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Template-based matching algorithms are currently being considered for markerless

motion tracking of lung tumors. These algorithms use tumor templates derived from

the planning CT scan, and track the motion of the tumor on single energy fluoroscopic

images obtained at the time of treatment. In cases where bone may obstruct the view

of the tumor, dual energy fluoroscopy may be used to enhance soft tissue contrast. The

goal of this study is to predict which tumors will have a high degree of accuracy for

markerless motion tracking based on radiomic features obtained from the planning CT

scan, using peak-to-sidelobe ratio (PSR) as a surrogate of tracking accuracy. In this study,

CT imaging data of 8 lung cancer patients were obtained and analyzed through the open

source IBEX program to generate 2,287 radiomic features. Agglomerative hierarchical

clustering was used to narrow down these features into 145 clusters comprised of the

highest correlation to PSR. The features among the clusters with the least inter-correlation

were then chosen to limit redundancy in the data. The results of this study demonstrated

a number of radiomic features that are positively correlated to PSR. The features with the

highest degree of correlation included complexity, orientation and range. This approach

may be used to determine patients for whom markerless motion tracking would be

beneficial.

Keywords: lung cancer, motion tracking, dual energy imaging, radiomics, template matching

INTRODUCTION

It is estimated that nearly 190,000 new cases of non-small cell lung cancer (NSCLC) are diagnosed
in the United States each year, accounting for ∼130,000 deaths annually (1). Stereotactic body
radiation therapy (SBRT) is a highly effective treatmentmethod for early stage NSCLC patients who
are medically unfit for lobectomy (2). SBRT allows for the administration of high doses of radiation
to the tumor and has several advantages over conventional treatment. Moreover, it requires far
fewer treatment sessions with improved local control of ≥90% in many studies compared to the
30–60% control rates of conventional external beam radiation therapy (EBRT) (1, 3).

Due to the highly conformal nature of SBRT and high dose per fraction with a limited number of
fractions, motion management is critical to ensure that the tumor receives the full dose of radiation
and the volume of irradiated normal tissue is minimized. To achieve these endpoints, there has
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been recent interest in lung tumor tracking during treatment
delivery (4–11). The goal of these approaches is to modify the
treatment (i.e., multi-leaf collimators, treatment table position,
etc.), based on the position of the tumor during respiration
to minimize the volume of normal tissue irradiated. This
concept is critical in SBRT, as several studies have demonstrated
an increased incidence of symptomatic clinical radiation
pneumonitis correlating with increased volumes of normal lung
irradiated (12–16). While the dosimetric and clinical results
appear promising, relying on implanted markers may limit the
number of patients who can receive such advanced therapies due
to the risks associated withmarker implantation. Previous studies
with implanted fiducial markers in lung tumors demonstrate
this invasive procedure carries the risk of pneumothorax
and pulmonary hemorrhage (17). Moreover, migration of
fiducial markers in the lung specifically may be significant
(4–6).

As an alternative to using implanted markers, several studies
have described using fluoroscopy for markerless tumor tracking.
These studies have reported target localization <3mm using
fluoroscopy and template matching methods (8–11). However,
this method often fails, or results in decreased tracking accuracy,
when the boundary of the tumor is obscured by overlying bones.
Lewis et al. showed that the tracking error could be up to 5mm
due to the obstruction of the tumor by a high contrast object,
such as bone (11). To address this problem, dual energy (DE)
imaging has been shown to improve the visualization of tumors
and in turn, improve the accuracy of markerless tumor tracking
(18). Briefly, DE imaging involves obtaining x-ray images at high
(i.e., 120 kVp) and low (i.e., 60 kVp) energies. By performing a
weighted-logarithmic subtraction, a third image is created that
suppresses bone and enhances soft tissue/tumor.

In a recent DE study by Block et al., 74 image pairs
from 17 patients were evaluated using a template matching
algorithm (19). The algorithm successfully matched the template
in 61 (82%) of the single energy (SE) images and 74 (100%)
of the DE images (p < 0.01). The mean distance between
the gross tumor volume (GTV) centroid coordinates (x,y)
of the matched template and physician defined ground truth
coordinates was 3.2 ± 2.8mm for SE vs. 2.3mm ± 1.7mm
for DE (p = 0.03). The false detection rate (fraction of
images with > 5mm matching errors) was 7/74 (9.4%) for
DE images, vs. 9/74 (12.1%) for SE images (p = 0.79). It
was also determined that the peak-to-sidelobe ratio (PSR)—
a measure of tracking quality—was predictive of template
matching accuracy. For PSR <3, the matching accuracy was
3.3 ± 3.1mm vs. 2.2 ± 1.3mm for PSR ≥ 3 (p = 0.02).
Importantly, the false detection rate was 20.9% (PSR < 3)
vs. 4.0% (PSR ≥ 3) (p < 0.01). Therefore, the PSR can be
used as a predictive surrogate for the accuracy of template
matching.

