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Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of

insulin-producing cells in the pancreas, by direct interactions with autoreactive pancreas

infiltrating T lymphocytes (PILs). One of the most important animal models for this

disease is the non-obese diabetic (NOD) mouse. Alterations in the NOD mouse thymus

during the pathogenesis of the disease have been reported. From the initial migratory

disturbances to the accumulation of mature thymocytes, including regulatory Foxp3+

T cells, important mechanisms seem to regulate the repertoire of T cells that leave

the thymus to settle in peripheral lymphoid organs. A significant modulation of the

expression of extracellular matrix and soluble chemoattractant molecules, in addition to

integrins and chemokine receptors, may contribute to the progressive accumulation of

mature thymocytes and consequent formation of giant perivascular spaces (PVS) that are

observed in the NODmouse thymus. Comparative large-scale transcriptional expression

and network analyses involving mRNAs and miRNAs of thymocytes, peripheral T CD3+

cells and PILs provided evidence that in PILs chemokine receptors and mRNAs are

post-transcriptionally regulated by miR-202-3p resulting in decreased activity of these

molecules during the onset of T1D in NOD mice. In this review, we discuss the

abnormal T-cell development in NOD mice in the context of intrathymic expression of

different migration-related molecules, peptides belonging to the family of insulin and

insulin-like growth factors as well as the participation of miRNAs as post-transcriptional

regulators and their possible influence on the onset of aggressive autoimmunity during

the pathogenesis of T1D.
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INTRODUCTION

Type 1 diabetes (T1D) is a multifactorial disease caused by
autoimmune destruction of pancreatic beta cells, which results
in a breakdown of insulin production and glucose metabolism
(1). The mechanisms involved in autoimmunity during the
pathogenesis of T1D include factors of humoral immunity, such
as the presence of circulating autoantibodies (anti-insulin, among
other islet autoantibodies), that can be used as biomarkers of
the disease (2–4). Mechanisms involving cellular immunity are
evidenced by the presence of mononuclear cell infiltrates in
the islets of Langerhans. CD8T cells are the most predominant
infiltrating-cells, followed by macrophages, CD4T cells, B
lymphocytes and plasma cells (5). In addition to the cellular
infiltrate, the upregulation of MHC class I on β-cells may
increase their susceptibility to T-cell–mediated killing (6). Most
of the studies in humans were performed in pancreas samples
removed post-mortem. Due to the limited availability concerning
the samples and difficulties in studying the mechanisms of
autoimmunity in humans, the use of experimental models are
essential for studies on the pathogenesis of T1D. Among the
available experimental models, the non-obese diabetic (NOD)
mouse is particularly well characterized. They spontaneously
develop the disease and present several characteristics that are
similar to the pathogenesis of the human T1D (7, 8). Briefly,
insulitis starts in general at 3 weeks of age in female mice,
concomitantly with the appearance of initial thymic alterations,
and the disease onset occurs at 10–12 weeks, depending on
the colony. At this point, different alterations in the thymus
have been described, as we discuss below. Nevertheless, before
entering this discussion, it seems worthwhile to provide a
basic background on some physiological aspects of the thymus,
including the intrathymic T-cell differentiation, as well as
production of hormones by thymic cells.

THE THYMUS AND THYMOCYTE
DEVELOPMENT

The thymus is a primary lymphoid organ where T cells
are generated. Inside the thymic tissue, precursor cells pass
through distinct differentiation stages until becoming mature
CD4 or CD8 single-positive (SP) thymocytes expressing the T-
cell receptor (TCR), which are ready to emigrate to peripheral
lymphoid organs and properly finish their maturation (9). Cell
differentiation occurs in parallel with cell migration, so that
the immature double-negative (DN) for the CD4−CD8− co-
receptors and double-positive (DP) CD4+CD8+ thymocytes are
localized in the cortical region of the thymic lobules, while
more mature CD4SP or CD8SP thymocytes are localized in
the medulla (10). DP thymocytes express low amounts of TCR
after gene rearrangement. This expression is increased during
differentiation to TCRhigh CD4SP or CD8SP cells. Differentiating
cells undergo apoptosis if their TCR interact with high
avidity with self-antigens coupled to major histocompatibility
complex (MHC) class I or class II molecules expressed
by microenvironmental cells in the thymus, in a process

