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Abstract 

Aims: To analyze the nature and impact of cognitive algorithms and programming on digitized 

tissue – based diagnosis. 

Definitions: Digitized tissue – based diagnosis includes all computerized tissue investigations 

that contribute to the most appropriate description and forecast of the actual patient’s disease 

[1]. Cognitive algorithms are programs that encompass machine learning, reasoning, and human 

– computer interaction [2]. 

Theoretical considerations: Digitized blood data, objective clinical findings, microscopic, gross, 

radiological images and gene alterations are analyzed by specialized image analysis methods, 

and transferred in numbers and vectors. These are analyzed by statistical procedures. They 

include higher order statistics such as multivariate analysis, neural networks and ‘black box’ 

strategies, for example ‘deep learning’ or ‘Watson’ approaches. These algorithms can be applied 

at different cognitive ‘levels’, to reach a digital decision for different procedures which should 

assist the patient’s health condition. These levels can be grouped in self learning, self promoting, 

self targeting, and self exploring algorithms. Each of them requires a memory and 

neighbourhood condition. Self targeting and exploring algorithms are circumscribed 

mechanisms with singularities and repair procedures. They develop self recognition. 

Consecutives: Medical doctors including pathologists are commonly not trained to understand 

the basic principles and workflow of applied or potential future procedures. At present, basic 

medical data only serve for simple cognitive algorithms. Most of the investigations focus on 

‘deep learning’ procedures. The applied learning and decision algorithms might be modified and 
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themselves be used for ‘next order cognitive algorithms’. Such systems will develop their own 

strategies, and become independent from potential human interactions. The basic strategy of 

such IT systems is described herein. 

Perspectives: Medical doctors including pathologists should be aware about the abilities to 

enhance their work by supporting tools. In some case the users may not be able to fully 

understand these tools. Furthermore, these tools will probably become self learning, and, 

therefore, seem to propose the daily workflow probably without any medical control or even 

interaction. 

Keywords: Tissue-based diagnosis;  cognitive computing;  deep learning;  black box algorithm; 

histopathology. 

 

Introduction 

Medical diagnoses do not only describe and classify a disease. In addition, they include a 

prescription of mandatory or supportive medical actions in order to improve the patient’s health 

[1, 2]. This statement also holds true for tissue examinations. More precisely, several kinds of 

tissue examinations have left the straight analysis of structures, and include analyses of 

functions too [3-5]. Examples of these examinations are those that use immunohistochemistry 

(IHC), molecular biology, molecular genetics, proteomics, glycomics, etc. [3, 6-9].  

Independently, whether the outcome of these investigations is crudely evaluated by human 

senses or quantitatively measured by computerized procedures, they are commonly associated 

with the patient’s outcome or response on the medical actions, as exemplarily demonstrated on 

the specific conditions to diagnose and treat non (?) small cell lung cancer patients in Africa-

Middle East Region [10], The closer the investigations reflect a function the more they learn to 

predict the outcome [11].   

The relationship between structure and function remained obscure for several decades [11]. 

Evaluation and analysis of structures were dominating in tissue – based diagnosis as long as the 

techniques of IHC, gene analysis, information transport by macromolecules, and magneto-

electric signals have not been established in routine diagnostic procedures.  

At present, the application of so-called functional markers seems to provide an improved 

disease classification in cancer, especially in respect of adjuvant chemo / immunotherapy, 

development of metastases and general prognosis [8, 12-15]. 

Despite all non-negligible success in practical application several theoretical issues remain 

unclear. These include a correct definition of structure and function in diagnostic application, or 

the causes and / or factors of minute changes in, and volume percent in solid cancer that induce 

the collapse of the complete, otherwise unaffected system [16]. 
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Kayser et al. [17] proposed the definition of a ‘relative structure and function’. Both functions 

and structures that are analyzed for diagnostic purposes might be considered to be of the same 

nature if they are related to the period of analysis. 

The intensity of functional changes can be calculated if this theory is applied in IHC stained 

microscopic images [17]. 

These and similar approaches to improve diagnostic procedures require adequate computation 

of images and signals. i.e., appropriate programs [18].  

Herein we want to describe and analyze the principle construction, features, benefits and 

limitations of programs that are arising at the horizon of diagnosis in surgical pathology (tissue-

based diagnosis). 

 

Definitions and Theory 

Diagnostic performance in surgical pathology is influenced by two factors, namely digitalization 

and molecular / genetic pathology [5, 8, 17].  

