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Background: The efficacy of robot-assisted rehabilitation as a technique for achieving

motor recovery is still being debated. The effects of robotic assistance are generally

measured using standard clinical assessments. Few studies have investigated the value

of human-centered instrumental analysis, taking the modular organization of the human

neuromotor system into account in assessing how stroke survivors interact with robotic

set-ups. In this paper, muscle synergy analysis was coupled with clustering procedures

to elucidate the effect of human-robot interaction on the spatial and temporal features,

and directional tuning of motor modules during robot-assisted movements.

Methods: Twenty-two stroke survivors completed a session comprising a series of

hand-to-mouth movements with and without robotic assistance. Patients were assessed

instrumentally, recording kinematic, and electromyographic data to extract spatial muscle

synergies and their temporal components. Patients’ spatial synergies were grouped by

means of a cluster analysis, matched pairwise across conditions (free and robot-assisted

movement), and compared in terms of their spatial and temporal features, and directional

tuning, to examine how robotic assistance altered their motor modules.

Results: Motor synergies were successfully extracted for all 22 patients in both

conditions. Seven clusters (spatial synergies) could describe the original datasets, in

both free and robot-assisted movements. Interacting with the robot slightly altered the

spatial synergies’ features (to a variable extent), as well as their temporal components

and directional tuning.

Conclusions: Slight differences were identified in the characteristics of spatial synergies,

temporal components and directional tuning of the motor modules of stroke survivors

engaging in free and robot-assisted movements. Such effects are worth investigating

in the framework of a modular description of the neuromusculoskeletal system to

shed more light on human-robot interaction, and the effects of robotic assistance and

rehabilitation.

Keywords: muscle synergies, centroids, synergy clustering, spatial synergies, temporal components, directional

tuning, stroke, robotic assistance
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INTRODUCTION

Stroke is the leading cause of severe, long-term disability among
adults (Pollock et al., 2014). After a stroke, brain damage
can involve both the somatosensory and the motor areas. A
recent review (Hughes et al., 2015) highlighted that up to
75% of stroke survivors suffer from proprioceptive function
deficits, and about 80% from motor deficits (Pollock et al.,
2014). Many approaches have been developed to deal with
motor impairment after stroke, and recent guidelines for adult
rehabilitation support the validity of some methods for upper
extremity recovery. Examples include: functional task practice,
which is “recommended”; robotic therapy, which is considered
“reasonable”; and somatosensory training, which “may be
considered for application” (Winstein et al., 2016). Robotic
rehabilitation is one of the most promising and expanding
techniques for promoting neurological recovery, as reported
in Krebs and Volpe (2015). Robotic training can stimulate
motor and proprioceptive responses that lay the foundations
for a correct perception of space, and the self-awareness needed
to purposefully execute functional movements, as reported
by Colombo et al. (2016), who correlated improvements in
proprioception with motor recovery.

State-of-the-art studies on the efficacy of robotic training
conducted on a broad sample of patients—using clinical scales
as the primary outcome (Lo et al., 2010), or instrumental
clinical tests (Carpinella et al., 2014)—and comprehensive
reviews on robotic rehabilitation (Mehrholz et al., 2012, 2015;
Maciejasz et al., 2014) found robotic training only slightly
more effective than conventional therapy. Some authors reported
that upper limb functionality improved by the end of the
robotic treatment (Carpinella et al., 2012), but Kwakkel et al.
(2008) found comparable improvements between robotic and
traditional therapy in terms of upper limb recovery. Very
often, the studies considered in the reviews relied on clinical
scales to assess improvements after the therapy, but these
outcome measures may not be sensitive enough to capture the
real differences obtained. Other methods, such as kinematics
and electromyography, can be used to assess human-robot
interaction in an effort to clarify the underlying motor control
mechanisms.

Thus, although the use of robots for motor and proprioceptive
recovery has been widely discussed in the literature, a thorough
understanding of its potential is still lacking. In addition, the
effects of human-robot interaction have been investigated mainly
on clinical scales, while less attention has been paid to applying
advanced techniques, such as electromyography (EMG) analysis.
Many theories on motor control agree on the key role of the
neurally-encoded representation of movement, in the form of a
limited set of motor modules that account for a variety of motor
tasks (Wolpert and Kawato, 1998; Wolpert et al., 1998; Feldman

Abbreviations: ICF, International Classification of Functioning; CNS, central

nervous system; HTMM, hand-to-mouth movement; EMG, electromyography; A,

assisted; NA, non-assisted; Tp, trapezius; Pt, pectoralis; Da, anterior deltoid; Dm,

middle deltoid; Dp, posterior deltoid; Tc, triceps; Bc, biceps; Br, brachioradialis;

FMA, Fugl-Meyer Assessment; ROM, range of motion; Pt, patient; NMF, non-

negative matrix factorization; VAF, variance accounted for; 3D, three-dimensional.

and Levin, 2009; Bizzi and Cheung, 2013). Since robotic training
is supposed to have influence in reshaping the neural pathways
underlying a movement, a detailed analysis of these motor
modules may add valuable insight on human-robot interaction
and the efficacy of robot-assisted rehabilitation.

