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Recent advances in MRI have made it easier to collect data for studying human

structural and functional connectivity networks. Computational methods can reveal

complex spatiotemporal dynamics of the human developing brain. In this paper, we

propose a Developmental Meta-network Decomposition (DMD) method to decompose

a series of developmental networks into a set of Developmental Meta-networks (DMs),

which reveal the underlying changes in connectivity over development. DMD circumvents

the limitations of traditional static network decomposition methods by providing a

novel exploratory approach to capture the spatiotemporal dynamics of developmental

networks. We apply this method to structural correlation networks of cortical thickness

across subjects at 3–20 years of age, and identify four DMs that smoothly evolve over

three stages, i.e., 3–6, 7–12, and 13–20 years of age. We analyze and highlight the

characteristic connections of each DM in relation to brain development.

Keywords: structural correlation networks, developmental networks, cortical thickness, developmental meta-

network decomposition, non-negative matrix factorization

1. INTRODUCTION

Understanding normal brain development is critical for basic developmental neuroscience. Recent
advances in MRI have made it easier to collect data for studying human structural and functional
connectivity networks. For example, the multi-site NIH MRI Study of Normal Brain Development
has collected developmental structural MRI of over a thousand of children, ranging from infancy
to young adulthood. The rich spatial and temporal information afforded in such datasets calls for
sophisticated computational methods to capture the dynamic changes in brain connectivity during
the course of development.

To date, most developmental studies are mainly focused on charting network characteristics,
such as small-world properties, global efficiency, local efficiency, and etc. (Menon, 2013;
Olde Dubbelink et al., 2013; Wu et al., 2013; Hadley et al., 2016). They treat the developmental
networks as a group of static networks and compute their network characteristics independently.
Alternatively, community detection algorithms are used to investigate the temporal evolution of
modular organization (Mucha et al., 2009; Betzel and Bassett, 2017). The detected modules are
recognized as sets of brain regions that perform specific cognitive functions.

To study temporal changes in brain connectivity, various matrix decomposition methods,
especially principal component analysis (PCA), independent component analysis (ICA), and
non-negative matrix factorization (NMF) have been applied to developmental structural and
functional networks to identify the intrinsic components (Ghanbari et al., 2014; Sotiras et al., 2017)
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or connectivity states (Leonardi et al., 2013; Calhoun et al., 2014;
Miller et al., 2016). Compared with other matrix decomposition
methods, NMF is featured with its non-negativity constraint
imposed on the elements of the decomposed factor matrices. This
constraint leads to a parts-based representation (Lee and Seung,
1999), thusmaking the decomposition results more interpretable.
During brain development, brain connectivity may evolve
through different stages. Accordingly, the intrinsic connectivity
components, which we refer to as meta-networks, may also
develop across different stages. In this paper, we call such evolving
intrinsic component as developmental meta-networks (DMs)
and propose an approach for Developmental Meta-network
Decomposition (DMD). DMD decomposes the developmental
networks into a set of temporally smooth DMs that capture the
underlying connectivity patterns across developmental stages to
adapt to the cognitive development. DMD not only automatically
identifies the developmental stages and the number of DMs, but
also uncovers the evolution of DMs. In this study, we apply DMD
to developmental networks constructed based on inter-regional
cortical thickness correlation across subjects for age spanning
3–20 years.

2. MATERIALS AND METHODS

2.1. Datasets and Construction of Blue
Developmental Networks
This study uses the Pediatric MRI Data Repository1 released by
the NIHMRI Study of Normal Brain Development (Evans, 2006),
which is a multi-site developmental study with the objective to
collect developmental data for investigating brain maturation
in connection with behavioural and cognitive development in
normal populations (Evans, 2006; Waber et al., 2007). We adopt
951 scans from 445 subjects of 3 to 20 years of age (Figure S1). The
age in years are obtained by subtracting the date of birth from the
date of visit. Each subject is scanned in two or more MRI sessions
over a five-to-six-year period.

For each participant, a three-dimensional sagittal T1-weighted
image was acquired using a 1.5 T scanner with 1mm isotropic
resolution. Each image was skull stripped to remove non-cerebral
tissues (Smith, 2002), corrected for intensity inhomogeneity, and
segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) (Zhang et al., 2001). FSL 4.3 were
used to perform brain extraction (BET) and tissue segmentation
(FAST). To ensure the image processing quality, we visually
checked the brain extraction and segmentation results for each
subjects less than 5 years old. Different parameters were tried
until the segmentation result were acceptable. Inner and outer
cortical surfaces were reconstructed by a deformable surface
method (Li et al., 2012). With the automated anatomical labelling
(AAL) template (Tzourio-Mazoyer et al., 2002), each cortical
surface was parcellated into 78 regions of interest (ROIs) (see
Table S1) based on a non-linear hybrid volumetric/surface
registration method (Liu et al., 2004).