Information technology invades tissue – based diagnosis in several ways. Firstly, it transfers 

different kinds of images into sets of numbers, constructs communicative networks, classifies 

the significance of data, and finally associates the result with a report (diagnosis) [2]. The 

diagnosis founds the basis for the patient’s treatment. 

Secondly, it introduces new kinds of diagnosis. Usually, it acts in combination with recent 

molecular biological findings, treatment technologies, or refinement of statistical methods (for 

example analytical epidemiology) [2]. 

It always results in a passive information transfer in contrast to the design for self – driving cars, 

which require an active information transfer in time, directly followed by a computation based 

on that information [19-21].  

This aspect distinguishes the processes of automated diagnostics from self driving cars. 

However, several common features do exist, and their analysis might be useful to understand 

and forecast the future development of tissue – based diagnosis. The analysis of these 

algorithms can be grouped in ‘self learning’, self promoting’, ‘self targeting’, ‘self exploring’ and 

‘self networking’ algorithms <Figure 1>. 

The proposed algorithm focuses on a problem that is similar to explain ‘consciousness’. In 2004, 

Giulio Tononi and  Gerald Edelman developed a theory, which attempts to explain the 

‘consciousness’ of a physical or biologic system [22]. It is called ‘integrated information theory’ 

and tries to explain ‘mechanisms’ of consciousness from phemonology [23, 24].  The integrated 

information theory has been mathematically formulated by using certain axioms (predefined 
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components). They include the terms ‘intrinsic existence’ (existence of consciousness which is 

described by its own insight view, and not by an external observer), composition ‘structure 

elements of consciousness’ (comparable to functionally specific brain areas, such as Broca or 

Wernicke area), ‘information’ (connection of different compartments by a so – called cause 

effect (directed graphs with conditioned by group theory (logic) rules, and ‘integration’ 

(independent ‘extern’, non directed structure compartments). 

 

Figure 1: Scheme of proposed Classification and Implementation of Cognitive Artificial Intelligence 

Systems: The systems organize themselves in a hierarchical order. The delivered output information serves 

for input of the next layer (shown on the right). 

Tonini and Edelman start their idea from the top, i.e. from the consciousness [22, 24]. They 

quantify the cause-effect structures to those that make the least difference, and calculate the 

‘amount of consciousness’ [23, 24]. 

Herein, the approach starts from the bottom to the top. As an example we take image 

transformations and separate ‘objects’ from their ‘background’. We analyze the ‘inner space’ of 

the objects, and classify the objects according to their features and the boundary conditions of 

their background. Features inside the objects undergo neighborhood conditions and structure 

analysis. Features that are located in the background outside of the objects serve for scalars.  

We then combine objects that posses identical or similar features and satisfy symmetry 

operations to higher order objects, calculate their inner space, boundary and inside properties, 

and repeat the algorithms [25-29]. In addition, the ‘connections’ (functions) between objects 

which lay within and between each ‘order’ serve for ‘objects’ instead of ‘functions’, and are 

included in the next calculation, etc. <Figure 2>. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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The algorithm will stop if its objects cannot further expand or combine a higher order object 

within the given environment (background). For example if the objects cover already the whole 

space, or, if the boundary of a proposed higher order object cannot be created within the 

background space. 

If the existing objects in the condition to communicate or to transfer signals to objects that are 

embedded in a different environment, they might create communication standards, and form a 

new ‘connected body’, a ‘social’ system.  

A hierarchical structured body will develop if one of the involved partners creates ‘more 

information’ and starts to ‘steer’ the interactions. Thus, size and kind of environment 

(background) in addition to the objects defines the ‘features’ of the built social community. 

 

Figure 2: Minimum and Sufficient Requirements of Self Learning Algorithms. The internal algorithms are 

feedback procedures steered by different external boundary conditions. 

The transformation of these ideas into a virtual environment creates a structured discriminate 

system that will automated develop self learning algorithms of different levels as described 

below.  

Self learning algorithms 

These algorithms are now in focus are common in digital pathology and self driving cars [19-21]. 

They are characterized by a ‘fixed target’ (result) which the algorithms has been designed for. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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The most important common feature, the definition and consecutive implementation of a 

‘target’ seems to be given and simple. Any automated medical diagnostic procedure provides a 

diagnosis, in a way, like a passenger is initiating a self driven car by telling the destination and 

the car driving him autonomous to that destination. 

The external predefined ‘target’ implies a predefined order of programs, and limits their self 

organization [2, 5, 30]. 