A useful framework for conducting a module-based
assessment is muscle synergy analysis, which is one of the
state-of-the-art analytical methods for characterizing EMG
activity. The core hypothesis behind muscle synergy analysis is
that the central nervous system (CNS) exploits motor abundance
(i.e., the redundancy of actuators with respect to the joints being
actuated) to simplify the motor control problem. The synergy-
based approach assumes that the CNS organizes a motor control
problem by exploiting a limited number of modules, defined as
muscle synergies, i.e., coordinated activation patterns of groups
of muscles that share the same control signal. This approach
implies that muscle redundancy is not a source of computational
burden (Latash, 2012). In fact, a reduction in the number of
motor commands lies at the basis of the modular organization in
the neural encoding of motor synergies. Each motor module may
comprise an invariant spatial synergy (a group of co-activating
muscles), modulated by a time-variant component. As in other
models, each module consists of a time-variant waveform that
can be shifted in time, and modulated in amplitude (d’Avella
et al., 2006). In the literature, many factorization algorithms
have been used for synergy extraction (Tresch et al., 2016).
One of the most often used is nonnegative matrix factorization
(NMF; Lee and Seung, 2001). While a remarkable amount
of information on muscle synergies is available in studies on
animals (d’Avella et al., 2003; Overduin et al., 2015), and on
healthy people (d’Avella et al., 2006, 2008), fewer studies have
applied the muscle synergy framework to assessing neurological
patients’ motor control. Comprehensive upper-limb mappings
revealed an altered recruitment pattern in mildly impaired
stroke survivors, while the composition of their muscle synergies
was preserved (Cheung et al., 2009). In more severely impaired
patients, the spatial components of these synergies may be
altered due to fractionation and merging (Cheung et al., 2012).
Fractionation consists in a splitting of one apparently-healthy
synergy into two or more. Merging, on the other hand, consists
in the expression of two or more synergies in a single pattern,
and it is typical of very low-functioning patients. Scano et al.
(2017) found that a small population of stroke survivors could
be correlated with a limited set of patterns that were partially
related to their motor functionality. Lunardini et al. (2017)
conducted a muscle synergy analysis on the upper limb muscles
of children with dystonia and age-matched healthy controls
while they completed various writing tasks. Their results suggest
that dystonic children should have access to an intact set of
synergies with a normal composition, and that their aberrant
muscle activity is due to an abnormal recruitment of intact
motor modules (Safavynia et al., 2011). Several efforts have been
made to characterize lower limb motor modules in pathological
conditions too. For instance, Clark et al. (2010) demonstrated
a reduction in the number of modules underlying walking in
stroke survivors. A study on patients with multiple sclerosis
found that the number of muscle synergies supporting their gait
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was comparable with that of healthy controls, and alterations
were identified more on the timing of their activation than on
the composition of the synergies (Lencioni et al., 2016).

In short, the results emerging from the literature go to show
that individuals with motor impairments can have a variety of
muscle synergy alterations that are not easy to classify. It is
nonetheless essential to gain a better understanding of these
changes and the pathologies behind them in order to provide the
best therapy and support.

While refined studies on robotic rehabilitation have
conducted standard clinical assessments on large samples
of patients (Lo et al., 2010), very few studies have coupled
muscle synergies and robotic therapy to test the potential of
a motor modules analysis for assessing the effects of human-
robot interaction on patients with motor impairments. One
such study on a limited sample of patients concluded that
the treatment prompted patients to modify the coordinated
activity of muscle groups, though the reorganization of
the rules underlying motor control was characterized by
a significant inter-patient variability (Tropea et al., 2013).
Other studies discussed the use of muscle synergies and
provided detailed accounts of interactions with rehabilitation
devices (Coscia et al., 2014; Pirondini et al., 2016; Chiavenna
et al., 2018), but their analyses only concerned healthy
people.

Many experimental models involving muscle synergies have
focused on trying to map the spatiotemporal features of
motor modules involved in a variety of directional movements,
comprehensively exploring the workspace. The purpose of the
present study, on the other hand, was to extract the salient
features of human-robot interaction by adopting the more
restrictive constraints of our experimental design. Given the
previously-mentioned premises, and the clinical approach of
this study, the aim was not to comprehensively map the
upper limb motor modules of stroke survivors, but to see
which modules are modified by interaction with a robot,
and when, in a specific gesture that might be the object
of neurorehabilitation therapy (a hand-to-mouth movement,
in this case). Following up the few available reports on
the topic, the aim of this paper was therefore to examine
the effects of human-robot interaction on stroke survivors’
upper limb motor modules during robot-assisted movement,
focusing on whether, and when, robotic assistance might alter
the motor modules underlying these movements. The authors
hypothesized that interaction with a robot could induce changes
in the muscle synergies of stroke survivors. This hypothesis
was tested by comparing the repertoire of motor modules
detectable in two conditions—during free and robot-assisted
movement—in terms of spatial synergies, temporal components,
and directional tuning, as explained in detail in section Materials
and Methods.

MATERIALS AND METHODS

A brief overview of the study is shown in Figure 1, and further
details are provided below.

Setting
The study took place at the Robotic Laboratory run by
the Consiglio Nazionale delle Ricerche at the Presidio di
Riabilitazione dell’Ospedale Valduce Villa Beretta, Costa
Masnaga (LC), Italy.

Participants
Twenty-two stroke survivors with chronic impairments (more
than 6 months after they experienced their stroke) were recruited
for the study. All patients had motor deficits in one upper limb.
Eligibility criteria included a thorough understanding of the
tasks to perform. The patients had different degrees of upper
limb impairment, quantified with the Fugl–Meyer Assessment
(FMA), Section A-D, in the range of 12/66 to 64/66. The patients’
demographic and clinical characteristics are listed in Table 1,
together with their FMA scores.

Equipment and Motor Task
The robotic set-up included aMitsubishi Pa10-7, which is a robot
with 7 degrees of freedom used to perform 3D movements. The
robot was fitted with a force/torque sensor on the handle, and
virtual safety walls were used to avoid unwanted contact with
the user. A graphic user interface displayed the forces the user
brought to bear on the handle in real time, and the position of
the handle in the workspace was tracked. The handle consisted
of a metal bar covered with a soft fabric and designed to be
easy to grip, even for severely impaired patients. The handle
was connected to the robot via a revolute joint that enabled
rotation on one axis allowing for an appropriate orientation of
the hand toward the mouth (Figure 2). The angle of the revolute
joint developed during the movement was not monitored. In
the present work, the task used to investigate muscle synergies
involved a hand-to-mouth movement (HTMM), as shown in
Figure 2.