called negative selection. Alternatively, some clones that
recognize self-antigens with high avidity become regulatory
CD4+CD25+Foxp3+ T cells (Treg), a mechanism that seems to
depend on TCR signaling avidity and duration, TGF-β-mediated
survival and cytokines, such as IL-2, IL-7, and IL-15 (11, 12).
These thymus-derived Treg cells account for the majority of
Tregs in the periphery, compared with Tregs differentiated from
conventional naïve T cells (13). Together, these processes avoid
the development of self-antigen reactive cells and therefore
prevents autoimmunity (14).

In the thymus, the expression of many peripheral tissue
antigens (PTAs) in medullary thymic epithelial cells (mTEC) is
regulated by the autoimmune regulator (AIRE) transcription
factor (15). The PTAs are presented by MHC molecules and
can induce negative selection of autoreactive thymocytes (16).
The homozygous loss or mutations in the Aire gene cause
the autoimune polyendocrinopathy–candidosis–ectodermal
dystrophy (APECED) syndrome in humans, characterized by the
development of autoimmune diseases including T1D in 10–20%
of the cases (17–19). In mice, Aire disruption leads to immune
cell infiltration in several organs and APECED-autoimmune like
manifestations (15, 20).

While migrating through the thymic lobules, developing
thymocytes also interact with other microenvironmental cells
such as dendritic cells (DCs) and macrophages, as well as
with extracellular matrix (ECM) molecules and soluble proteins
such as cytokines, chemokines, growth factors and thymic
hormones (thymulin and thymopoietin, for example). Other
hormones produced by endocrine glands (growth hormone,
glucocorticoids, prolactin, oxytocin and insulin) can also be
produced locally, and play a role in the physiology of the thymus
and the generation of the T-cell repertoire (10).

INTRATHYMIC EXPRESSION OF PEPTIDES
AND RECEPTORS FROM THE INSULIN/IGF
FAMILY

Insulin is a polypeptidic hormone produced as a pre-
prohormone, the pre-proinsulin, which is processed to proinsulin
that is cleaved, in turn, to mature insulin. Only pancreatic beta
cells are capable to secrete mature insulin in response to glucose
(21). Despite that, proinsulin gene is naturally expressed at low
levels in fetal and postnatal thymi in humans, rats and mice
(22). Although the expression of proinsulin in the thymus is not
necessary for T cell differentiation and growth (23, 24), variations
in the expression of the insulin gene in the thymus, but not in the
pancreas, in both humans and mice, can modulate self-tolerance
to insulin, with the expression levels being inversely correlated
with T1D susceptibility (21, 25).

In humans, the insulin gene is under the control of a variable
number of tandem repeats (VNTR) minisatellites, mapping 5′

to the insulin gene promoter. VNTR, commonly known as
IDDM2 susceptibility locus, are extremely polymorphic regions
both in size and sequence (25, 26), and three allele classes have
been characterized: class I, composed by 20–63 repeats of the
consensus unit ACAGGGGTCTGGGG, class II alleles containing
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64–139 repeats and class III alleles containing 140 to >200
repeats. Although VNTR have little effect in pancreatic insulin
transcription, class I alleles in the thymus correlate with low and
class III with high levels of insulin mRNA (25, 27).