The goal of this study is to determine if one can predict which
tumors will have a high degree of accuracy for markerless motion
tracking using radiomic features obtained from the planning
CT scan. Radiomics is the high throughput extraction and
analysis of quantitative features from imaging data (20). These
quantitative features have prognostic and predictive potential

containing information that cannot be obtained via inspection
of the imaging data alone (21, 22). The information found from
these features is multidimensional and can comprise of anything
from tumor malignancy to predicting patient outcomes (23, 24).
To our knowledge, this study represents the first to consider the
use of radiomic parameters to predict the success of a markerless
motion tracking technique.

MATERIALS AND METHODS

Patient Selection
In this Loyola University Medical Center Institutional Review
Board (IRB) approved study (LU203840), SBRT patients with
Stage IA-IIA NSCLC were enrolled in a prospective imaging
study. Patients who were eligible for this study included those
with no implanted fiducials and a Karnofsky Performance Status
(KPS) > 70. In total, 8 patients were enrolled and a total of 23
imaging fractions were evaluated.

CT Simulation and Treatment Planning
Patients were simulated in the supine position, and immobilized
using a custom body mold (Alpha Cradle, Smithers Medical
Products, Inc., Canton, OH) that was indexed to the treatment
table. Simulation was performed using a dedicated CT scanner
(Brilliance Large Bore, Philips Medical Systems, Andover,
MA) equipped with the Real-Time Position Management
(RPM) System (Varian Medical Systems, Palo Alto, CA) to
allow for 4D acquisitions. A slice thickness of 3mm was
used for all patients. The tumor volume and prescription
were determined by the treating radiation oncologist.
Treatment plans, using a volumetric modulated arc therapy
(VMAT) technique were created in conjunction with the
dosimetry team and ultimately approved by the radiation
oncologist.

Fluoroscopic Image Acquisition
All patients were treated on a Varian TrueBeam (Varian Medical
Systems, Inc., Palo Alto, CA) linear accelerator equipped with
an on-board imaging system and RPM. Following each fraction,
fluoroscopic images were obtained sequentially using 60 and
120 kVp, respectively. These energies were based on previous
studies in which the radiographic technique was optimized for
DE subtraction (25, 26). The image sequences were acquired
at fixed gantry angles along the same trajectory that was used
for VMAT delivery. The Varian TrueBeam Integrated Imaging
Solution R© in conjunction with the Varian iTools Capture (Varian
Medical Systems) software and a Matrox Imaging (Quebec,
Canada) frame grabber card were used to acquire a total of 2,448
fluoroscopy frames.

Dual Energy Subtraction
The raw images, obtained from the iTools Capture software,
were exported off-line into a customized program developed
in MATLAB (MathWorks, Natick, MA). Alignment of the
individual fluoroscopic frames (60 and 120 kVp) was performed
based on the image amplitude and phase as obtained by
RPM. Further refinements were made using a localized rigid
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registration (27). Based on the aligned images, a pixel-by-pixel,
weighted logarithmic subtraction was performed to create the DE
image using (25, 26):

ln
(

IDESoft
)

= ln
(

IHigh
)

− wsln
(

ILow
)

(1)

where IDE
Soft

is the intensity of the resultant DE soft tissue

(bone suppressed) image, IHigh and ILow are the intensities
the high and low energy image pixels, respectively, ln is
the natural logarthim and ws is the relative weight required
to produce the DE image. The 120 kVp images were used
as the standard SE images to which the DE images were
compared.

Template Matching
Template matching was performed using an algorithm based
on Mostafavi et al. (28). First, templates are generated from the
CT where the radiation oncologist contours the GTV during
routine RT planning. The program then creates a volume of
interest (VOI) around the GTV and the voxel values within this
volume are forward projected to create templates that are similar
to digitally reconstructed radiographs (DRRs). Templates are
generated for all expected treatment angles and the appropriate
template is selected based on imaging angle (28). Next, the match
location is determined by shifting the template across the image
and calculating the normalized cross-correlation (NCC) between
the template and the acquired image at different 2D offsets within
the search region. The NCC is given by (28):
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1
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where n is the number of pixels in the template t(x,y) and sub-
image f (x,y), t and f are the average of the pixel values in the
template and sub-image, respectively, while σf and σt are the
standard deviations over the respective regions. Calculation of
NCC at different 2D offsets within a search region results in a
match score surface. The offset at which NCC has the maximum
value (i.e., the position of the peak of the match score surface)
represents the potential target position within the search region.
The strength of this peak relative to NCC values away from the
peak, called sidelobe values, is quantified by the peak-to-sidelobe
ratio (PSR) and is calculated by (28):