In this study, the HTMM was chosen as paradigmatic of a
fundamental movement needed in daily life, in gestures such
as dressing or eating. The HTMM may be less burdensome
than movements involving a greater contribution of force against
gravity. In fact, the focus is to coordinate distal joints (the elbow
and wrist) properly in order to proceed correctly toward the
target (the mouth), also emphasizing the role of proprioceptive
feedback in relation to the motor output. The main requirement
of the task involves flexing the elbow against gravity, so spasticity
or strength deficits on the elbow agonist muscles (such as the
biceps or triceps) can drastically interfere with performance
during its execution (Bohannon et al., 1991; Crea et al., 2017;
Posteraro et al., 2017). Elbow flexion is coupled with an internal
rotation and slight elevation of the shoulder. In the final part of
the HTMM, a limited shoulder flexion and adduction are needed
too, along with a slight forearm supination to orientate the hand
correctly toward the mouth (Gopura et al., 2010).

The HTMM is therefore a functional gesture that
simultaneously involves multiple-joint coordination, awareness
of the body schema, and self-perception. Bearing in mind that
movements toward the body are rarely assessed in the literature
on motor control and learning, the authors considered the
HTMM a good candidate for examining the human-robot
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FIGURE 1 | Study workflow. Twenty-two stroke survivors were recruited. They were administered the Fugl–Meyer Assessment, then they performed free and

robot-assisted repetitions of the HTMM. For each of the two experimental conditions, muscle synergies were extracted using NMF. Each dataset was analyzed with

the k-means clustering algorithm, and mean spatial synergies (centroids) were extracted. The two centroid datasets were matched and compared in terms of spatial

composition, temporal components, and directional tuning.

TABLE 1 | Summary of patients’ demographic data.

Patients Months since stroke Impaired limb Dominant hand Type of

stroke

Fugl-meyer assessment (Sections A–D)

15M – 7F 42.1 ± 47.3 12R−10L 22R 18 ischemic

4 hemorrhagic

44.3 ± 15.7

FIGURE 2 | The robotic set-up, comprising a Mitsubishi Pa10 robot and a handle with a revolute joint is shown during the execution of the hand-to-mouth movement

(split in four frames representing progressive phases of the movement).

interaction process and judging its potential for inducing
neuroplasticity and motor recovery.

During the trials, patients sat on a stool with their hand resting
on their thigh, and they were asked to bring their hand up to
their mouth, as described in the protocol, 10 times at their own
pace. The HTMM was first executed freely, then repeated with
the robot. The curvilinear abscissa of the trajectory was recorded
under manual guidance, then customized to fit the patients’
anthropometric measures (scaled by anthropometric coefficient),
and reproduced with a bell-shaped velocity profile. The trajectory
could be implemented in the event of deficits of the right or left
limb, and each patient trained their impaired limb. During the
execution of the movements, the robot was set in active mode,

i.e., the trajectory was predetermined, and no interaction with
the handle could modify the law governing the motion. This
was done to enable even the severely impaired participants to
complete the range of motion of the gesture, and to standardize
the execution of the robot-assisted movements. The use of the
active mode was also supported by the findings of previous
similar studies that, as far as motor modules are concerned,
passive arm movements have much the same effects as fully
supported ones because the same brain networks are involved
during passive and active movements (Pirondini et al., 2016).
Patients were nonetheless asked to participate in the movement,
following the robot as if they were completing the movement
independently, and minimizing the forces of interaction with the

Frontiers in Human Neuroscience | www.frontiersin.org 4 August 2018 | Volume 12 | Article 290

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Scano et al. Muscle Synergies and Robotic Assistance

handle. This requirement meant that patients had to: (1) support
the weight of their arm; (2) not push the handle; and (3) not
be carried by the handle. Patients’ active contribution was also
required in that they had to actively guide the handle toward their
mouth to complete the gesture. Since these requirements were
not easy to follow, especially for the severely impaired patients,
a short period (lasting about 10min) of gradual adaptation to
interaction with the robot was allowed, during which patients
could practice grasping and holding the handle, and supporting
the weight of their arm, to the best of their ability. This patient
training phase was supported, and could be monitored, with the
aid of an online visualization of the forces being exerted and a
vocal feedback to patients.

During the trials, instrumental data recordings were obtained
with 6-TVC and 8 s-EMG BTS Smart-D systems, for collecting
kinematic and EMG data, respectively.

During both free and robot-assisted movements, kinematic
data were recorded (at a sampling rate of 140Hz) for vertebrae
D5 and C7, the acromion, the elbow epicondyle, and the
styloid process of the ulna. Surface EMG recordings (sampling
rate = 1000Hz) were obtained on the following muscles: upper
trapezius (Tp), pectoralis major (Pt), anterior deltoid (Da),
middle deltoid (Dm), posterior deltoid (Dp), triceps brachii
caput medialis (Tr), biceps brachii caput longus (Bc), and
brachioradialis (Br).

Patients’ Clinical Assessment: Clinical
Scales
Clinical examinations were performed by a physical therapist
using the FMA (Potter et al., 2011). This is a stroke-specific,
performance-based scale belonging to the body function domain
of the ICF model, and designed to assess motor functioning,
balance, sensation, and joint functioning in patients with post-
stroke hemiplegia. Only the upper extremity motor section of the
FMA (scale 0-66, where 66 = no motor deficits) was used in the
present study.

Kinematic Analysis
Data from retro-reflective markers were filtered with a low-
pass, 3rd-order Butterworth filter with a frequency cut-off set at
6Hz. These data were used to compute the following intrinsic
body coordinates (expressed as articular angles according to the
notation shown in Figure 3):

shoulder flexion angle, projected into the sagittal plane (x-y of
the reference frame in Figure 3A):

SF = a cos(−→uSE ·
−→ux ) (1)

elbow flexion angle (computed in 3D coordinates):

EF = a cos(−→uSE ·
−−→uEW) (2)

where −→u se is the unit vector of the shoulder-elbow anatomical
axis (arm), −→u x is the unit vector of the x axis of the reference
framework, and −→u ew is the unit vector of the elbow-wrist
anatomical axis (forearm).

Figure 3B graphically represents the kinematic angles
computed. In the Results section, however, the shoulder flexion

angle was plotted with a +270◦ offset (as depicted in Figure 3C)
to facilitate the graphical representation of the results (especially
for directional tuning).

