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ABSTRACT

Introduction: Deficiency of guanidinoacetate methyltransferase, the first described 
creatine biosynthesis defect, leads to depletion of creatine and phosphocreatine, and 
accumulation of guanidinoacetate (GAA) in brain and body fluids. The present study 
aimed to investigate the influence of GAA on the activities of antioxidant enzymes, as 
well as on thiobarbituric acid-reactive substances (TBARS) and butyrylcholinesterase 
(BuChE) activity in the blood of rats. We also evaluated the effect of trolox (6-hydr
oxy‑2,5,7,8‑tetramethylchroman-2-carboxylic acid), GSH (glutathione) and L-NAME 
(NG-nitro-L-arginine methyl ester) on the alterations elicited by GAA.

Methods: The rats were randomly divided into 8 groups: (1) control; (2) GAA (10, 
30, 50, 100 mM/kg); (3) trolox (1 mM/kg) + control; (4) trolox (1 mM/kg) + GAA (100 
mM/kg); (5) GSH (1 mM/kg) + control; (6) GSH (1 mM/kg) + GAA (100 mM/kg); (7) 
L-NAME (1 mM/kg) + control; (8) L-NAME + GAA (100 mM/kg). After the addition of 
compounds, erythrocytes and plasma were pre-incubated at 37°C for 1h and tested 
immediately.

Results: GAA enhanced the activities of catalase (CAT) and glutathione peroxidase 
(GSH-Px) in the erythrocytes and BuChE activity. In addition, GAA enhanced TBARS 
levels in the plasma. Trolox, GSH and L-NAME addition prevented the majority of 
alterations in oxidative stress parameters and the increase of BuChE activity that were 
caused by GAA. Data suggest that GAA alters antioxidant defenses and induces lipid 
peroxidation in the blood, as well altering BuChE activity. However, in the presence 
of trolox, GSH and L-NAME some of these alterations in oxidative stress and BuChE 
activity were prevented.

Conclusions: Our findings lend support to a potential therapeutic strategy for this 
condition, which may include the use of appropriate antioxidants for ameliorating the 
damage caused by GAA.
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Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine 
synthesis disorder characterized by cerebral creatine deficiency and an 
accumulation of GAA in tissues and body fluids1. Affected individuals exhibit 
marked impairment of expressive speech, autistic features, and varying 
neurological manifestations, including epilepsy and movement disorders2,3. 
The creatine, phosphocreatine and creatine kinase system play essential 
roles to maintain the high energy levels necessary for brain development 
and functions, through regeneration and buffering of ATP levels4. Additionally, 
other researchers suggest that creatine in central nervous system may also 
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act as true neurotransmitter and one of the main 
central nervous system osmolytes5-7.

We have previously demonstrated that GAA 
induced lipid peroxidation in the brain8. These data 
are in agreement with the other studies, showing 
that GAA increases free radical production9-11. It is 
therefore presumed that this pathomechanism may 
contribute at least in part to the pathophysiology 
of the brain injury observed in patients affected by 
GAMT deficiency. Lipid peroxidation, the oxidative 
catabolism of polyunsaturated fatty acids, is widely 
accepted as a general mechanism for cellular injury 
and death, and has been implicated in diverse 
pathological conditions12,13. SOD, CAT, and GSH‑Px 
are endogenous antioxidant enzymes that act as 
free-radical scavengers and hence prevent and repair 
damage done by reactive oxygen species14,15. In 
addition, acetylcholinesterase activity is significantly 
increased by GAA in the rat striatum, interfering in 
acetylcholine levels; we also verified the in vitro 
effects of different concentrations of GAA on BuChE 
activity in the serum of rats10,16.

Considering the absence of studies on GAA in 
the peripheral system, the purpose of this study 
was to investigate the in vitro effects of different 
concentrations of GAA on the activities of antioxidant 
enzymes CAT, GSH-Px, and SOD, as well as on 
TBARS in the blood and BuChE activity in the plasma 
of rats. Furthermore, we also tested the influence 
of trolox, GSH and L-NAME on the effects elicited 
by GAA on antioxidant enzymes, TBARS, and on 
BuChE activity.