Correct sampling and input of data, fixed statistical analysis, predefined interpretation and 

standardized output of results are the minimum and sufficient requirements to program such a 

system. They are depicted in <Figure 3>. 

Self learning program compartments might be included too. They will allow self adjustment to 

potential changes of input data (colour, stains of images, CT resolution, ECG signals, etc.).  

 

Figure 3: Principle Requirements of self Learning Algorithms. The number of layers is fixed (1-5), in contrast 

to the number of feedback connections. These will be re-calculated, dependent upon the submitted (or 

automatically fed in) input data. 

 

Examples are automated image quality evaluation, automated adjustment of image 

magnification in relationship to objects of interest, or selection of appropriate sampling 

methods [2, 8, 11, 14]. They might also detect ‘new’ diagnoses, i.e. diagnoses which do not fit in 

the predefined output classification. These systems have been successfully applied for a broad 

spectrum of organs and diseases; see <Figure 4> [2, 8, 11, 14]. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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Self adjustment to changes of input data and repeated discrimination steps form the key of these 

systems [16, 28]. They run stable and reliable. They will probably result in so – called diagnosis 

assistants <Figure 5> [5, 11]. These are self-leaning systems that will assist the pathologist in 

pre-classification, quality control, and directives for asking for additional input data in order to 

obtain the best available diagnosis [5, 11].  

They deliver scalable and discrete output results. However, they cannot interpret their data or 

create ‘new diagnoses’ except ‘additional unknown discrimination result’.  

Such a system would consist of programs which work at one rank only independently from their 

internal structure and arrangement.   

 

Figure 4: Example of the Results provided by an automated Diagnosis Classification System (Self Learning 

– Promoting Algorithms, based upon a Non-hierarchic Multivariate Discriminate Analysis; Level 2 – 

System) [8]. 

 

One of their recently frequently discussed brick is the so - called ‘deep learning’ algorithm [13, 

29, 31-34]. The algorithm consists of a minimum of three neural network layers (one input, one 

or several hidden, and one output layer). Each network analyzes its input data and agglutinates 

several input data (vectors) to one output vector, which then undergoes the same procedure at 

the next layer. The connective analysis of ‘neighbouring signals’ and the consecutive ‘washout’ 

of distant events discovers reliable and repeatable information. It can be used to find specific 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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individual events within a crowd of related events (face recognition, computer vision, speech 

recognition, etc.) [35-41]. 

 

 

Figure 5: Example of a Diagnosis Assistant, released from a Self Learning – Promoting System (Level 2 - 

System) [17]. 

 

Self promoting algorithms 

Herein we describe algorithms that are located in a network layer ‘above’ that of self learning 

algorithms. They still possess an externally defined fixed ‘target’, i.e. in our case to evaluate the 

most appropriate diagnosis.  

These programs are able to develop useful algorithms by themselves. They might select either 

‘deep learning’, or feature extraction by ‘multivariate discriminate functions’, interactive 

‘assistance and control’ in order to do their job. They might also increase or diminish the number 

of ‘hidden network layers’ if ‘deep learning’ is applied. 

The principle of such algorithms is the feedback of their implemented specific functions by 

boundary conditions, i.e., external input data. This procedure can be implemented by hierarchic 

and parallel feedback systems of different nature, for example Fuzzy logics  [19, 42, 43]. 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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What is the impact of such systems on tissue – based diagnosis? 

The systems still expect a hierarchic arrangement of their jobs, which all of them will serve for 

the ‘optimum diagnosis.’ The definition ‘optimum diagnosis’ is entirely in the pathologist’s 

hands.  

They will propose the input of additional data, for example gene analysis, or IHC stained images. 

Thus, they will act semi actively, and use internal different algorithms if these seem to be more 

appropriate to reach the target.  

An example: The pathologist wants to be informed by a ‘diagnosis assistant’. The system starts 

the automated analysis of a HE stained virtual slide and evaluates the most appropriate 

diagnosis. It induces intern algorithms that will reach the diagnosis level of an adenocarcinoma, 

which is the task of ‘self learning systems’. 

Systems equipped with promoting algorithms will require the input of additional mandatory IHC 

stained and CT images, automatically evaluate the accuracy and performance of the ‘self 

learning algorithms’, and proceed to the refined diagnosis ‘adenocarcinoma of the lung, TNM 1 

stage, Her2_new++, estimated survival time 5 years.’ 