PSR =

[

peakvalue−meansidelobe
]

[

sidelobe standard deviation
] (3)

Radiomic Analysis
For the study, CT imaging data from 8 lung cancer patients
treated with SBRT was obtained from Eclipse treatment planning
system (Varian Medical Systems, Palo Alto, CA) and analyzed
using the open source IBEX program (28). The GTV, as outlined
on the 50% respiratory phase CT was the ROI chosen for all of
the patients and imaging features of the following feature sets
were calculated: Gray Level Run Matrix 25 (n = 33 features),

Intensity Direct (n = 55 features), Intensity Histogram (n =

49 features), Neighbor Intensity Difference 3 (n = 5 features),
Neighbor Intensity Difference 25 (n = 5 features), Gray Level
Co-occurrence Matrix 3 (n = 1792 features), Gray Level Co-
occurrence Matrix 25 (n = 330 features), and Shape (n = 18
features). A summary of these feature sets is presented in Table
II of Zhang et al. (29). Of note, the number of features listed here
may not be consistent with Zhang et al. (29). The reason is that
certain features (such as Percentile) will take on discrete values
that are not specifically listed in the table.

A total of 2,287 imaging features were identified in initial
dataset for all 8 patients. Imaging features that were undefined
or missing for certain patients were removed from the dataset.
Additionally, some imaging features from Intensity Direct and
Intensity Histogram sets contained duplicate entries, which were
subsequently removed. After the pre-processing, the number
imaging features decreased to 1,419.

The study aimed to find a subset of imaging features
most predictive in predicting PSR values. In this analysis,
PSR values were used as a continuous variable. To find
a subset of features that is relevant in predicting PSR,
initially, agglomerative hierarchical clustering was performed
based on the Pearson correlation coefficient between features.
Hierarchical clustering was selected for being a simple,
straightforward clustering measure with easily interpretable
results. Agglomerative hierarchical clustering finds clusters by
iteratively merging the two most similar features, or groups
of features, together. The features with highest correlation
coefficients are grouped together first. The results of hierarchical
clustering can be presented as a dendogram seen in Figure 1,
where the number of clusters depends on what level the
dendogram tree is cut. This particular cluster has correctly
identified features that fall into the Gray Level Co-occurrence
Matrix 3 feature set.

The optimal number of clusters was chosen by iteratively
decreasing the cluster size and evaluating the Dunn index (30).
The Dunn index is defined as the ratio between closest inter-
cluster distances and the furthest intra-cluster distance. The
largest value of the Dunn index provides the optimal number of
partitions in the data. Using this procedure, we found the optimal
number of feature clusters to be 145. This is demonstrated in
Figure 2.

Among each cluster set we chose the feature that is least
correlated to the rest of clusters. This allows for the reduction
of noise and removal of redundancy. In the next step, we
use target values of PSR and perform linear regression with
squared regularization term. For the penalty term, we chose an
intermediate value of 0.6 to avoid over-fitting. Feature ranking
was performed based on the normalized absolute values of the
weights obtained by linear regression.

Validation Studies
Additionally, validation studies for the results were conducted
to ensure that this algorithm was shown to be able discover
features that are predictive of tracking. Four categories of feature
groups were assessed: (1) features selected by agglomerative
hierarchical clustering, (2) all 2,287 features together (3) top four
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FIGURE 1 | Dendogram generated using agglomerative hierarchal clustering showing just one of the clusters formed based on this method. Depending on the level of

the clustering chosen, the number of clusters formed is variable.

FIGURE 2 | Plot demonstrating calculation of the Dunn Index for the agglomerative hierarchal clustering performed for the radiomic features of this study. From 0 to

144, there is a gradual increase in the Dunn Index before a marked increase at 145 followed by decreasing values. This indicates that 145 clusters are the optimal

value for this data set.

features from the subset of agglomerative clustering, and (4)
top nine features solely selected based on Pearson correlation.
For each category the data was randomly split into 50%
training and 50% testing samples. Ridge regression was done
to perform linear fit on the training sample and predict the
PSR of the testing sample. For each split, the r-square score

was computed for the testing sample and it was repeated five
times. The mean r-square of five splits was compared for three
categories. The r-square can range between 1 to arbitrary negative
values; 1 signifies the features are able to generalize to the
dataset and negative values imply the model can be arbitrarily
worse.
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RESULTS

The study evaluated 1,419 radiomic features for 8 patients which

was narrowed down using agglomerative hierarchal clustering

to 145 clusters. From there, the 20 features with the strongest
relationship to the PSR value are summarized in Figure 3,

4. In the analysis of the radiomics features, it was found

that there were several features that showed high predictive
potential for PSR. The features complexity, orientation, gray
level non-uniformity and range demonstrated the highest
degree of correlation with PSR for both SE and DE imaging.
Other radiomic features with high correlation coefficients
are also included as well. Of note, many of the intensity
based features demonstrated high correlation, including: energy,

FIGURE 3 | Graph demonstrating the 20 features with the strongest relationship to PSR for the SE imaging data out of the 145 cluster sets. Complexity and

orientation were the most predictive of PSR for SE.