METHODS

Subjects

Sixty-day-old normal Wistar rats obtained from 
the Central Animal House of the Regional University 
of Blumenau, Blumenau, state of Santa Catarina, 
Brazil, were used in the experiments. The animals 
from our own breeding stock were maintained on a 
12-h light/12-h dark cycle at a constant temperature 
(22±1°C), with free access to water and commercial 
protein chow. The experiments were performed in 
compliance with the recommendations of the Brazilian 
Society of Neuroscience and Behavior, which are 
based on the United States National Institutes of 
Health Guide for Care and Use of Laboratory Animals. 
All experiments were approved by the local ethical 
committee of Regional University of Blumenau-SC, 
Brazil (Protocol 010/12).

Drugs Administration

The assays were divided into eight groups; 
group 1 (saline), group 2 (GAA 10 μM, 30 μM, 
50 μM and 100 μM), group 3 (1.0 mM trolox), group 
4 (GAA + 1.0 mM trolox), group 5 (1.0 mM GSH), 
group 6 (GAA + 1.0 mM GSH), group 7 (1.0 mM 
L-NAME) and group 8 (GAA + 1.0 mM L-NAME). 
After the addition of compounds, erythrocytes or 
plasma were pre-incubated at 37°C for 1 h. The 
doses of trolox, GSH and L-NAME utilized were 
chosen according to Wyse et al.17, Avrova et al.18 
and Qi et al.19.

Erythrocyte and Plasma Preparation

Erythrocytes and plasma were prepared from 
whole blood samples obtained from rats. Whole 
blood was collected and transferred to heparinized 
tubes for erythrocyte separation. Blood samples 
were centrifuged at 1.000 × g, plasma was then 
removed by aspiration and frozen at –80°C until 
use in assays. Erythrocytes were washed three 
times with cold saline solution (0.153 mol/L sodium 
chloride). Lysates were prepared by the addition 
of 1 mL of distilled water to 100 μL of washed 
erythrocytes and frozen at −80°C until determination 
of the antioxidant enzyme activities. For antioxidant 
enzyme activity determination, erythrocytes were 
frozen and thaw three times, and centrifuged at 
13.500 × g for 10 min. The supernatant was diluted 
in order to achieve an approximate concentration 
of 0.5 mg/mL of protein.

Catalase Assay (CAT)

CAT activity was assayed by the method of Aebi20. 
Hydrogen peroxide (H2O2) disappearance was 
continuously monitored with a spectrophotometer 
at 240 nm for 90 s. One unit of the enzyme is 
defined as 1 µmol of hydrogen peroxide consumed 
per minute and the specific activity is reported as 
units per mg protein.

Glutathione Peroxidase Assay (GSH-Px)
GSH-Px activity was measured by the method of 

Wendel21. However, the concentration of NADPH was 
adjusted to 0,1 mM, after previous tests performed 
in our laboratory. Tert-butyl hydroperoxide was 
used as substrate. NADPH disappearance was 
continuously monitored with a spectrophotometer 
at 340 nm for 4 min. One GSH-Px unit is defined 
as 1 µmol of NADPH consumed per minute and 
specific activity is reported as units per mg protein.
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Superoxide Dismutase assay (SOD)
This method for the assay of SOD activity is 

based on the capacity of pyrogallol to autoxidize, a 
process highly dependent on O2, which is a substrate 
for SOD22. The inhibition of the autoxidation of this 
compound occurs in the presence of SOD, whose activity 
can be then indirectly assayed spectrophotometrically 
at 420 nm. A calibration curve was performed with 
purified SOD as standard, in order to calculate the 
activity of SOD present in the samples. The results 
were reported as units/mg protein.

Thiobarbituric acid reactive substances 
(TBARS)

TBARS was determined according to the 
method described by Esterbauer and Cheeseman23. 
TBARS measures malondialdehyde, a product of 
lipoperoxidation caused mainly by hydroxyl free 
radicals. For measurements, plasma was mixed with 
10% trichloroacetic acid and 0.67% thiobarbituric 
acid and heated in a boiling water bath for 25 min. 
TBARS was determined by the absorbance at 
535 nm. A calibration curve was performed using 
1,1,3,3-tetramethoxypropane and each curve point 
was subjected to the same treatment as that of the 
supernatants. TBARS was calculated as nanomole 
of malondialdehyde formed per milligram of protein.