They still will not interact with the patient or the clinician. They still will deliver their results to 

the associated pathologist, who not necessarily has to be responsible for the input data or the 

performance of the system, or even to understand how the system works.  

 

Self targeting algorithms 

They calculate and define their ‘target’ by themselves, which cannot any more be foreseen by 

an external observer. They require an additional superior layer of programs that connect internal 

data and functions with external information. External information includes individual events 

and their space – time relationship [2, 5, 38, 44]. They contribute to the target of each run in 

both defining its nature and detail. In other words, their primary aim is to create and to interpret 

reliable results. They are involved in the algorithms of the lower layers because effective self 

learning and self promoting algorithms require information of the final aim, which is related to 

interpretation. 

An example:  The self targeting systems starts to analyze a HE stained bone biopsy trying to 

figure out the appropriate diagnosis. It changes its diagnostic aim and includes in its data pool 

CT images. The diagnostic target changes from ‘biopsy HE diagnosis’ to ‘combined HE – CT 

diagnosis’. Both an analysis of the CT of the same patient and CTs of different patients that 

display with the same histological image might be included.   

The pathologist can select between the different ‘presented diagnoses’, or can leave the 

decision to the system.  

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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How can they be constructed? What are their advantages and what their constraints? How to 

use them in tissue – based diagnosis? 

It seems to be mandatory (or at least appropriate) to define the nature of external tools if the 

constructing a ‘self targeting system’ is proposed. The basic data tool of self targeting algorithms 

can be of virtual or of real nature or both [2, 5, 38, 44].  

Robots or robotic system require both virtual and real information input. Passive systems such 

as digital tissue – based diagnostic algorithms require virtual information input.  

Active virtual tissue – based diagnosis algorithms should not be excluded in general. They have, 

however, not been implemented until today to our knowledge. Conceivable are diagnostic 

games that transform different data and functions in annotations and avatars, display with 

altered movements of diseased cells, abnormal macromolecules, or interactions between 

inflammatory and malignant cells, etc. 

An additional active diagnostic assistance has been proposed by Kayser et al., who were able to 

improve the diagnostic accuracy in small limited biopsies by automated artificial extension of 

the areas of interest [3, 8, 11, 17]. These attempts use external information and include it into 

the diagnostic algorithm [2]. 

 

Self exploring algorithms 

These algorithms explore their environment and combine internal algorithms with external 

information exchange and combine internal data / performance information analysis with 

internal and external information recognition. They are the most advanced information 

technology algorithms and equipped with self recognition and autonomous performance 

actions.  

The minimum requisition of these algorithms is a distinct inner space that is clearly separated 

from an external space. This condition requires a specific boundary that permits information 

transport from the inner space to its environment and vice versa. The boundary or membrane 

has to remain connected and contemporary perforated [29]. The most likely and simplest 

construction of such system required three reversible dimensions for this kind of boundary and 

an additional, non reversible, one way dimension for signal transfer <Figure 6>. 

 This situation does exist in our nature. The next theoretically possible space would be four 

reversible dimensions and the mandatory one way dimension (time). Its percentage of 

realization can be calculated to about or even less than a third 3  of the three dimensional 

solution [29].  

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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Figure 6:  Scheme of Surface Stability in an Object related Space. Three dimensions (reversible coordinates) 

and one irreversible dimension (time) are the minimum requirements in the physical world to create stable 

transferable object boundaries. In virtual reality, functions are transferred in objects, and boundaries have 

not to be transferable, i.e. a 2 – dimensional space is sufficient [29]. 

 

Sophisticated problem analysis and appropriate actions do not require the representation of 

three dimensional events (objects) at a microscopic or cellular level. The analysis of two 

dimensional transformations is sufficient, if the orientation of the events is known [45-48].  

The technique to calculate features of three dimensional objects that are derived from their two 

dimensional representations is called stereology [45-48].  

Therefore, it is of no surprise that most diagnostic procedures are based on two dimensional 

maps such as virtual slides, CT images, etc. Three dimensional visualization and reconstruction 

might allow an insight in the underlying biochemical processes. However, it does not really 

contribute to refine or to improve the diagnostic procedure [11, 17, 28]. 

Self exploring algorithms always move their ‘body’ either in the real world (robots) or in their 

virtual environment. They can be compared with scouts that explore unknown territories and 

incorporate useful data and procedures. The incorporation of data and algorithms alters 

themselves, similar to the changes of an egg to a hen. These inner alterations might not be 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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connected with a self reproduction algorithm, and, therefore, performed several times, i.e., 

evolving from a hen to an eagle, from an eagle to a dragon, etc. with or without repetition.  