Synergy Extraction
Kinematic recordings were used to identify phases of the
movements. Only forward phases (while the hand was
approaching the mouth) were considered for our analysis,
and identified with an algorithm for automatic phase detection
based on the derivative of the wrist vertical coordinate. For each
trial, data from the 8 sEMG channels were high-pass filtered at
50Hz (Butterworth filter, 5th order) to remove motion artifacts,
then rectified and low-pass filtered with a cut-off frequency
of 10Hz (Butterworth filter, 5th order) to remove noise and
obtain EMG envelopes (Pirondini et al., 2016). Then the EMG
envelopes of each HTMM were aligned and resampled (1000
samples per phase) to enable their direct comparison.

Let nSub = 22 be the number of patients involved, cond = 2
the number of experimental conditions (free and robot-assisted),
rate = 1000 the resampling size of each aligned movement,
and nMus = 8 the number of muscles considered. The
EMG envelopes from each experimental condition were pooled
together in a group of nSub × cond aggregated matrices (each
rate × nMus in size), and synergies were extracted using the
NMF algorithm (Lee and Seung, 2001) to break down each
of the aggregated matrices. The NMF breaks down the EMG
aggregated matrix into the product of two matrices, the first
representing time-invariant, neural-coded synergies (wi), and the
second representing time-variant activation commands for each
synergy (ci), as in Equation (3):

EMG(t) =
∑N

i = 1
ciwi (3)

where, for each of the muscles recorded, EMG(t) is the EMG
data at the time t, and N is the total number of synergies
extracted. The dimensions of the matrices ci and wi depend on
the order of factorization r, which is specified by the user before
synergy extraction. The matrices ci and wi have dimensions (rate
× r) and (r × nMus), respectively. All possible orders for the
factorization were tested by increasing r from 1 to 8 (maximum
number of muscles characterizing the original dimensionality
of the EMG recorded). For each r, the NMF algorithm was
applied 1000 times to avoid local minima, and the repetition
accounting for the higher variance of the signal was chosen as
being representative of the order r. The number of synergies
was chosen as the minimum r explaining at least 0.80 of the
variance of the signal. Further synergies were only added to the
dataset if increasing r added at least 0.05 to the overall variance
explained.

Synergy Dataset Clustering
Published state-of-the-art studies on muscle synergies focus
on the difference between two synergy datasets (comparing
movements of the more and less affected upper limbs of a stroke
survivor, for instance), defining clusters and grouping spatial
synergies by their composition. Each cluster is represented by a
centroid, which is a mean spatial synergy comprising a group of
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FIGURE 3 | Panel (A) shows the nomenclature for kinematic computations. Panel (B) shows the conventions adopted in this study. The shoulder flexion angle is

projected in the sagittal plane; 0◦ indicate no flexion (arm leaning along the body), while 90◦ indicate the shoulder flexed so that the arm is elevated frontally. The

elbow angle is 0◦ if the arm and forearm are aligned. Positive angles indicate when the forearm is flexed. In panel (C), the conventions for visualization of the results

are reported. In respect to panel (B), shoulder flexion angles are ofsetted (+270◦). This convention was chosen to facilitate visualization of the movement when

considering synergy directional tuning.

modules that share much the same spatial composition. Cluster
analysis thus enables the datasets of the extracted synergies
to be reduced to a limited number of groups (or clusters),
which synthetically represent the repertoire of motor modules
available to the patient in each experimental condition. Then two
experimental conditions are typically compared, and changes in
centroid composition are used to measure the difference between
the two datasets (free vs robot-assisted movements in the present
study).

To obtain a synthetic representation of the motor modules
representing the original datasets, clustering was applied to two
aggregated matrices containing the dataset of all the extracted
synergies in each of our two experimental conditions (free
and robot-assisted movements). Let n_free be the number
of motor modules extracted in free movements, and n_robot
the number of motor modules extracted in robot-assisted
movements. Clustering was applied to a “Free Movements”
matrix (n_free × n_Mus), and to a “Robot–Assisted” matrix
(n_robot× n_Mus). For each of the two experimental conditions,
clustering was done with the k-means cluster algorithm (Matlab),
which involves selecting the order of data reduction (n_cluster)
as input. The authors opted to test solutions with n_cluster

ranging from 2 to 20, by repeating the algorithm 1000 times
and selecting, for each order, the solution with the lowest mean
Euclidean distance between each centroid and the synergies it
represented.

Then the choice of the appropriate number of clusters for each
experimental condition was based on:

1) the most parsimonious number of clusters needed to ensure
an adequate power (i.e. the lowest possible number of clusters
assuring a reasonable descriptive accuracy);

2) the mean Euclidean distance of the synergies in the dataset
from their centroids of order n had to be less than 5% of
the mean Euclidean distance of the whole dataset from the
centroid of order 1;

3) single-patient cluster solutions were avoided, or limited as
much as possible.

Effects of Human-Robot Interaction:
Outcome Measures and Statistics
To conduct a quantitative assessment of the differences between
the two experimental conditions (free and robot-assisted
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movements), the clusters obtained were compared to identify
the modifications induced by robotic assistance. Three main
characteristics were considered - spatial synergy composition,
temporal components, and synergy directional tuning - as
described below.

Spatial synergy composition indicates which muscles are
involved, and with which magnitude, in a neurally encoded
coordinated module (Bizzi and Cheung, 2013). Each cluster is
represented by a spatial synergy, expressed by an 8-dimensional,
normalized vector, indicating the mean spatial synergy of groups
of similar modules found in one of the experimental conditions.
In this study, centroids (mean spatial synergies) found for each
of the two experimental conditions were first matched pairwise,
based on their similarity, as assessed with the dot product. Then,
the dot product was used to assess the similarity of the spatial
organization of each cluster pair. A dot product equal to one
indicates two identical synergies, while 0 indicates orthogonality.
To adopt a reference for this similarity, previous studies
considered 0.90 as a threshold for a strong similarity, and 0.75 as
indicative of a good similarity (Cheung et al., 2009). No further
statistics or analyses were obtained on the spatial synergies.