There is no VNTR regions in mice, but two nonallelic insulin
genes Ins1 and Ins2 encoding proinsulin 1 and 2 respectively
(28, 29). Both insulin genes are expressed by 1–3% of mTECs
in the thymus under control of AIRE (15, 30, 31), but Ins2
expression is predominant in the thymus. Although suggested
that this predominant expression leads to a higher tolerance
to proinsulin 2 (32), it was demonstrated that proinsulin 2
expression leads to T cell tolerance to an epitope shared by
both proinsulin 1 and 2 (33). The copy numbers of insulin gene
in the mouse thymus inversely correlates to the numbers of
insulin-specific autoreactive T cells in the periphery, so that mice
expressing low levels of thymic insulin, (even though pancreatic
insulin remains unaltered), present peripheral reactivity to
insulin, whereas mice with normal thymic insulin expression
have no significant response (34). This effect is transferable
by thymic transplantation (35), showing that thymic insulin
expression plays a critical role in thymic selection and T1D
susceptibility.

Insulin-like growth factors (IGF) 1 and 2 are polypeptidic
growth factors, members of the family of insulin-related peptides,
produced in many tissues where they can play endocrine and
paracrine functions (36). Both IGF-1 and 2 can bind to type 1
and 2 IGF receptors (IGF-1R/IGF-2R) with high affinity and to
insulin receptors (INS-R), with low affinity (37). All the genes of
the insulin family are expressed in the thymus during the fetal life;
IGF2 is predominantly expressed in the rat, mouse and human
thymi by TEC and Thymic Nurse Complexes (TNC), followed
by IGF1, expressed by TECs and macrophages. The proinsulin
genes are expressed by mTECs and DCs (38–41). In general,
protein levels are related with gene levels in the case of these
molecules.

After birth, IGF-2 gene expression and protein levels decrease
and reach the same levels of IGF-1 (32). IGF-2 participates
both in T cell development and negative selection (42). Studies
using fetal thymic organ cultures (FTOC) demonstrated that
the blockage of IGF-mediated signaling between TEC and
thymocytes inhibits early T cell proliferation and differentiation
(23). Specific anti-IGF-1 antibodies treatment lead to a decreased
DN relative cell numbers while the inhibition of IGF-2, IGF-
1R or IGF-2R impaired differentiation from the DN to the
DP stage. The same study showed a decrease in total T
cell numbers under treatment with anti-IGF-1R and anti-IGF-
2R antibodies. Moreover, transgenic IGF-2 expression resulted
in abnormalities in the terminal differentiation and increased
proliferation of TECs. The deposition of fibronectin and laminin
is enhanced in human TEC cultures and in the thymus of IGF-2
transgenic mice, in parallel with the enhancement of thymocyte
adhesion to TEC monolayers and thymocyte migration
(43).

IGF-2 expression by the thymic epithelium is under control
of AIRE, and the IGF-2 gene is located adjacent to the Ins
gene (44, 45). Its predominant expression among insulin family
members could be explained by IGF-2 close homology to the

other members with high conserved peptides sequences of the
family. This could lead to the development of tolerance to IGF-
2 and related molecules, including insulin (45). Igf-2−/− mice
present weaker tolerance to insulin when compared with wild
type animals and the production of specific antibodies to IGF-2
is more difficult than to IGF-1 or insulin (46–48).

IGF-1 and its receptor are implicated in several growth
hormone (GH) effects in the thymus, as TEC proliferation and
thymocyte/TEC adhesion (49), as we further discuss below.

GH/IGF-1 AXIS IN THE THYMUS

Growth hormone is a member of a family of growth factors that
includes prolactin and other hormones. It is produced and stored
mainly in the anterior pituitary under control of hypothalamic
hormones, as the GH-releasing hormone, hypothalamic GH
release-inhibiting factor and somatostatin (50), although the
production by other cell types was observed, including leukocytes
and TECs (51). The early experiments showing that GH is
thymotropic revealed that GH-deficient mice present thymus
atrophy and this effect is also observed after GH anti-serum
treatment of mice with intact pituitary (52).