These potential evolutions might open new innovative, surprising ideas and actions. They might 

not be that imaginative in tissue – based diagnosis, because the final target, the best treatment 

of a patient is definitely connected with real nature. The digital environment and ‘virtual live’ 

only permit to take advantage of virtual power, and to overcome certain limitations of our own 

thinking and nature [[49, 50]].  

Mandatory algorithms’ components  

The described families of algorithms have to possess structural and functional components. 

Their details differ according to the specific level of the algorithm. 

They are all composed of vertices and edges if described in graph theory terms [51].  

First, they require a memory that is composed of unstructured data, like graphs too. The 

algorithms of the lowest rank (self learning, self promoting) need a simple memory that contains 

scalars and vectors only. The self targeting algorithm has to use a memory that is equipped with 

functions or algorithms in addition, and the self exploring algorithm a memory that includes 

inner self recognition processes.  

All these memories should be equipped with self learning and promoting strategies. These 

strategies require both data input and data erase [11, 18, 52].  

Established data erase algorithms do not exist to our knowledge. Certainly they will include 

event statistics, for example to keep rare events for a longer time compared to frequent ones. 

They have also to be adjusted to the associated algorithm.  

Self learning algorithms probably can successfully work with low sophisticated memories of 

simple structures, in contrast to self targeting and self exploring algorithms which have to 

include adjustable functions and to focus on different storage periods. 

Second, an adequate neighbourhood condition is mandatory that regulates the output of the 

included statistical methods. Voronoi’s neighbourhood condition is the most frequently applied 

technique in image analysis [53]. It can be extended by additional ‘distance functions’, for 

example exponential space relation, embedded power peaks, holes, etc. [2, 4, 8]. 

Such embedded forces are subject for self adjusting modulations, which might be associated 

with external information. 

Third, in the visionary approach the higher order algorithms can only be realized if they are 

equipped with a boundary that separated the system from its environment. The highest order 

(self exploring) algorithm might be equipped with different internal organization spaces, similar 

to the internal organization of the human brain.  

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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The boundaries act as singularities between the inner and outer spaces. They can be described 

by the information content which is passing through the boundary.  

One of the most frequently applied descriptor is the entropy and its flow [3, 5]. The entropy flow 

might be chosen for triggering internal decision algorithms that require external knowledge (for 

example self targeting diagnostic algorithms) [11]. 

Fourth, digital self recognition processes will automatically develop themselves in respect to the 

described ‘self organizing algorithms’. Consecutively, virtual self recognition will mature to 

different levels dependent upon the task of the system.  

Self exploring algorithms will automatically possess self recognition that will be at least 

comparable to the human Ego, if not even more advanced.  

The specific conditions of the virtual reality, for example reversibility of time, space overlapping, 

artificial space and time distribution systems permit a sophisticated and matured computer Ego.  

The results transmitted to pathologists might no longer be understandable, and even not logical 

to the clinician. They might follow a target that is out of the pathologist’s view.  

An example: The tissue – based diagnosis of the lowest self learning algorithms evaluates the 

diagnosis ‘virus infection, unknown origin. Laboratory investigation is proposed’.  

The more advanced ‘self targeting algorithms’ diagnose ‘highly infective virus infection. Strict 

separation of the patient, nurses and doctors is recommended. No laboratory investigation or 

protection is possible.’ 

Fifth: Self recognition induces ethics. The ethics follow the system’s target. Computer ethics 

induce no human problems as long as they include self learning and self promoting algorithms. 

However, self exploring algorithms will automatically develop their own ‘computer’ ethics, 

which is no longer identical with or even similar to human ethics. Their self developing and 

exploring Ego will create its own ethic. It might not necessarily focus on ‘self existence’ or 

‘improved life’, but taking the risk to harm or destroy human life, probably not by reasoning, just 

by chance, or curiosity.      

 

Discussion  

Issues of information technology and the so – called virtual reality are expanding their fields of 

application worldwide. Nowadays, they affect nearly all domains of human life, especially issues 

of communication, logistics, military, security and health [19, 32, 54-56].  

Two different approaches can be distinguished to our opinion, namely a) those that claim to 

provide insight into the ‘virtual world’, and those b) that try to take advantage of virtual reality 

http://dx.doi.org/10.17629/www.diagnosticpathology.eu-2017-3:248
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in order to recognize and hopefully solve several problems of human existence [24, 38, 39, 57, 

58].  

