliminates long term potentiation (LTP) in
females but not males (Bender et al., 2017). Females have
greater excitatory synaptic input in the BLA compared to males,
specifically in neurons located in the lateral and basal nuclei.
The predominance of each nuclei shifts across the estrous cycle
driving the balance of excitation-inhibition which is reflected
through changes in BLA-dependent emotional memory across
the estrous cycle (Blume et al., 2017). Collectively, these findings
highlight the significant impact of sex steroids on the regulation
of physiology and spine density in females; however, the
following section discusses the impact of sex steroids on spine
density that is also evident in males.

Males
Although males do not produce estrogen or progesterone
in as robust of concentrations as females, both sex steroids
are present in males. The main source of estrogen in males
is the conversion of testosterone to estrogen via aromatase.
Gonadectomy in males reduces spine density in the CA1 region
of the hippocampus, and this effect can be reversed through
treatment with either testosterone or dihydrotestosterone
(DHT). Based on the influence of estradiol demonstrated
in females, one may hypothesize that estradiol would be
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FIGURE 1 | Synaptic plasticity is driven by a variety of sex-specific signaling mechanisms in males and females that can vary throughout the brain. In non-stress
conditions, females (top right) have increased spine density compared to males in the hippocampus (top left) but decreased dendritic length in the prefrontal cortex
(PFC). This increase in spine density in the female hippocampus can occur via multiple estradiol (E2)-dependent signaling mechanisms. Binding with estrogen
receptor alpha (Erα) or the G-protein coupled estrogen receptor (GPER) can initiate N-methyl-D-aspartate (NMDA) channel signaling increasing mini excitatory
postsynaptic currents (mEPCS) which ultimately drive long term potentiation (LTP). Estradiol can also act through Erα on metabotropic glutamate receptor 1
(mGluR1) which in turn drives cAMP response element-binding protein (CREB) phosphorylation in females. In males, NMDA activity is driven by activation of estrogen
receptor beta (Erβ). This signaling cascade includes α nitric oxide synthase-1 (αNOS1) which drives LTP in males but not females. In the male presynaptic neuron,
E2-dependent activation of mGluR2/3 initiates a calcium (Ca++) signaling cascade which facilitates the release of brain derived neurotrophic factor (BDNF).
Testosterone (AROM) can alter the release of BDNF and other aspects of synaptic plasticity in the baso lateral amygdala. In stress conditions, males (bottom left)
show decreased dendritic branching in the PFC but slight increases in spine density in the hippocampus. Possibly accounting for this increase is the reduction in
circulating steroid hormones which can allow for increased BDNF release in males. Females (bottom right) on the other hand, experience increased dendritic length
in the PFC and hippocampus as well as a suppression of spine growth in the hippocampus following stress. Females exhibit changes in opiate receptor (OR)
signaling that can drive long term depression (LTD)—specifically through mu- and delta-OR activity. In the presynaptic neuron, axonal labeling of Erα and GPER1
facilitates vesicle transmission down the axon in both males and females. However, in stress conditions (bottom panels), both receptors migrate to the nucleus
thereby reducing vesicle trafficking.
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equally efficacious in males; however, direct administration
of estradiol is not sufficient to restore spine density in
gonadectomized males (Leranth et al., 2003). Furthermore,
testosterone appears to inhibit LTP and dendritic sprouting
in the male hippocampus. Gonadectomy results in increased
LTP and dendritic sprouting in CA3 mossy fibers which
is dependent on increased brain derived neurotrophic factor
(BDNF) signaling through the tyrosine kinase B (TrKB) receptor
(Skucas et al., 2013). BDNF plays a well-known role in synaptic
plasticity (Lu et al., 2014) and deficits in BDNF signaling in
response to stress can be sex-dependent (Yamaura et al., 2013).
Treatment with testosterone eliminated both the castration-
induced increase in LTP and dendritic sprouting, suggesting
that testosterone can act to inhibit BDNF-dependent structural
plasticity (Skucas et al., 2013). Taken together, these data
suggest that estradiol and testosterone regulate spine density
in a sex- and region- dependent manner and that BDNF is a
likely target mechanism for these hormones to modify synaptic
connections.