TheGH receptor (GHR) is expressed in cortical andmedullary
TECs (53, 54) as well as in thymocytes (51, 55), and plays a
role in thymic function and T-cell differentiation. The decline
of GH production is related with thymic involution (56).
Moreover, transgenic mice overexpressing GH have an enlarged
thymus, as well as mice and humans treated with recombinant
forms of the hormone (57). GH can also modulate the thymic
microenvironment by increasing the secretion of cytokines,
chemokines and thymulin, consequently modulating thymocyte
adhesion and migration (57–60).

As mentioned above, some of the GH effects in the thymus
are mediated by IGF-1. Murine TEC lines treated with GH or
IGF-1, present an enhancement in ECM molecules production
as type IV collagen, fibronectin and laminin, besides the
expression of the integrins VLA-5 (alpha 5 beta 1 integrin,
a fibronectin receptor) and VLA-6 (alpha 6 beta 1 integrin,
a laminin receptor). Treatment with GH also augmented the
thymocyte/TEC adhesion, a phenomenon that was blocked by
anti-IGF-1 and anti-IGF-1R antibodies (61).

Since the interactions of thymocyte and TECs are crucial for
thymocyte development and thymus physiology, one can argue
that together, the GH/IGF-1 axis, besides IGF-2 and insulin
can shape the T-cell repertoire. Moreover, it is conceivable that
defects in the negative selection against PTAs related to this
family might cause autoimmunity, as for example T1D, in the
case of insulin-related peptides expressed intrathymically.

THYMIC ALTERATIONS IN NOD MICE

Several morphological and phenotypic alterations are observed
in the NOD mouse thymus. The most evident is the formation
of giant perivascular spaces (PVSs), which are filled with mature
CD4SP and CD8SP cells, B cells and regulatory Foxp3+ cells
(62–64). We have described that cells inside giant PVSs present
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TABLE 1 | Alterations observed in the NOD mouse thymus.

Alteration* Affected

compartments

References

THYMIC PARENCHYMA STRUCTURES

PVS ↑↑↑ Medullary region (62)

TECs ↓ Medullary region (62)

CELL MIGRATION-RELATED MOLECULES

VLA-5 ↓↓↓ Mainly CD4SP CD8SP

and Foxp3+ regulatory

T cells

(64, 65)

VLA-4 ↑ DP, CD4SP and

CD8SP thymocytes

(64, 65)

VLA-6 ↑↑↑ All thymocyte

subpopulations

(64)

CXCR4 ↓ CD8SP thymocytes (64)

CXCL12 ↑ Mainly inside giant

PVSs

(64)

Fibronectin ↑ Mainly inside giant

PVSs

(64, 65)

Laminin ↑ Mainly inside giant

PVSs

(64, 65)

Type I and IV

collagens

↑ Mainly inside giant

PVSs

(62)

INSULIN FAMILY-RELATED PEPTIDES AND RECEPTORS

Insulin ↓↓ mTECs (66)

IGF-1, IGF-2,

INS-R,

IGF-1R,

IGF-2R

ND – –

GH, GHR ND – –

miRNAs

miR-19a ↓/– Thymocytes

TCR+/NKT17

(67)

miR-19b ↓/– Thymocytes

TCR+/NKT17

(67)

miR-133b –/↑↑ Thymocytes

TCR+/NKT17

(67)

miR-124a ↑/– Thymocytes

TCR+/NKT17

(67)

miR-326 ↓/– Thymocytes

TCR+/NKT17

(67)

*Alteration comparing NOD with other inbred mouse strains; PVS, perivascular space;

TEC, thymic epithelial cell; IGF, insulin-like growth factor; INS-R, insulin receptor; IGF-R,

insulin-like growth factor receptor; GH, growth hormone; GHR, growth hormone receptor;

NKT17, IL-17-producing natural killer T cells; ND, not described.

a defect in the membrane expression of the integrin-type
fibronectin receptor VLA-5 (CD49e/CD29) that may lead to their
accumulation and retention in the thymus (65). The formation
of giant PVSs also changes the TEC network and ECM contents,
both inside PVS and in the thymic parenchyma. Particularly,
there is an important deposition of fibronectin inside these spaces
(Table 1).