Cortical thickness was measured between the reconstructed
inner and outer cortical surfaces using the shortest distance in

1https://pediatricmri.nih.gov/nihpd/info/index.html

the native space at each vertex (Liu et al., 2008). Regional cortical
thickness was defined as the average thickness of all vertices
within an ROI. We removed the effects of multiple confounding
variables, including gender and overall mean cortical thickness,
via linear regression analysis for each cortical region at each
age (He et al., 2007). The regression residuals were taken as the
corrected cortical thickness values.

The details of networks construction based on cortical
thickness is described in Nie et al. (2013). An inter-regional
cortical thickness correlation network was built for each time
point by computing the pairwise Pearson’s correlation coefficient
of cortical properties across subjects. Take age 3 for example,
there were 45 unique subjects, then each ROI was represented
by a cortical thickness vector of length 45. By computing
the Pearson’s correlation coefficient between each pair of ROI
vectors, we built a 78×78 inter-regional correlation network for
age 3. We used the absolute values of the correlation matrices
as in other studies (Khundrakpam et al., 2013). In the network
matrix, a zero entry represents absence of connection, whereas
a positive entry indicates the strength of pairwise inter-regional
correlation. In this way, we obtained the developmental networks
composed of eighteen 78×78 symmetric non-negative networks
of 3–20 years of age (Figure S2).

2.2. Developmental Meta-Network
Decomposition (DMD)
DMD method is composed of three parts (see Figure 1):
(i) identifying the developmental stages of the developmental
networks; (ii) decomposing the developmental networks into a
set of DMs and their trajectories; (iii) characterization of the
different types of connections in DMs, i.e., stable and rapidly-
changing connections.

2.2.1. Identifying Developmental Stages
The evolution of DMs is essentially caused by the change of
developmental networks across different developmental stages.
An ideal partition of developmental stages satifies that the
networks in the same stage are close to each other, while the
networks in different stages are significantly different from each
other.

To achieve this aim, we use the method of consensus
clustering (Ozdemir et al., 2015; Wu et al., 2015), which yields
a stable and robust partition. We run the sensitive k-means
clustering algorithm on the vectorized developmental brain
networks with different numbers of clusters. For each number
of clusters, we record the clustering results for 100 runs with
randomized seeds, and use the criterion of dispersion coefficient
to evaluate the consistency of the clustering results (Brunet et al.,
2004). The larger the dispersion coefficient, the more consistent
the clustering results. The optimal partition of developmental
stages is the one that leads to the largest dispersion coefficient
in the finest granularity. In another word, if there are multiple
partitions leading to the same highest dispersion coefficient, we
prefer the one that reveals themost detailed developmental stages
of the age-related networks.
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FIGURE 1 | Illustration of DMD method. First, we identify G developmental stages of the longitudinal networks X, which are denoted as X1,X2, · · · ,XG. Second,

DMD decomposes the longitudinal networks into a set of DMs (U) and their developmental trajectories (V ). For instance, U1 and U2 respectively represent the first and

the second DM, while v1 and v2 represent their developmental trajectories. The DMs reveal the developmental connectivity patterns, while the developmental

trajectories indicate the longitudinal contributions of the DMs. Each DM has different states at different stages. Third, we characterize different types of connections in

DMs, i.e., stable and rapidly-changing connections.

2.2.2. Developmental Meta-Network Decomposition
Let X = [x1 x2 · · · xτ ] be the developmental non-negative
networks, where xi ∈ R

M
+ represents the vectorized network

at the ith time point, M is the number of connections in each
network (i.e., 78 × 77/2 in this study due to the symmetry of
network), τ is the number of time points. Assume that the τ

developmental networks consist of G developmental stages, let
Xt = [xi1 xi2 · · · xint ] ∈ R

M×nt (∀t ∈ [1,G]) denote the

tth developmental stage, then X can be reorganized as X =

[X1 X2 · · · XG]. Our aim is to decompose a set of DMs (denoted
as U) and their developmental trajectories (denoted as V) from
X. Note that we allow each DM to evolve across different stages,
instead of remaining unchanged through development.