Sex Differences in Structural Response to
Stress
Dendritic arborization and spine density are both modified
by stress and are altered in individuals living with mood
disorders. Males overall have more dendritic material than
females (Juraska et al., 1985); however, females appear to
have more dramatic shifts in dendritic architecture following
mildly stressful experiences. For instance, females show increased
dendritic length in the dentate gyrus (DG) following the mild
stressor of exposure to a novel environment compared to
males (Juraska et al., 1985). Interestingly, chronic stress will
increase the length and complexity of dendritic arbors in
females, possibly making them vulnerable to over-excitation
(Farrell et al., 2015), but results in a reduction in dendritic
arbors in males in the PFC. The increase is estradiol-dependent
as ovariectomized female rats do not demonstrate the stress-
induced increase in arborization (Garrett and Wellman, 2009).
Chronic stress can also differentially drive subregion-specific
plasticity. The dorsal hippocampus demonstrates enhanced
markers of plasticity, specifically increased neuropeptide Y and
∆FOSB while the ventral region shows a decline in these same
markers following chronic unpredictable stress (Hawley and
Leasure, 2012). Further complicating our ability to understand
sex differences in dendritic responses to stress, is the observation
that the type of stressor impacts the outcome. Unlike chronic
stress, acute foot shock generates the opposite effect on spine
density in the hippocampus. Following acute foot shock, males
have increased spine density in area CA1 of the hippocampus
while females in diestrus demonstrate a reduction in dendritic
spine density (Shors et al., 2001). Interestingly, regardless of
the directionality, both males and females show no changes
in spine density in response to acute stress if N-methyl-D-
aspartate (NMDA) receptors are antagonized (Shors et al., 2004),
suggesting a potentially unifying mechanism for the disparate
consequence of stress. It is evident in female hippocampal slices
that estradiol-induced LTP is dependent on an increase in the

ratio of NMDA transmission to AMPA transmission (Smith
and McMahon, 2005). Female rats that underwent inescapable
shock to induce learned helplessness can be protected against the
stress-induced loss of spines and LTP if treated with estradiol
(Bredemann and McMahon, 2014). Thus, function of the
hormone-dependent modifications of the NMDA receptor can
dramatically alter the outcome of synaptic plasticity following
stress.

SEX DIFFERENCES IN MECHANISMS OF
SYNAPTIC PLASTICITY

Estrogen Receptors
While changes in spine density and dendritic arborization are
evident with cyclic fluctuations of hormones, the mechanisms
that drive this structural plasticity are often at the molecular
level. As estrogen has a significant impact on structural
plasticity, much attention has been given to the mechanisms
by which estradiol can modify neuron structure. Estrogens
bind with estrogen receptor (Er) α, Erβ and G-protein coupled
estrogen receptor 1 (GPER1). These receptors are localized
throughout the brain of males and females providing estradiol
a site of action to modify neuronal structure (Weiland et al.,
1997). GPER1 is located throughout hippocampal neurons
along the axon, dendritic tree, spine shafts, and is associated
with vesicles in the terminal endings. Although anatomical
distribution of GPER1 is similar between males and females,
increased circulating estrogen concentrations in females leads to
elevated axonal labeling of GPER1 in females as compared to
males, suggesting alterations in vesicle transport with increased
estradiol levels (Waters et al., 2015).

Unlike GPER1, ERα and ERβ exhibit more notable differences
based on sex. Extranuclear ERα distribution in CA1 and
CA3 at the ultrastructure level is primarily localized to the
dendritic spine heads and at the base of spine shafts. Conversely,
ERβ is localized to the soma and dendrite membranes
(Mitterling et al., 2010). Regardless of circulating estrogen
concentrations, females have higher densities of ERα than
males (Shughrue et al., 1997; Mitterling et al., 2010), but ERα-
immunoreactivity within females is sensitive to sex steroids
concentrations. During diestrus, when circulating estrogen is at
a comparatively low concentration, females demonstrate more
ERα-immunoreactivity (ir) and ERβ-ir than that observed in
proestrus females (Milner et al., 2001; Mitterling et al., 2010).
Overall, elevated circulating concentrations of estradiol pair with
reduced extranuclear-ir profiles of ERα and ERβ as compared to
periods of low estrogen concentrations which are concomitant
with elevations in extranuclear-ir (Mitterling et al., 2010). The
shifting patterns of Er localization briefly summarized here,
suggest a potential mechanism by which neuron structure could
be differentially modified across the estrous cycle and lead to
hormone-dependent plasticity in females.