The accumulation of thymocytes and enlargement of PVS
starts to be observed at 4 weeks of age in female mice, which
are more susceptible for T1D. Clear-cut giant PVS are observed
in pre-diabetic mice (9–12 weeks of age), that already present
insulitis (62).

Ex vivo functional assays revealed that NOD thymocytes have
a defect in the migratory capacity toward fibronectin, but not
laminin. Interestingly, migration toward the chemokine CXCL12
is enhanced, and a synergic effect is observed when CXCL12
is combined with ECM molecules. In the case of fibronectin
combined with CXCL12, despite the synergic effect, migration
of NOD thymocytes is reduced compared with controls
(64, 65).

Another experimental strategy trying to understand the role
of VLA-5 in thymocyte accumulation in giant PVS in NOD
mice comprised ECM-transmigration assays, which mimic the
migration of thymocytes through fibronectin-enriched PVSs
and then the transmigration through endothelium. These
experiments revealed that NOD thymocytes that first encounter
fibronectin molecules transmigrate less then controls (64).
Conversely, differences in transmigration assays were not
observed when laminin was applied, reinforcing the concept
that VLA-5/fibronectin interactions can play a role in the
accumulation of thymocytes in PVS during the pathogenesis of
T1D (Figure 1).

As mentioned above, thymic insulin expression plays a
role in thymic selection processes and T1D development. The
expression levels of insulin genes are also altered in the NOD
mouse thymus. The Ins2 gene expression is normal at 2 weeks
of age but become lower at 3 weeks, which may favor loss
of tolerance to insulin in NOD mice (66, 68). Moreover,
Ins2−/− NOD mice have accelerated insulitis and autoimmune
diabetes onset in females, increased disease in males, with
enhanced prevalence of insulin autoantibodies and stronger
insulin response (33). Conversely, insulitis and diabetes onset
were delayed in NOD Isn1−/− mice, which can be explained
by the dominance of the Ins2 gene in the thymus, whereas
Ins1 is more prominent in pancreatic beta cells (69). Prevention
of both insulitis and diabetes can be seen in transgenic NOD
mice expressing increased levels of Ins2 under the MHC class
II promoter (70), and also after intrathymic administration of
insulin (71).

The expansion of autoreactive T cell clones in NOD mice
can also be affected by proinsulin gene expression. Although
the numbers of CD4SP and CD8SP thymocytes do not change,
proinsulin-1 or−2 deficiency in NOD mice causes changes in
the T-cell repertoire generated in the thymus and peripheral
lymphoid organs, and is associated with a significant expansion
of insulin–reactive CD8SP T cell clones in the pancreatic draining
lymph node (72).

The effects of IGF-1 on cell trafficking were also analyzed in
the adoptive T cell transfer model in NODmice (73). T cells from
diabetic NOD Thy-1.2 mice were injected into congenic NOD
Thy-1.1 mice. In this model, reconstitution of the thymus of
irradiated recipients with donor cells was not influenced by IGF-
1 treatment, but the percentage of donor T cells was significantly
reduced in the spleen of IGF-1 treated mice in contrast to the
thymus, suggesting that IGF-1 could influence T cell trafficking
from the thymus to peripheral lymphoid organs. This might be
due to effects of IGF-1 upon the Sphingosine kinase/sphingosine-
1-phosphate axis, as demonstrated for myoblast differentiation
(74).
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FIGURE 1 | Thymic alterations that can play a role in autoimmune pathogenesis of T1D. Different thymic alterations are observed in the NOD mouse thymus

concerning the expression and role of molecules involved in cell adhesion and migration, peptidic hormones under control of the AIRE gene and miRNAs. The