Temporal components (or activations) are the time-variant
signals used by the CNS to coordinate a group of muscles,
expressed in relation to the phase of a movement (0-100%).
The implicit assumption for the comparison of temporal
components is that each pairwise group of temporal components
(in free and robot-assisted movements) refers to the same
spatial module. This assumption is acceptable when the two
mean spatial modules in the pair are very similar. Two
parameters were considered to judge the similarity of the
mean temporal components in each cluster pair: the “shape”
of the mean temporal component in relation to the phase of
the movement, assessed with Pearson’s correlation coefficient
R (p indicates the statistical significance of the test); and
the overall integral of the activation profiles (accounting
for its magnitude). For each pair of centroids, differences
in magnitude were tested by comparing the magnitude of
each group of temporal components (free vs robot-assisted
movements) with the Wilcoxon signed rank non-parametric test
(alpha= 0.05).

Directional tuning entails mapping a spatial synergy with
the relevant motor output variables it generates, in much the
same way as proposed in d’Avella et al. (2006). This procedure
can link each spatial synergy to its Cartesian directionality, as
in previous works [d’Avella et al. (2006), Tropea et al. (2013),
and Pirondini et al. (2016)], or be referred to intrinsic body
coordinates (articular angles). Given the nature of the HTMM,
mean spatial synergies and activation profiles were coupled with
intrinsic kinematics, considering the shoulder flexion angle and
the elbow flexion angle. The mean directional tuning associated
with each centroid was computed by considering the articular
angles corresponding to the barycenter of the weighted mean
temporal component relative to that centroid. Two directional
tunings were thus computed for each of the centroids found
in each of the two experimental conditions: one for shoulder
flexion and one for elbow flexion. Then, for each pair of centroids,
the difference in directional tuning for each of the two angles

was tested with the Wilcoxon signed rank non-parametric test
(alpha= 0.05).

RESULTS

All patients were able to complete the trial, each according
to their motor functionality. The results presented in sections
Spatial synergies, Temporal components, and Synergy directional
tuning are also listed in Table 2.

Synergies
The spatial synergies extracted from the data and the temporal
components, for all patients, are shown in Figure 4 (for
free movements) and Figure 5 (for robot-assisted movements).
Depending on the metrics chosen for synergy extraction, each
patient’s original EMG was reconstructed with a minimum of 1
and a maximum of 3 synergies.

k-Means Clustering
Figure 6 shows details of the clustering procedure. Seven clusters
were identified in each condition, 7 being the lowest clustering
order achieving a mean Euclidean distance of less than 5% in
relation to the clustering of order 1. Clusters were matched
pairwise, and plotted to highlight spatial synergies and temporal
components, for the free and robot-assisted HTMM, respectively.

Spatial Synergies
Table 2 shows details of the similarities between the pairs of
clusters, assessed with the dot product of the spatial synergy
compositions. Six out of 7 clusters were very strongly similar
(dot >= 0.90): cluster 1 pairwise dot 0.97; cluster 2 pairwise
dot 0.97; cluster 3 pairwise dot 0.96; cluster 4 pairwise dot 0.98;
cluster 5 pairwise dot 0.96; cluster 6 pairwise dot 0.90, while the
pairwise dot on one centroid was low (0.63).

Temporal Components
Figure 7 shows details of the similarities between the pairs of
clusters, assessed on the temporal components. Themagnitude of
the EMG associated with each spatial synergy was measured from
the mean integral magnitude of each temporal component. The
results indicate, for all the spatial synergies, that the magnitude
of the temporal components did not change significantly when
movements were robot-assisted (p > 0.05). Since the similarity
of cluster 7 was weak, the comparisons based on temporal
components were not consistent, and are consequently not
reported here. For 4 of the other 6 centroids, there was
a trend (though it lacked statistical significance) toward a
reduction in the magnitude of the temporal components during
interaction with the robot: cluster 2: 0.1151mV (free) vs. 0.0739
(robot); cluster 3: 0.1560mV (free) vs. 0.0920 (robot); cluster 4:
0.0879mV (free) vs. 0.0630 (robot); cluster 5: 0.0628mV (free)
vs. 0.0471 (robot). Opposite results emerged for the other two:
cluster 1: 0.0475mV (free) vs. 0.0559mV (robot); and cluster 6:
0.0381mV (free) vs. 0.0546 (robot).

Table 2 also shows Pearson’s correlation coefficients for
each pairwise group of temporal components, accounting for
the “shape” of the activations. While some of the temporal
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TABLE 2 | Summary of results.

Components Spatial

synergies

Temporal components Directional tuning

Dot Prodict(Similarity) Shape: Pearson’s

correlation

Magnitude:

integral

Magnitude:

statistics

Shoulder

flexion (deg)

Statistics Elbow

flexion (deg)

Statistics

Cluster ID Free 1 0.972 R = −0.527

p < 0.001

0.0475 h = 0

p = 0.79

29.93 h = 0

p = 0.11

95.38 h = 0

p = 0.79Cluster ID Robot 1 0.0559 23.59 91.16

Cluster ID Free 2 0.973 R = 0.900

p < 0.001

0.1151 h = 0

p = 0.08

24.97 h = 0

p = 0.15

102.85 h = 0

p = 0.97Cluster ID Robot 2 0.0739 28.61 99.25

Cluster ID Free 3 0.959 R = 0.761

p < 0.001

0.1560 h = 0

p = 0.23

36.43 h = 0

p = 0.25

98.45 h = 0

p = 0.82Cluster ID Robot 3 0.0920 27.75 93.22

Cluster ID Free 4 0.982 R = 0.820

p < 0.001

0.0879 h = 0

p = 0.44

31.09 h = 0

p = 0.62

95.53 h = 0

p = 0.94Cluster ID Robot 4 0.0630 27.02 95.65

Cluster ID Free 5 0.959 R = 0.037

p < 0.001

0.0628 h = 0

p = 0.85

10.04 h = 0

p = 0.22

101.75 h = 0

p = 0.22Cluster ID Robot 5 0.0471 20.81 85.61

Cluster ID Free 6 0.898 R = 0.600

p < 0.001

0.0381 h = 0

p = 0.36

26.62 h = 0

p = 0.69

98.41 h = 0

p = 0.63Cluster ID Robot 6 0.0546 27.63 95.05

Cluster ID Free 7* 0.628 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Cluster ID Robot 7* n.a. n.a. n.a.