While much of the benefits of estradiol are conferred to
females, males also experience increased synaptic plasticity
with estradiol signaling. Estradiol can drive potentiation
of glutamatergic synapses in males as well as females
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(Teyler et al., 1980; Wong and Moss, 1992). However, the
mechanisms by which the potentiation is initiated are sex-
dependent. Estradiol elicits higher amplitude miniature
postsynaptic excitatory currents (mEPSCs) in a synapse
specific manner (Oberlander and Woolley, 2016). However,
while similar results are evident in males, use of ER-selective
agonists has identified a sex-dependent mechanism. In males,
the potentiation is driven by ERβ while in females it is driven by
GPER1. On the other hand, presynaptic potentiation is initiated
by ERα in males but ERβ in females (Oberlander and Woolley,
2016).

Estradiol’s ability to alter function through Erα and Erβ (Walf
and Frye, 2005; Boulware et al., 2013) is partially dependent on
activation of metabotropic glutamate receptor 1a (mGluR1a;
Boulware et al., 2013). The differing effects of Erα and Erβ
are a result of receptor differences- specifically, differing
N-terminal regions (Tremblay et al., 1997). This discrepancy
results in activation of separate metabotropic glutamate
receptors. Signaling through Erα activates mGluR1 which in
turn drives cAMP response element-binding protein (CREB)
phosphorylation. Erβ activation triggers mGluR2/3 signaling
resulting in a downregulation of calcium mediated CREB
phosphorylation (Boulware et al., 2005). It is also possible that
Erβ activation may result in disinhibition of BDNF-releasing
neurons (Blurton-Jones and Tuszynski, 2002) allowing for
increased BDNF signaling to drive synaptic plasticity. As Erβ
and BDNF are more prevalent in male synaptic plasticity, while
Erα appears to drive female-specific plasticity, this may be a
primary pathway for sex-dependent synaptic plasticity, allowing
for rapid, non-genomic effects of estradiol on hippocampal
plasticity (for review see Walf and Frye, 2006). Overall, these
data show sex-specific mechanisms by which estradiol interacts
with ERα and ERβ to mediate synaptic plasticity.

NMDA Receptor Signaling
In addition to direct action through its own receptors, estradiol
can modify NMDA receptor signaling to drive sex-specific
plasticity. In female rats, estrogen-dependent increases in spine
density are NMDA-dependent (Woolley and Mcewen, 1994). In
gonadectomized females, estradiol benzoate treatment increases
NMDA binding in area CA1 of the hippocampus compared
to males. However, in males, baseline NMDAr binding is
elevated in the DG compared to females (Romeo et al., 2005a).
These findings suggest that estradiol’s interaction with NMDA
receptors is dependent on the organizational effects of steroid
signaling. DHT treatment to the hippocampus will increase
NMDAr binding density in castrated male rats (Romeo et al.,
2005b). Both testosterone and DHT have been shown to increase
spinogenesis in males (Kovacs et al., 2003; Leranth et al., 2004)
suggesting that activation of NMDA receptors by testosterone
or its metabolites is necessary for spinogenesis in males while
the same is true for estrogen in females. Furthermore, these
sex-dependent mechanism may be exacerbated via cholinergic
signaling as estradiol acts on NMDA receptors via cholinergic
mechanisms in females but not in males (Volosin et al., 2006).
Thus, NMDA receptor signaling is a necessary step for synaptic
plasticity in both males and females, especially in response to

stress (Shors et al., 2004), however the binding affinity and
downstream effects are sexually dimorphic further complicating
the interpretation of NMDA-dependent effects on synaptic
plasticity.