We start from considering the decomposition of a single
developmental stage Xt . It is an observation of the tth

developmental stage that consists of two parts. One is the true
developmental networks of the tth stage (X̂t), the other is the
noise introduced during image acquisition, preprocessing and
etc. To reduce the impact of noise, we perform decomposition on
X̂t instead of observed Xt . We assume that X̂t can be represented
as a linear combination of p DMs at the tth stage (Ut), whose
contributions are indicated by their trajectories (Vt), i.e., X̂t =

UtVtT . The combined objective function of true data recovery
and DM decomposition is given in Equation (1).

min
X̂t

1
2 ||X

t − X̂t||2F + λ||X̂t||∗

s.t. X̂t = UtVtT ,UtTUt = I,Ut ≥ 0,Vt ≥ 0
(1)

The first term in Equation (1) minimizes the difference between
X̂t and Xt , the second term penalizes the nuclear norm of X̂t ,
which implies the number of DMs. The orthogonal constraint

UtTUt = I avoids finding overlapped connectivity patterns.

Besides, the non-negativity constraints on Ut and Vt facilitate
their neurobiological interpretation as DMs and developmental
trajectories. To simplify the formulation, we replace X̂t with the

product of Ut and VtT in Equation (1) and have the following
objective function.

min
Ut ,Vt≥0

UtTUt=I

1

2
||Xt − UtVtT ||2F + λ||UtVtT ||∗ (2)

Next, we take all the developmental stages into consideration.
According to existing neural network models, nervous systems
can change smoothly by slowly changing connectivity patterns
and strength (Enquist and Ghirlanda, 2005). Inspired by that,
we define the overall objective function as the sum of all the
single-stage objective function plus a cross-stage smoothness
regularization termR(U,V).

min
Ut ,Vt≥0

UtTUt=I

G
∑

t = 1

(

1

2
||Xt − UtVtT ||2F + λ||UtVtT ||∗

)

+R(U,V)

(3)
where

R(U,V)
def
=

α

4

G
∑

k,l = 1

WU(k, l)||U
k−Ul||2F+

β

4

τ
∑

i,j = 1

WV(i, j)
∥

∥vi − vj

∥

∥

2
)

(4)
In Equation (4), the first term ofR(U,V) measures the temporal
smoothness of U across different states, whereWU(k, l) indicates
the adjacency between the kth and lth developmental stages.
The second term of R(U,V) measures the temporal smoothness
of V across different time points, where WV(i, j) measures the
adjacency between the ith and jth time points.
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Since it has been proved that minimizing the nuclear norm
of the product of two non-negative matrices is equivalent to
minimizing half of their squared Frobenius norm (Srebro and

Shraibman, 2005), we can replace the nuclear norm ||UtVtT ||∗
in Equation (3) with 1

2 (||U
t||2F + ||V

t||2F). Besides, notice that

||Ut||2F = tr(UtTUt) = p and
∑G

t=1 ||V
t||2F = ||V||

2
F , we can

rewrite the objective function in the following form.

J = min
Ut ,Vt≥0

UtTUt=I

G
∑

t=1

1

2
||Xt − UtVtT ||2F +

1

2
λ||V||2F +R(U,V) (5)

Therefore, we obtain the multiplicative updating rules forUt and
V as follows.

Ut ← Ut ⊙

[

XtVt + α
G
∑

k=1

WU(t, k)U
k

]

[

UtVtTXtVt + α
G
∑

k=1

WU(t, k)UtUtTUk

] (6)

V← V⊙

[

G
∑

t=1
HtXtTUt + βWVV

]

[

G
∑

t=1
HtHtTVUtTUt + λV+ βDVV

]
(7)

whereHt def
= (ei1 , ei2 , · · · , eint ) is the mask matrix of Vt satisfying

Vt = HtTV, eij is a 0/1 vector with the only positive element
at the ij-th index, DV is the degree matrix of WV, ⊙ and the
bar respectively denote element-wise product and division. The
convergence proof of the multiplicative updating rules can be
referred to that of non-negative matrix decomposition (Lee and
Seung, 1999). To avoid local minimum, we adopt an initialization
strategy on U and V similar to that of k-means algorithm, i.e.,
repeating multiple (100) times with random initializations and
choosing the one with the least cost. The empirical convergence
of DMD method is shown on Figure S3. The method is robust to
a wide range of the regularization parameters (Figure S4).