The table is divided vertically into three sections. Each section shows the results of the comparisons between free and robot-assisted movements in the three global outcome domains:

spatial synergies, temporal components, and directional tuning. The spatial synergies column describes the similarity of the pairwise-matched motor modules. The temporal components

section is divided into three sub-sections. The shape of the mean temporal components was assessed with Pearson’s correlations, reported with the p-value of the test. The second

sub-section shows the integral value of the mean temporal components. The third sub-section shows the results of the Wilcoxon test on the difference in magnitude between the two

experimental conditions, within each cluster. The directional tuning section shows the mean directional tuning for shoulder flexion and elbow extension, and the results of the Wilcoxon

test on the difference in directional tuning between the two experimental conditions, within each cluster.
*The statistics for the temporal components and directional tuning were omitted because the centroids were dissimilar.

component waveforms showed positive or very positive
correlations (cluster 2 = 0.90; cluster 3 = 0.76; cluster 4 = 0.82;
cluster 26 = 0.60;), others showed moderately negative
correlations (cluster 1: −0.577), or no correlation at all (cluster
5: 0.04).

Synergy Directional Tuning
Figure 8 is a graphical representation showing details of the
synergies’ directional tuning. The barycenter of the temporal
component activations never differed significantly (p > 0.05),
but some modules were averagely elicited at slightly different
intrinsic coordinates (articular angles). In fact, some modules
were used at lower articular angles (i.e., in early phases of the
HTMM): the barycenter of cluster 1 was at 29.93◦ shoulder
flexion (SF) and 95.38◦ elbow flexion (EF) in free movement,
and at 23.59◦ SF and 91.16◦ EF, respectively, in robot-assisted
movement; the barycenter of cluster 3 was at 36.43◦ SF and 98.45◦

EF in the former case, and at 27.75◦ SF and 93.22◦ EF in the
latter. On the other hand, cluster 2 (24.97◦ SF and 102.85◦ EF
in free movement, 28.61◦ SF and 99.25◦ EF in robot-assisted
movement) and cluster 5 (10.04◦ SF and 101.75◦ EF in the
former case, as opposed to 20.81◦ SF and 85.61◦ EF in the latter)
were averagely recruited at higher shoulder angles but lower
elbow angles. Lastly, cluster 4 was recruited at slightly lower
shoulder angles (31.09◦ SF and 95.53◦ EF in free movement,
27.02◦ SF and 95.65◦ EF in robot-assistedmovement), and cluster
6 was recruited at lower elbow angles (26.62◦ SF and 98.41◦ EF
in free movement, 27.63◦ SF and 95.05◦ EF in robot-assisted
movement). Table 2 lists the mean directional tunings for each

spatial component, matched with the shoulder flexion and elbow
flexion angles.

DISCUSSION

Clusters
First of all, a description of the clusters extracted is given below to
highlight the function involving each of the motor modules. The
clusters are described referring to Figure 6, which shows their
centroids relating to free and robot-assisted HTMM.

Cluster 1—Flexor Synergy
This cluster represents the flexor synergy, and includes a relevant
contribution from the pectoralis, biceps, and brachioradialis
muscles. This synergy is the basic pattern underlying HTMM. It
involves a slight flexion and intra-rotation of the shoulder, and
flexion of the elbow and hand to reach the mouth.

Cluster 2—Elbow Flexion and Gravity Support at End

of Movement
The pattern in this cluster includes a major contribution from
the biceps, supported by shoulder elevators such as the trapezius
and anterior deltoid muscles. This synergy is elicited mainly at
the end of the HTMM to maintain posture against gravity at
both shoulder and elbow levels, and to complete the flexion of
the elbow.

Cluster 3—Proximal Stabilization
This cluster includes a major contribution from the trapezius,
partially supported by elbow flexor muscles. This synergy is
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FIGURE 4 | Patients’ muscle synergies and their temporal components in free HTMM. Rows 1–3 show the composition of the synergies; rows 4–6 show the

corresponding temporal components.
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FIGURE 5 | Patients’ muscle synergies and temporal components in robot-assisted HTMM. Rows 1–3 show the composition of the synergies; rows 4–6 show the

corresponding temporal components.
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FIGURE 6 | Mean spatial synergies (MSS), matched pairwise by similarity, assessed with the dot product on muscle coefficients, for both free and robot-assisted

conditions, with the associated temporal components (TC).

FIGURE 7 | Temporal Components (TC) of muscle synergies, matched pairwise by similarity, for both free and robot-assisted conditions. The mean temporal

component is highlighted (light gray plot). Bar graphs show the magnitude (integral) of the mean temporal components, comparing free and robot-assisted conditions.

The black histogram highlights the difference between the magnitude of the temporal components in free and robot-assisted conditions.
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FIGURE 8 | Mean directional tuning of muscle synergies for each pair of centroids. Each radar plot shows a scatter plot of the activations of each synergy centroid

within the workspace, plotted versus shoulder elevation and elbow flexion, respectively, according to the convention illustrated in Figure 2C. When shoulder flexion is

indicated, the radar plot should be interpreted as the projection on the sagittal plane, with movements executed by pointing rightwards. When elbow flexion is

indicated, its full extension is at 0◦. Blue plots indicate shoulder flexion in free movement trials; cyan plots indicate elbow flexion in free movements; red plots indicate

shoulder flexion in robot-assisted trials; magenta plots indicate elbow flexion in robot-assisted tracks; squares are plotted to indicate the barycenter of the distribution.

The final bar plot summarizes the mean spatial tuning for each of the intrinsic body coordinates considered (shoulder flexion and elbow flexion) and each experimental

condition.
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elicited in various phases of the movement, and supports its
stabilization.