Nitric Oxide
Like its relationship with NMDA receptors, estrogen can act
on synaptic plasticity indirectly through nitric oxide in a
sex-dependent manner. LTP in males is dependent on α nitric
oxide synthase-1 (αNOS1) signaling, however, in females LTP
appears not affected in αNOS1 knockouts (Dachtler et al., 2012).
This significant sex difference is likely due to the lack of NO
and reduced NOS1 expression in the female hippocampus at
baseline (Dachtler et al., 2012). However, estradiol application to
female mouse derived tissue increases expression of NO in the
female brain. Furthermore, NOS levels were altered across the
estrous cycle, mirroring fluctuating estradiol levels—specifically,
NOS levels were no different from males during proestrus and
were lowest during diestrus (Hu et al., 2012). Thus, it is possible
that NO-dependent LTP in females may be more likely during
proestrous when estradiol is high and availability of NO is
increased. However, it seems likely that NO-dependent LTP is a
secondary mechanism by which LTP can be initiated in females,
yet in males it is far more prominent.

Opioid Receptors
Other mechanisms exist beyond steroid hormone-dependent
plasticity, to drive changes in synaptic integrity. In proestrus,
female rats have higher mossy fiber transmission in cultured
hippocampal CA3 cells following administration of the generic
opioid receptor antagonist naloxone. Cultured male tissue, on
the other hand, does not show altered signaling. These data
implicate the opioid receptor as an inhibitor in hippocampal
transmission during peak estradiol levels in females. The
mµ-opioid receptor antagonist Cys2, Tyr3, Orn5, Pen7-amide
(CTOP) similarly enhances neural transmission, suggesting
the mµ-opioid receptor is specifically down-regulating neural
firing in females. Females also exhibit low frequency LTP
during proestrus, suggesting that activity threshold is reduced
when estradiol is elevated (Harte-Hargrove et al., 2015). Thus,
a lowered activity threshold during times of peak estradiol
supports enhanced learning and memory in proestrous females
(Fernandez et al., 2008; Macbeth and Luine, 2010). However,
concomitant inhibition of opioid receptors may be necessary
to facilitate this estradiol-dependent benefit. Furthering this
conclusion, electron microscopy has revealed more δ-opioid
receptor-labeled spines in hippocampal pyramidal cells from
proestrous females compared to males. Inhibition of δ-opioid
receptors with the antagonist naltrinidole impairs low frequency
LTP in proestrous females only. Taken together, these data
implicate a sex-specific role of the δ-opioid receptor in LTP
signaling in hippocampal pyramidal cells (Harte-Hargrove
et al., 2015). As the opiate system can be activated by stress
(Chaijale et al., 2013), understanding the role these signaling
mechanisms play in plasticity can help define the pathways
by which stress can modify synaptic plasticity in a sex-specific
manner.
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CONCLUSION

It is evident that sex differences in synaptic plasticity are
driven by both direct and indirect mechanisms of steroid
hormones. While these mechanisms exist at the molecular and
synaptic levels, they are further reflected in structural differences
that ultimately result in sexually-dimorphic behaviors. Recent
advances in human neuroimaging have provided insights into
the translatability of these sex-differences in synaptic plasticity
across mammalian species. Overall changes in white matter, gray
matter and cerebral spinal fluid have been observed across the
menstrual cycle in human women. Generally, gray and white
matter volume appear to increase during the luteal phase when
estrogen and progesterone are elevated in women (Catenaccio
et al., 2016). Ruigrok et al. (2014) conducted a meta-analysis on
gray matter volume and found significant sex-differences with
men having more gray matter in the amygdala, hippocampus,
parahippocampus, insula, and putamen (Catenaccio et al.,
2016). Sex-differences in neural volume are further reflected
in a region-specific pattern that fluctuates with the menstrual
cycle—similar to what is observed across the rodent estrous
cycle. The hippocampus is generally larger in men compared
to women, however, during the luteal phase, when estrogen
peaks, women see a significant increase in hippocampal volume
(Protopopescu et al., 2008). Taken together, these data parallel
findings from female rodents that sex-differences evident in
certain neural structures are likely dependent on fluctuating
hormones in women. Further research is needed to fully elucidate

sex-differences in human neuroplasticity, however, it is clear
that sex-differences are conserved across mammalian species. By
understanding the synaptic mechanisms underlying behavioral
differences between males and females, we can derive more
information on the source of functional changes as well as
their possible dysfunction when, and if, it occurs. Incorporating
both males and females into these studies is essential given the
extensive sex-differences in synaptic plasticity mechanisms and
their functional outcomes.
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