The number of DMs is determined by maximizing Minimal
Trajectory Distance (MTD), which computes the minimal
distance between pairwise developmental trajectories. The larger
MTD, The more separable the developmental trajectories, the
more distinct and biologically significant the corresponding
DMs.

2.2.3. Characterizing Different Types of Connections

in DMs
On the basis of developmental meta-network decomposition,
we characterize two types of connections in DMs, i.e., stable
connections and rapidly-changing connections, for analysis.

The stable connections constitute the “bones” of DMs that keep
unchanged through development, while their contributions in
the developmental networks are indicated by the developmental
trajectories. We select the stable connections with the least
normalized divergence (e.g., top 2%) for each DM, and exclude

those insignificant connections with average strength (Ur) less
than a threshold (δr). Take the rth DM (denoted as Ur) for
example,

�(Ur) =
div(Ur)

Ur

=

[

∑G
k,l=1

∣

∣

∣
u
k
r − u

l
r

∣

∣

∣

]

[

1
G

∑G
t=1 u

t
r

] (8)

�(Ur) in Equation (8) computes the normalized divergence of
the connections in the the rth DM, where u

t
r represents the tth

state of Ur . The threshold δr is adaptively determined by the
quadratic mean (or root mean square value) of Ur , where GM
is the number of connections in Ur .

δr =

√

‖Ur‖
2
F

GM
(9)

The rapidly-changing connections highlight the most important
changes in the inter-regional coordination during brain
development. We characterize this type of connections by
taking into account of both DMs and their developmental
trajectories. For each DM, we select the most significantly
increased and decreased connections across adjacent stages by
computing 1u

t
r = (ut+1r − u

t
r). Meanwhile, we calculate the

stage contributions of each DM by averaging its within-stage
trajectory, i.e., v̄tr = mean(vtr). The rapidly-changing connections
are the ones with the same direction of change (↑ or ↓) in
both DMs (1u

t
r) and their stage contributions across adjacent

stages (1v̄tr = v̄t+1r − v̄tr), thus indicating the changes in the
developmental networks.

2.2.4. Reproducibility
To evaluate the reproducibility of DMD method, we use a
split-half strategy, i.e., dividing the developmental networks
into two halves with odd-numbered ages (3, 5, · · · , 19) and
even-numbered ages (4, 6, · · · , 20). The reproducibility is
quantified by computing similarity between the corresponding
DMs (or developmental trajectories), which are independently
decomposed from the two splits and matched using the
Hungarian algorithm (Kuhn, 2005). We use the cosine similarity
to measure the similarity between the matched DMs (or
trajectories), as did in Lange et al. (2004). Since the two splits
of developmental networks have a temporal gap of one year,
cosine similarity is especially advantageous in the evaluation of
trajectory reproducibility, because it is a judgment of orientation
instead of magnitude.

3. RESULTS

We apply DMD method to the developmental structural
correlation networks and obtain four DMs, which evolve across
three identified developmental stages, including ages 3–6, 7–12,
and 13–20, respectively (Figure S5). For the identification of
developmental stages and the DM number, please refer to the
subsection Parameter Influence.
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3.1. Stable and Rapidly-Changing
Connections of DMs
We extract the stable connections of the four DMs (Figure 2A),
whose contributions in the development are indicated by the
developmental trajectories (Figure 2B). In the first DM, the
stable connections exhibit an indirect connection pattern, which
looks like “<>,” between the prefrontal and occipital areas
through interlaying temporal regions. The trajectory of the
first DM shows that the indirect connection pattern decreases
quickly at first but then slows down after the age of 13. In
comparison, the stable connections of the second and third
DMs are characterized with the long direct connections between
the prefrontal and occipital areas. The trajectories of these
direct connections, after going through ups and downs, reach
higher values at the age of 20 than at the age of 3 years.
Combined together, they indicate the gradual replacement of
the indirect connection pattern by the direct connection pattern
from age 3 to 20 years. This is consistent with the development
of functional network architecture, where regional interactions
change from being predominantly anatomically local in children
to interactions spanning longer cortical distances in young adults
(Vogel et al., 2010). Besides, the stable connections of the fourth
DM are composed of short-range connections and homologous
connections between homotopic regions. Similar connections
were also found as the most common and robust connections
among different individuals (Hermundstad et al., 2013).