diminished insulin expression in the thymus and miRNA modulation of PTAs can lead to the generation of autoreactive cells. The defect in VLA-5 membrane

expression on thymocytes and modulation of chemokine receptors are related with the accumulation of thymocytes, including Foxp3+ regulatory cells, and the

formation of fibronectin-enriched giant PVSs. This accumulation of thymocytes may also be modulated by IGF-1, and can explain the reduced Treg numbers in

peripheral lymphoid organs and pancreas affecting the balance between Tregs and effector T cells, although this is still controversial. Tregs can also present defective

activation. In peripheral lymphoid organs, the transition of T cells to PILs is under control of miRNAs that can modulate the expression of chemokine receptors and

consequent migration of these cells to the pancreas. Together, these changes may possibly be due to intrathymic hormonal imbalance, comprising the expression of

insulin, IGF-1 and IGF-2.

The role of IGF-2 specifically in the thymus of NOD
mice is not yet defined. However, transcriptome studies
revealed that IGF-2 mRNA is downregulated when comparing
mTECs from newborn and 5 week old NOD mice (75). A
downmodulation was also observed for Ins1 and Ins2 mRNA
expression. Interestingly, the same was observed in BALB/c
mice for both IGF-2 and Ins-2, but not for Ins-1 mRNA.
Moreover, the reconstruction of post-transcriptional miRNA-
mRNA interaction networks revealed that some miRNAs,
including the miR-647 that targets IGF-2 mRNA, were included
in the network of BALB/c, but not in the NOD mice
(75). In this context, since the expression of PTA mRNAs
(and the respective proteins) in mTECs is important for
the negative selection process, the mechanisms that inhibit

the regulatory action of miRNAs may be acting in these
cells.

The expression of other miRNAs is altered in the thymus
of NOD mice when comparing with C57BL/6 mice (Table 1).
The miR-19a, miR-19b and miR-326 are downregulated whereas
miR-124a is upregulated on TCR+ thymocytes. MiR-133b is
upregulated only in natural killer T (NKT) cells in the thymus
(67). This miRNA targets and regulates the transcription factor
Th-POK, which negatively regulates the differentiation of IL-17
producing NKT cells (NKT17). Thus, the diminished expression
of Th-POK can induce the differentiation of NKT17 cells and
explain the enhanced numbers of these cells in the thymus and
peripheral lymphoid organs of NOD mice (67), which can be
related with exacerbation of diabetes (76).
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THE ROLE OF MIRNAS THROUGHOUT
TRANSITION OF THYMOCYTES INTO
PANCREAS INFILTRATING LYMPHOCYTES

During the period of evolution of autoimmune reactivity in
NOD mice, even before the appearance of clinical signs of
T1D, thymocytes that differentiate into peripheral CD3+ T
lymphocytes sequentially modulate (up- or down-regulate), a
significant set of mRNAs that encode proteins involved in the
intrathymic negative selection, T cell maturation, differentiation
and autoreactivity (77). Among the peripheral T lymphocytes
residing in the spleen and/or in the lymph nodes some
autoreactive clones will evolve into PILs in mice and humans (1,
78, 79). Insulin-specific CD4 and CD8T cells targeting multiple
epitopes are predominant in the islet infiltrating T cells in
pre-diabetic NOD mice pancreas (80), with proinsulin 2 being
proposed as the major isoform recognized by those cells (33).

During the transition of peripheral T lymphocytes into PILs,
a large set of mRNAs is transcriptionally modulated causing
changes in the transcriptome profile of these cells with parallel
modulation of miRNAs. These transcriptional changes are robust
enough to hierarchize the different cell types (thymocytes, CD3+

peripheral T lymphocytes and PILs) and the different stages of
NOD mice regarding the onset of T1D (pre- or diabetic animals)
according to their respective mRNA or miRNA expression
signatures (81). The miRNA modulation strongly suggests that
transition into PILs would be under posttranscriptional control,
i.e., the effect of specificmiRNAs upon target mRNAs that encode
proteins involved in this process.