Cluster 4—Elbow Co-contraction
This cluster includes a major contribution from the triceps
muscle, probably supporting a co-contractile action to stabilize
the forearm in various phases of the movement.

Cluster 5—Early Elbow Flexion
This cluster is strongly represented by brachioradialis activity,
especially at the beginning of the movement. It is probably
connected to the recruitment of the forearm and hand to flex
the elbow and properly orient the end effector before starting to
approach the mouth.

Cluster 6—Completion of Co-contractile and

Stabilizing Synergy
This cluster includes contributions from many muscles, which
co-contract and stabilize the action, especially at the end of the
movement.

Cluster 7—Shoulder Contribution
This cluster comprises two different patterns. In free HTMM, it
takes effect at the beginning of the movement to start elevating
the shoulder. In robot-assisted HTMM, its main contribution
comes from the posterior deltoid, which slows and stabilizes the
limb at the end of the movement.

Spatial Synergies
Referring to Figure 6, seven clusters could account for the
original dataset of synergies extracted for the free and
robot-assisted HTMM. In the present study conditions, the
dimensionality of the control space was the same for the
movements with and without robotic assistance. Six of the seven
pairwise-matched clusters were also very similar when free and
robot-assisted movements were compared (similarity >= 0.90).
The only cluster pair that was different revealed an alteration of
the coordinated motor modules. While the number of centroids
and the sample of patients considered are too small to obtain
strong statistics, it could be argued that the robot introduced a
slight change in the spatial components of the motor modules
compared to patients’ free movements. This effect was mainly
apparent in the emergence of a module featuring a marked
posterior deltoid activity, toward the end of the HTMM, probably
to slow and stabilize the limb (whereas the pattern in free
movements involved the anterior and middle deltoid acting to
elevate the limb at the beginning of the HTMM). Overall, the
spatial components were altered, but only marginally. These
results are consistent with other reports in the literature. Limited
numbers of motor modules characterizing upper limb control
were found in experimental studies comparing free vs. device-
assisted movements in rehabilitation settings (Coscia et al., 2014;
Pirondini et al., 2016), in patients vs. healthy controls (Cheung
et al., 2009; Roh et al., 2015), and in more vs. less affected limbs
(Cheung et al., 2009; García-Cossio et al., 2014). Our findings
also seem to suggest that robotic assistance introduces only slight
changes in the spatial synergies of stroke survivors, as seen in
healthy people. In many of the above-mentioned studies on free
vs. assisted movements, the dimensionality of the control was

comparable in the two conditions, although Cheung et al. (2009)
found evidence of motor module merging and fractionation for
the more affected of two limbs in the same patient, in respect
to healthy controls. In our present work, interaction with the
robot did not consistently alter the patients’ original spatial
patterns. This result could support the choice of a robot-assisted
rehabilitation program, especially when a target task has been
identified and has to be repeated numerous times as part of an
intensive training. In fact, the rehabilitation literature emphasizes
that, while a great variety of movements should be considered
to generalize the effect of training (Schmidt, 1975), mastery of a
particular skill is increased if that skill is trained specifically. On
the other hand, if interaction with an external device can modify
muscle activation patterns, then non-therapeutic outcomes may
also come to light due to the triggering of unwanted modules.
In our patients, the spatial synergies proved robust across both
experimental conditions, however, and this finding supports the
use of robots in rehabilitation training protocols designed to
improve motor functionality in specific gestures. Abilities trained
by means of robotic protocols might also be transferred to free
movements because the modules recruited are much the same.
Though this issue needs to be tested in a complete rehabilitation
protocol, previously-published findings may provide theoretical
support for our results.

Temporal Components
Referring to Figure 7, we can see noteworthy differences in
the correlations on the mean temporal components, aligned
on the phases of the movement. Only 4/7 pairs of centroids
featured positively correlated mean temporal components, while
1 showed no correlation at all, and 2 even showed negative
correlations along the phases of the movement. While the lack of
correlation for cluster 7 was expected (because its composition
differed between the two conditions), a negative correlation
also emerged in the recruiting of flexor synergy, which is an
important pattern in the performance of a HTMM. Furthermore,
the flexor synergy was recruited slightly earlier during the robot-
assisted movement, and decreased toward the end, replaced by
other patterns that refined the approach of the hand to the
mouth. In patients’ free movements, this synergy was elicited
in a later phase, when the available range of motion had nearly
been reached. The robot probably helped patients to complete
the main pattern relating to the execution of the task in its
earlier stages by providing support for the limb. If this finding
is confirmed in a larger sample of patients, it would suggest
that robots can have therapeutic effects on patients (or promote
correct proprioception at least). The overall magnitude of the
modules was slightly modified, even if the difference was not
statistically significant. In fact, 5/7 modules were elicited to a
lesser extent during interaction with the robot, indicating that
the set-up was probably helping patients a little, enabling a
reduction in their EMG activity. Only two patterns did not
obey this rule. One was the flexor synergy, which increased in
interaction with the robot (probably because the robot facilitated
the start of the movement by providing support). The other
concerned a co-contractile activation occurring at the end of the
movement to stabilize the motor pattern. As underscored when
the outcomes were discussed in terms of spatial synergies, our
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findings on the temporal components partially reflect the results
of previous studies. Although the present study did not entail a
full rehabilitation trial, the results are comparable with the report
from Tropea et al. (2013), who suggested that robot therapy
may induce partial modifications of the temporal components
(largely depending on the motor capability of each patient).
Such modifications, involving a slight (statistically insignificant)
reduction in the magnitude of the modules, may be due to the
support provided by the robot. Similar results were found in
healthy individuals by Coscia et al. (2014), when the temporal
components were scaled proportionally to the level of support
provided by the device. Pellegrino et al. (2018), on the other
hand, found changes in shoulder muscle activations, especially
in movements toward the body. If such results are confirmed in
further studies, wemight conclude that interaction with the robot
does not modify the modules underlying a movement, but may
affect how themodules are exploited, especially in terms of timing
and magnitude.