On the other side, we study the rapidly-changing connections
of DMs. Since the fourth DM is the most stable one with

almost negligible change of connection strength (Figure 3A),

we will focus on the rapidly-changing connections of the other
three DMs. During the transition from the first developmental

stage (ages 3–6) to the second (ages 7–12), the first DM
shows both significantly decreased connection strength and stage
contribution (Figures 3A,B). Its rapidly-weakened connections

indicate the decrease of the frontal part of the indirect connection
pattern (<>) between the prefrontal and temporal regions
(Figure 3C). Meanwhile, the secondDM shows both significantly

increased connection strength and stage contribution. Its rapidly-
enhanced connections highlight three hubs, ACG.R (right
anterior cingulate gyrus) and bilateral MCG (middle cingulate
gyrus). Since those regions are involved in emotion formation
and processing (Bush et al., 2000; Hadland et al., 2003), their

enhanced connections may indicate the emotional development
after 7 years old. In fact, 7 years of age is indeed the critical
time point when impulses of primitive emotion are subjugated
to reason and internalized social control (Cole et al., 1994;
Pierre Philippot, 2013).

In the transition from the second developmental stage
(ages 7–12) to the third (ages 13–20), the first DM is still
featured with decreased connection strength and decreased stage
contribution (Figure 3D). Its rapidly-weakened connections
demonstrate the continued decrease of the frontal part of the

FIGURE 2 | (A) Stable connections of the four DMs through development. The brown lines highlight the representative connections. Different ROIs are rendered with

different colors according to their anatomical locations (Wang et al., 2007): prefrontal, frontal, parietal, temporal, and occipital. (B) The developmental trajectories of

the four DMs. They reflect the contributions of the stable connections in the longitudinal networks.
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FIGURE 3 | (A) Mean strength of the increase and decrease of the connection strength in the four DMs across adjacent states. (B) Change of the stage contributions

by the four DMs across adjacent states. (C) Rapidly-changing connections from ages 3–6 to 7–12. (D) Rapidly-changing connections of DMs from ages 7–12 to

13–20.

indirect connection pattern between the prefrontal and temporal
regions. Meanwhile, the third DM shows the most significantly
decreased connection strength and moderately decreased stage
contribution. Its rapidly-weakened connections highlight three
inter-connected hubs, including bilateral IFGoperc (opercular
inferior frontal gyri) and MOG.L (left middle occipital gyrus).
Since IFGoperc.L play a role in processing word phonology
(Shaywitz et al., 1995) and IFGoperc.R is involved in visual
and auditory spelling tasks (Booth et al., 2003), their weakened
connections may indicate the decline of language development
since 13 years old. This finding is consistent with Lenneberg’s
classic hypothesis about the age limitation (12–13 years) in the
first language acquisition (Lenneberg, 1967) as well as Collier’s
studies that the first language acquisition is largely completed by
the age of 12 (Collier, 1987, 1989).

To summarize, we have three major findings from the
characteristic connections of DMs, which are validated in
Figure S6.

1. The indirect connections between the prefrontal and occipital
regions gradually, to some extent, get replaced by the direct
connections from 3 to 20 years of age.

2. The connections with the emotion-related regions (ACG.R
and bilateral MCG) are significantly increased from 6 to 12
years of age.

3. The connections with the language-related regions
(IFGoperc.L and IFGoperc.R) are significantly decreased
from 13 to 20 years of age.

3.2. Parameter Influence
We first study the influence of stage number on the quality of
the developmental stage partition (Figure 4). With the increase

of stage number (G), the developmental stage partition at first

keeps very robust in consensus clustering, but then exhibits

growing instability when G becomes larger than 3. Therefore,

in this study we choose the most robust developmental stage
partition in the finest granularity, i.e., three stages including
3–6, 7–12, and 13–20 years of age. Note that although we

do not utilize any temporal information, the developmental

stage partitions still group the networks at adjacent time points
together, indicating the smooth change of the developmental

networks.
Next we show the influence of the DM number on the

separability of developmental trajectories (Figure 5). With
the increase of the DM number, MTD at first gradually
increases because more and more distinct DMs are separated
from the average pattern (underfitting). When the DM
number grows larger than four, MTD sharply drops off,
then rises to a local maximum at seven DMs, which
might indicate the existence of DM sub-patterns. After
that, MTD continues to decline and finally reaches a very
low value, because more and more insignificant DMs are
separated from the dominant ones (overfitting). Therefore,
in this study we choose four DMs that leads to the most
distinct DMs with the most separable developmental
trajectories.
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FIGURE 4 | (A) The partition of developmental stages under different settings of stage number. Due to the space limit, we only show the partition results for 2–7

developmental stages. The X axis represents the 100 runs of k-means clustering algorithm, the Y axis represents the longitudinal networks at 3–20 years of age. The

different colors indicate different stage assignment. (B) The influence of stage number on the quality (dispersion coefficient) of the developmental stage partition. The

maximal dispersion coefficient 1 indicates the most robust partition of developmental stages.