The reconstruction of miRNA-mRNA interaction networks,
based on differential expression profiling of peripheral T
lymphocytes during their transition into PILs in NOD mice
predicted mRNA targets in an unbiased way. As these cells
develop into CD3+ peripheral T cells and then into PILs,
thymocytes exhibited miRNA interactions with mRNA targets
that encode proteins related to apoptosis, cell adhesion,
positive and negative selection in the thymus. The interactions
involving miR-202-3p with CCR7 mRNA were highlighted
in the work of Fornari et al. (81), showing that CCR7
is involved with the control of central tolerance and mice
lacking this chemokine receptor generated autoreactive T cells
(82). Moreover, CCR7 directs T-cells toward the pancreas
of NOD mice, since desensitization of CCR7 blocked T-
cell migration from the bloodstream into pancreatic islets
(83).

A second interaction emphasized was miR-202-3p-CD247
mRNA in NOD mice (81). Under disturbance during TCR
signaling, the CD3 zeta chain enhanced autoimmune diabetes in
mice (84).

The evidence at this moment suggests that the transition into
PILs is under post-transcriptional control exerted by miRNAs
(Figure 1). Interestingly, some miRNAs such as miR-375, miR-
30d and miR-9, can control insulin synthesis and secretion by
pancreatic beta-cells (85) in NOD mice. Whether miRNAs also
regulate the intrathymic production of proinsulin/insulin and
IGF remains unknown.

FUTURE DEVELOPMENTS AND
CONCLUDING REMARKS

Although the precise biological mechanism(s) underlying
how differentiating thymocytes evolve to autoreactive T-
cells infiltrating and destroying pancreatic beta cells are not
elucidated, it is likely that disturbances of gene and miRNA
signatures may be part of this process, as well as changes
in the profiles of cell migration of both thymocytes and
peripheral T lymphocytes. In this context, besides the questions
raised throughout the text, other important questions remain
unanswered, such as the possible direct role of the thymic
alterations in the pathogenesis of T1D and the presence of similar
alterations in humans.

In humans, serum GH levels are enhanced in T1D patients
(86), and IGF-1 and IGF-1R mRNA levels are reduced in
peripheral blood mononuclear cells (87). The circulation levels
of GH are enhanced whereas IGF-1 levels are diminished in
NOD diabetic mice 4 weeks after the appearance of glycosuria
(88), suggesting similarities in hormone imbalance between T1D
patients and NODmice at least after disease diagnosis.

Hormonal imbalance in the thymus can be involved in the
control of the physiology of the organ in NOD mice and
humans, as the properly maturation of the cells, cell adhesion,
migration, accumulation and egress, by the modulation of ECM
molecules and integrins, chemokines and chemokine receptors,
sphingosine-1-phosphate and sphingosine-1-phosphate receptor
1 (10, 64, 65, 89). As an example, GH/IGF-1 axis can modulate
the expression of cytokines, chemokines and ECMmolecules and
receptors in the thymus (61). GHmodulates thymocyte adhesion
and migration properties, and promotes thymocyte egress (59).
The effects of GH can be regulated by IGF-1, which can in turn
bind IGF-R and insulin receptor (90). Lower insulin levels in the
thymus are related with reactivity to insulin in the periphery,
including in NOD mice (33). Together, these mechanisms can
shape the T cell repertoire and change the frequency of Tregs and
the ratio of Treg and effector T cells (34, 45). The diminished
frequency of Tregs in NOD mice is controversial, and most
studies in T1D patients have reported no differences in the
frequency of Tregs in peripheral blood. Likewise, phenotype
and diminished suppressive capacity have been reported in both
NOD and T1D patients (64, 91–93).Whether these specific issues
are related with hormonal imbalance during the pathogenesis of
T1D, comprising the expression of insulin, GH/IGF-1 and IGF-2,
need further investigation.
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