Directional Tuning
Our findings concerning mean directional tuning correlated
partially with the results of our analysis on the temporal
components. The two assessments differ in that, while the
temporal components relate to movement phases, directional
tuning captures correlations with intrinsic body coordinates
or Cartesian coordinates (i.e., articular angles, as proposed in
d’Avella et al., 2006). The directional tuning analysis presented
in Figure 8 thus takes into account the fact that some patients
did not complete the gesture. Several differences emerged in
the mean tuning parameter, though they were less remarkable
than those affecting the temporal components, and they never
reached statistical significance. The most important difference
regards the flexor synergy, which was elicited at a slightly
later stage in free movements than with robotic assistance. A
similar result was found on centroid 3, which was elicited for
lower articular coordinates (earlier in the movement), indicating
that robotic support slightly anticipated the recruiting of this
module. Cluster 7 is not directly comparable between the
two experimental conditions due to the different mean spatial
synergies involved, but in robot-assisted movements it was
recruited at a considerably later stage in the movement. Lesser
effects are observable on the synergies in clusters 2, 4, and
6. Finally, cluster 5 was anticipated in the recruitment tuning
associated with robot-assisted movements, corresponding to less
elbow flexion than in freemovements, and slightly more shoulder
flexion. This anticipation is consistent with the expected role
of the brachioradialis as an elbow flexor at the start of the
movement. Few published studies analyzed the directional tuning
of muscle synergies, some of which identified marked changes
in the temporal components. Applying an 8-target training
paradigm to healthy people and neurological patients before and
after a course of robotic rehabilitation, Tropea et al. (2013) found
that the spatial synergies were elicited with different Cartesian
tunings (showing greater differences than in the present study).
Such changes may be attributed to the effects of the therapy (not
shown in this study) or to the different strategies used to control
the robot.

Impact on Future Work
The module-based approach used here to assess the effects of
human-robot interaction produced some interesting insight on
the control of movements. Standard approaches, such as clinical
scales, provide a semi-quantitative picture of patients’ status,
whereas the muscle synergy approach enabled us to investigate
how motor modules were organized in their spatial and temporal
components. Motor module analysis offers a perspective on
neuromuscular diseases that differs from those of clinical scales
and kinematics because it investigates a higher hierarchical
level of motor production, shedding light on neuromuscular
coordination rather than on output motor variables alone. Since
the aim of robotic rehabilitation is to improve motor functioning
by inducing a reshaping of the neural pathways underlying a
movement, muscle synergy should be seen as a primary outcome
for assessing the effects of neuromotor robotic training.

Robotic training programs for the upper limbs have
concentrated so far on functional tasks, or on a variety of
Cartesian directions of motion (Carpinella et al., 2012). Such
paradigms are now well established and have proved effective on
patients, but they usually employ muscle synergies as assessment
tools rather than as design elements. The potential of muscle
synergies might be used instead to identify patient-specific
patterns to retrieve and train with the robot’s support. Different
modes of assistance could be fine-adjusted to train specific
synergies, or promote the use of meaningful modules. Better still,
judging from the limited findings available in the literature, the
timing and magnitude of the available spatial synergies might be
modified to make the best of a given patient’s potential. In the
light of the results of this and previous studies, training might
presumably also be improved by promoting muscle-synergy-
based protocols coupled with other control paradigms. To give
an example, patients could be exposed to different mechanical
environments, as in Pellegrino et al. (2018), who reported
differences in the spatial and temporal patterns of patients with
multiple sclerosis compared with healthy controls. Extending this
concept might lead to the generation of customized force fields to
elicit or train specific motor synergies.

To conclude, the present study partially confirms previous
reports in the literature, suggesting that interaction with robotic
devices may induce slight alterations in the spatial motor
modules of stroke survivors, as seen in healthy people. These
modules may be elicited differently, however, and the timing of
their activation or their directional tuning may change to some
degree. All these points may point to opportunities for testing
rehabilitation paradigms based on the coordination of motor
synergies.

Limitations
The present study has some limitations. The first concerns the
small sample of patients tested. A larger sample would be needed
to give more solidity to the cluster centroids identified. Our
results therefore cannot be generalized to a variety of gestures
or to the whole repertoire of synergies available to the sample
of stroke survivors enrolled in this study. Second, our sample
also included patients with very different motor impairments,
partially weakening the strength of our conclusions. Considering
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the very limited knowledge available on the topic, and especially
on robotic set-ups applied to patients, and bearing in mind that
many previous studies suffered from the same limitations relating
to different motor impairments and small sample sizes, the
present findings seem worthy of interest. Third, the comparisons
proposed here were limited to a single session of acquisitions,
and only 8 muscles were monitored. That said, the aim of the
present study was to test the potential of the muscle synergy
approach for assessing patients’ EMG patterns during robotic
training. Our preliminary results suggest that the method could
be used to examine patients interacting with robots equipped
with other control schemes too, based on assist-as-needed or
admittance paradigms, for instance, or devices based on not-
actuated gravity support. Of course, further refinements of the
analytical method may be needed before muscle synergy analysis
can be applied to such paradigms because motor tasks may
suffer from “fractionation” of the laws of motion (due to the
assistance provided), making synergy extraction and matching
more difficult, especially when severely impaired patients are
involved. Such issues will be investigated in further studies.

CONCLUSION

This paper addresses human-robot interaction in stroke
survivors, discussed in the framework of muscle synergies. The
synergies extracted were clustered and matched to enable the
assessment of their spatial and temporal components, and their
directional tuning in relation to intrinsic body coordinates. The
analysis identified 7 clusters reflecting a sample of 22 patients.
Each cluster was characterized to associate a physiological role
with the centroid identified. The main finding of this work
is that, in our set-up, interaction with the robot very slightly
altered the muscle synergies’ centroids (spatial components),
temporal components, and directional tuning. Synergy analysis
brought out limited, but observable differences between the two
experimental conditions conditioned (free and robot-assisted
HTMM). This effect is noteworthy because it confirms the
feasibility of inducing neuroplasticity in stroke survivors with
chronic motor impairments by designing and fine-tuning
rehabilitative protocols devised to train muscle synergies. Future
studies will further investigate this issue.
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