3.3. DMD Reproducibility
We also examine the reproducibility of DMs and their
developmental trajectories under different settings of DM
number (Figure 6). The reproducibility of DMs reaches
maximum at the DM number of four (Figure 6A), while
the reproducibility of developmental trajectories get slightly
decreased with the increase of the DM number (Figure 6B).
Therefore, in this study it is a reasonable choice to set the DM
number as four.

4. DISCUSSION

We propose the DMD method to decompose developmental
networks into a set of DMs and their developmental trajectories.

One important advantage of our approach is that it goes
beyond current static network decomposition strategies
to capture dynamic temporal patterns of developmental
networks. Moreover, it automatically identifies the partition
of developmental stages as well as the number of DMs. Our
analysis of normal developmental brain networks shows that
the decomposed DMs contain not only stable connections but
also rapidly-changing connections. Capturing variability in the
connectivity patterns via DMs moves us closer to the clinic of the
future.

DMD helps to find significant underlying changes in
connectivity over development. For instance, the rapidly-
changing connections of DMs reveal that (1) the connections
with the emotion-related regions (ACG.R and bilateral MCG)
are significantly increased after 7 years of age, and (2)
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the connections with the language-related regions (bilateral
IFGoperc) are significantly decreased after 13 years of age. These
findings are consistent with the existing behavioral studies that
emotion control gets enhanced at the age of 7 years (Cole
et al., 1994; Pierre Philippot, 2013) and the first language
acquisition is largely completed by the age of 12 years (Lenneberg,
1967; Collier, 1987, 1989). Compared with previous studies,
DMD provides more connectome details for the development
neuroscience community.

DMD has many other applications. In the clinical domain,
DMs allow in-depth comparison between normal and abnormal
developmental networks, which are usually related to a certain
type of disease. We can apply the normal DMs, which are

FIGURE 5 | Influence of the DM number on the separability of developmental

trajectories (MTD). The larger the MTD value, the more separable the

developmental trajectories.

decomposed from the normal developmental networks, to the
abnormal developmental networks and obtain its abnormal
developmental trajectories. By comparing the normal and
abnormal developmental trajectories under the same DMs, we
are able to identify when and how the abnormal trajectories
deviate from the normal ones, thus providing insights into the
underlying mechanism of the disease. For example, in this study
the first three DMs show that the indirect connections between the
prefrontal and occipital areas gradually get replaced by the direct
connections with the growth of age. This indicates the increase of
functional efficiency in the normal brain development (Achard
and Bullmore, 2007; Vogel et al., 2010; Bullmore and Sporns,
2012), because direct neural connections are generally believed
to use less time for signal transmission than the polysynaptic
connections (Grossenbacher, 2001). Hence, if the abnormal
trajectories of the first three DMs exhibit different trends from
the normal ones, it implies the correlation between the disease
and the functional efficiency development.

5. LIMITATIONS AND FUTURE WORK

The current DMD method can only be applied to cross-
sessional developmental networks, hence fail to fully utilize
the longitudinal information of subjects. In our future work,
we plan to extend the DMD method for early diagnosis of
developmental disease of single subjects. This requires the
application of DMD to within-subject, instead of across-subject,
longitudinal networks. Although the data are progressively
easier to collect based on Diffusion Tensor Imaging (DTI)
or Functional MRI (fMRI), the main challenge lies in that
different sets of DMswill be derived from different within-subject
longitudinal networks. Therefore, it is necessary to extend DMD
to decompose a representative set of DMs from multiple within-
subject longitudinal networks. Then the representative set of
DMs can be applied to single subjects for early disease diagnosis.
We believe that DMD method will ultimately pave the way to
much more refined representation and understanding of brain

FIGURE 6 | Reproducibility of DMs (U) and developmental trajectories (V ) under different settings of DM number. (A) Reproducibility of DMs with the growth of DM

number. (B) Reproducibility of developmental trajectories with the growth of DM number.
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network development, diseases, and other longitudinal biological
phenomena.
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