FIGURE 4 | Graph demonstrating the 20 features with the strongest relationship to PSR for the DE imaging data out of the 145 cluster sets. Complexity and

orientation were the most predictive of PSR for DE, similar to the results for SE.
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globalmax, kurtosis, localrangemax, and localrangestd. SE and
DE demonstrated similar results in regards to correlative features.
Of all the radiomic features highlighted, all p-values were < 0.05
indicating statistical significance of the correlation of the feature
to the SE and DE PSR values.

The validation study revealed that the mean r-square of
features in Category 1 (those selected by the method used in
the study) were higher than in Category 2, 3, or 4. That is,
the features selected by the method in the study are able to
generalize the data to a better degree than all 2,287 features
together or single features alone. Category 1 had a r-square
of 0.29 +/– 0.18 while Category 2 had a r-square of −3.24
+/– 2.32. Category 3, consisting of only the top four features
from the selected feature set, had a r-square score −4.13 +/–
8.62. Category 4 consisted of single features and a sampling of
the features with highest correlation shows that SurfaceArea,
333GrayLevelNonuniformity and Energy had a r-square of 0.08
+/– 0.36,−0.1+/−0.63, and−0.14+/– 0.51, respectively. Based
on this validation for the features selected in this study, Category
1 demonstrates better prediction that either the remaining
categories.

DISCUSSION

In this study, we evaluated the correlation between radiomic
parameters and the accuracy of a template-based markerless
motion tracking algorithm. Overall, a high correlation coefficient
was observed between several radiomic features and the PSR
values for both SE and DE images. The significance of these
results is that PSR>3 have been shown to have improved tracking
accuracy. Thus, any features correlated with the PSR value would
be able to indicate the potential for quality tracking. In turn,
this may allow for the identification of patients which are ideal
candidates for using the proposed markerless motion tracking
algorithm during SBRT delivery.

For both SE and DE imaging, the top 3 features with the
strongest relationship to the PSR were identical: complexity,
orientation, and range. Complexity is a feature of the neighbor
intensity difference category. Complexity is determined by the
amount of primitive components within an image, making it
non-uniform due to rapid change in the gray level intensity.
Increased complexity can potentially increase the ability to track
heterogeneous tumors, which will likely have more complexity
compared to normal healthy tissues, which should be more
regular. Orientation is a feature of the shape category related
to the directionality of the region of interest (ROI), which is
reflective of the shape of a tumor. Range is a feature of the
intensity direct category that represents the range of gray values
in the ROI. This is expected to have a large effect on the ability

to track in a similar fashion to complexity. A wider range of gray
values will more likely indicate heterogeneity, which serves as a
good contrast against more homogenous healthy tissue.

There were several limitations in the scope of this study with
the key factor being the small sample size of only 8 patients.
Sample size is an important variable is assessing the predictive
value of a particular set of radiomic parameters. A small sample
size has a larger margin of selection bias, which would mean
that the conclusions from this study are not as widely applicable
as desired. Zhang et al. (31) demonstrated that a patient cohort
of >50 is needed for convergence of the area-under-the curve
(AUC) in their analysis. Figueroa et al. (32) predicted a sample
size ranging from 80 to 560 is required to reduce the root-mean-
square error to <0.01. Moreover, it is not clear how the size
of the patient cohort would affect the clustering of radiomic
parameters. The next step forward for this study would be
applying what was learned here to a larger patient cohort in the
aims of corroborating these findings. There are some additional
challenges to the process of radiomics as results may differ
institutionally or even on different imaging devices. One of the
main goals currently in radiomics is standardization of imaging
acquisition to ensure consistent and reliable results (33).

This study demonstrated several radiomic features that are
positively correlated to PSR, an indicator of how well markerless
motion tracking will function for a specific tumor in a patient.
Based on the predictive relationship between the PSR value and
the radiomic features, ultimately the goal is to use CT imaging
data to determine if a patient would make a good candidate
for markerless motion tracking SBRT. Radiomics thus offers
tremendous potential in improving individualized treatment
plans.
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