BuChE activity assay
Butyrylcholinesterase activity was determined by the 

method of Ellman et al. with some modifications24. The 
hydrolysis rate was measured at an acetylthiocholine 
concentration of 0.8 mM in 1 mL assay solutions 
with 100 mM phosphate buffer, pH 7.5 and 1.0 mM 
5,5’-dithiobis-2-nitrobenzoic acid. Fifty microliters of 
rat plasma were added to the reaction mixture and 
pre-incubated for 3 min. The hydrolysis was monitored 
by formation of the thiolate dianion of 5.5’-dithiobis-

2-nitrobenzoic acid at 412 nm for 2-3 min (intervals 
of 30 s) at 25°C.

Protein Determination
Protein was measured by the Lowry et al., using 

serum bovine albumin as standard25.

Statistical Analysis
Data were analyzed by ANOVA followed by the 

Duncan multiple range test when the F-test was 
significant. All analyses were performed using the 
Statistical Package for the Social Sciences (SPSS) 
software in a PC compatible computer. Values of 
p<0.05 were considered to be significant.

RESULTS

Figure 1 shows that GAA, at a concentration of 
100 µM, significantly enhanced CAT (F = 19.751; 
p<0.001, figure 1A) and GSH-Px (F = 8.217; p<0.001, 
figure 1B) activities in the erythrocytes of rats, as 
compared to control groups. On the other hand, 
Figure 1C shows that GAA did not alter SOD activity 
at any concentration studied (F = 0.356; p>0.05) in 
the erythrocytes of rats, as compared to the control 
group.

Figure 2 A shows that GAA, at a concentration 
of 100 µM, significantly enhanced TBARS levels 
(F = 6.283; p<0.001). Figure 2B shows that GAA, 
at a concentration of 100 µM, enhanced BuChE 
activity (F = 40.915; p<0.001) in the plasma of rats, 
as compared to control groups.

As can be observed in Figure  3A, B, and C, 
respectively; trolox, GSH and L-NAME, were able to 
prevent the increase in CAT activity in the erythrocytes 
of rats (F = 32.739; p<0.001). GSH and L-NAME, 
but not trolox, were able to prevent the increase in 
GSH-Px activity (F = 22.286; p<0.001), while trolox 
and L-NAME prevented the increase in TBARS 
levels caused by GAA at concentrations of 100 µM, 

  
Figure 1: In vitro effects of increasing concentrations of guanidinoacetate (GAA) on antioxidant enzyme activities in rat 
erythrocytes. Data are mean ± SD (n = 7). **p<0.001; compared to control group (Duncan’s multiple range test).
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but not GSH (F = 70.252; p<0.001), as compared to 
controls. With respect to BuChE activity, Figure 3D 
shows that trolox, GSH and L-NAME were able to 
prevent the increase in BuChE activity in the plasma 
of rats (F = 36.686; p<0.001).

DISCUSSION

Results showed that GAA significantly enhanced 
CAT and GSH-Px activities in the erythrocytes of rats, 
as compared to these activities in the control groups. 
On the other hand, GAA did not alter SOD activity, 
at any concentration studied, in the erythrocytes of 
rats, as compared to the control group. Regarding 
TBARS levels, GAA significantly enhanced TBARS 

levels in the plasma of rats. Although we cannot 
precisely establish the mechanisms by which GAA 
administration caused the increases in CAT and 
GSH‑Px activities in the erythrocytes, it is possible that 
this occurred due to the increased generation of free 
radicals, provoked by GAA. Previous data have shown 
that antioxidant enzymes may respond to oxidative 
stress by increasing their activity in order to reduce 
damage14. Oxidative stress is commonly observed 
in some inborn errors of intermediary metabolism14. 
Although the cause of increased oxidative stress in 
these diseases is not completely understood, it may 
be due to the accumulation of toxic metabolites that 
lead to excessive production of free radicals. Oxidative 
stress may also occur due to a substantial increase 

                
Figure 3: In vitro effects of trolox (Tro), glutathione (GSH) and L-NAME on CAT (A), GSH-Px (B) and TBARS (C) in the 
erythrocytes and and on butyrylcholinesterase (BuChE) activity (D) in plasma of rats in the presence or absence of 
guanidinoacetate (GAA). Data are mean ± SD (n = 6). **p<0.001; compared to control group (Duncan’s multiple range test).