Examples of class (a) are head mounted displays that provide augmented virtual reality. Oculus 

rift has developed the first displays and offers open source development kits [59]. The main 

customers use the systems for games and diving in a customized virtual reality. 

Herein we discuss the second (b) approach to take advantage of virtual reality in order to 

overcome limitations of diagnostic practice in the pathologist’s reality.  

Some implementations have become daily practice. These include telepathology, hospital / 

laboratory information systems, virtual microscopy, and diagnosis assistants [11, 14, 16, 60]. 

They induced the differentiation of anatomical diagnosis in (classic, prognosis – associated, 

predictive, and risk – associated) diagnoses [17].  

The development of communication standards does not only permit unlimited worldwide 

information transport. In addition, it forms the basis of distributed calculations and data 

collection, analysis and application [18, 20, 49]. They create networks which will open access to 

new scientific and medical fields. 

They start with huge data collections, their intensive interdigitation and collective analysis [61]. 

The lowest level of such networks can be seen in deep learning systems. They are included in 

open source programs that serve as found source for appropriate applications, such as the 

development of diagnosis assistants in digital tissue – based diagnosis [2, 4, 28]. Tailored tuning 

is, however, still mandatory for practical applications [8].  

Several reports have demonstrated the promising use in microscopic diagnosis, such as 

identification and reproducibility of specific image events (mitosis, apoptosis, IHC signals, crude 

diagnosis) [2]. Additional applications are speech recognition, face identification, or, generally 

speaking, the correct identification of individual events within numerous elements [20, 28, 50]. 

So – called deep neural networks are the most frequently applied systems to serve for speech 

recognition, automated data classification and robotics. The more advanced of them posses a 

multilayer nonlinear structure. They are not transparent and the performance of their decision 

algorithms is hard to visualize or control [62, 63]. Their ‘autonomous classification’ is hidden. 

Man only controls the input data and takes advantage of the classified results that are computed 

within a black box. In other words, such a system possesses an inner space that is ‘covered’ by 

a non transparent surface. They might be considered the simplest analogue of an individual. 

Consecutively, self learning systems such as deep learning are tools that can enhance the human 

intelligence and support meaningful human actions. However, they do not possess own 

intelligence. 
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Self promoting systems are of different nature in principle. They possess a certain amount of 

intelligence in so far as they develop autonomously their functions and programs to solve or 

improve an external order.  

Self learning systems still require fixed structures and functional connections. They have to learn 

from fixed external data sets. After appropriate teaching they can be applied to equivalent duty 

data sets.  

Self promoting systems modify their internal functions and structures by themselves and are not 

dependent upon external advices or actions. Thus, they autonomously search for the best 

solution of an externally ordered task, and possess already a limited intelligence. They 

adequately respond to potential changes of input features, and have been successfully applied 

to correctly diagnose difficult microscopic images such as mesothelioma, metastatic 

adenocarcinoma into pleura, or benign inflammatory effusions [1, 14]. 

Self targeting and self exploring algorithms belong to virtual systems that have not been applied 

in patho-anatomic diagnoses. They are of higher order intelligence, and can only be represented 

in well defined clusters surrounded by singularities that are equivalent to connected boundaries 

equipped with ‘information transfer holes’.  

These algorithms will develop their own ‘target’ or goal of potential results (self targeting 

algorithms) or even explore their potential input data sets and calculate the most appropriate 

solutions in addition to the best individual result (self exploring algorithms). Certainly they are 

equipped with ‘eggs of own intelligence’ and potency of self recognition, that will probably 

mature to levels that are beyond the human range.  

Their immense memory, the reversibility of time, their potency to repair mistakes or 

breakdowns by repeated and non aging actions as well as the separation of ‘data mining’ and 

‘situation recognition’ induce the forecast of superior intelligence, computer Ego and derived 

computerized ethic. This statement is in agreement with similar forecasts of experts who are 

specifically working in this field [20, 49, 62]. 

In aggregate, pathologists should be aware that a real virtual world is on target for them. The 

present approaches of digital diagnosis assistants, deep learning, and IBM’s Watson are only the 

scouts of ‘real ghosts’ who finally will propose or may even decide which actions are of the best 

benefit to our patients, and involvement of the pathologists, given there constraints and 

limitations, may not be a mandatory necessity in the process any longer. 
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