 
Figure 2: In vitro effects of increasing concentrations of guanidinoacetate (GAA) on thiobarbituric acid reactive substances 
(TBARS – 2 A) and on butyrylcholinesterase (BuChE – 2 B) activity in the plasma of rats. Results are expressed as mean 
± SD (n = 7). **p<0.001; compared to control group (Duncan’s multiple range test).
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in metabolic by-products that directly or indirectly 
deplete the cells antioxidant capacity. In this context, 
previous studies have shown that the addition of GAA 
to assays (in vitro studies) significantly decreased total 
radical-trapping antioxidant potential, SOD activity, 
and total thiol levels in rat striatum11.

Results have shown that GAA enhances BuChE 
activity in the plasma of rats, reducing acetylcholine 
levels. Although the exact physiological function of 
BuChE is unclear, it has been shown that it can substitute 
acetylcholinesterase in maintaining the structural and 
functional integrity of cholinergic pathways16. It has 
also been shown that acetylcholine has a potential 
neuroprotective role as a scavenger of superoxide 
anion and is able to reduce lipid peroxidation, which 
suggests that a decrease in acetylcholine levels could 
result in a decrease in neuroprotection that can lead 
to neurodegeneration26. Our results point to a similar 
protective role by acetylcholine in the blood.

Finally, we also evaluated the influence of trolox, 
GSH and L-NAME on the effects elicited by GAA, 
in order to investigate the possible participation of 
free radicals in the effects of GAA on CAT, GSH-Px, 
BuChE activities and on TBARS. Post hoc analyses 
showed that trolox, GSH and L-NAME per se did not 
alter these parameters. Results showed that trolox, 
GSH and L-NAME, were able to prevent the increase 
in CAT activity in the erythrocytes of rats. GSH and 
L-NAME, but not trolox, were able to prevent the 
increase in GSH-Px activity in the erythrocytes of rats, 
while trolox and L-NAME prevented the increase in 
TBARS levels caused by GAA. With regard to BuChE 
activity, data showed that trolox, GSH and L-NAME 
were able to prevent the increase in BuChE activity 
in the plasma of rats. In this context, trolox interacts 
with cell membranes, traps free radicals and interrupts 
the chain of oxidative reactions that damage cells, 
L-NAME is a potent nitric oxide synthase inhibitor 
and GSH acts as an SH-group protecting agent26-28. 
Results suggest that the scavenging of free radicals 

by trolox, and/or nitric oxide and the oxidation of SH 
groups are involved in the effects of GAA on the 
enzyme activities. In addition, the scavenging of free 
radicals by trolox and nitric oxide are involved in the 
effects of GAA on TBARS levels. Nitric oxide, however, 
is also a free radical and hence in many biological 
systems it has a short half-life due to its reactivity with 
other intracellular constituents, such as superoxide. 
The reaction between nitric oxide and superoxide 
results in the formation of the peroxynitrite anion, 
which is extremely cytotoxic. Despite the important 
physiological roles attributed to nitric oxide, excessive 
generation of this molecule and also of its derivate 
anion have been implicated in the pathophysiology 
of common conditions such as stroke, Alzheimer’s 
and Parkinson diseases, cardiovascular disease, 
atherogenesis and the atherosclerotic state29.

The present study reinforces the hypothesis that 
oxidative stress is induced in GAMT-deficiency. 
Furthermore, our results indicate that GAA increases 
enzymatic antioxidant defenses, cause lipid oxidation 
and enhanced BuChE activity, probably by enhancing 
reactive species in the blood of rats. In addition, we 
demonstrated that the alterations in these parameters 
of oxidative stress and BuChE activity are probably 
mediated by the generation of NO and /or other free 
radicals, which are scavenged by trolox and GSH, 
since L-NAME and these antioxidants prevented 
these effects caused by GAA in the blood of rats. 
Although it is difficult to extrapolate our findings 
to human GAMT-deficiency, if that is the case, 
the present results may be relevant to explain, at 
least in part, the pathophysiological characteristics 
present in the affected patients. Further studies are 
required to determine whether antioxidants should 
be considered as an adjuvant therapy to specific 
diets in GAMT-deficiency.
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