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Hepatitis A virus (HAV) belongs to the family Picornaviridae. It is the pathogen of

acute viral hepatitis caused by fecal-oral transmission. RNA viruses are sensed by

pathogen-associated pattern recognition receptors (PRRs) such as Toll-like receptor 3

(TLR3), retinoic acid-inducible gene I (RIG-I), and melanoma differentiation-associated

gene 5 (MDA5). PRR activation leads to production of type 1 interferon (IFN-α/β),

serving as the first line of defense against viruses. However, HAV has developed various

strategies to compromise the innate immune system and promote viral propagation

within the host cells. The long coevolution of HAV in hosts has prompted the development

of effective immune antagonism strategies that actively fight against host antiviral

responses. Proteases encoded by HAV can cleave the mitochondrial antiviral signaling

protein (MAVS, also known as IPS-1, VISA, or Cardif), TIR domain- containing adaptor

inducing IFN-β (TRIF, also known as TICAM-1) and nuclear factor-κB (NF-κB) essential

modulator (NEMO), which are key adaptor proteins in RIG-I-like receptor (RLR), TLR3 and

NF-κB signaling, respectively. In this mini-review, we summarize all the recent progress

on the interaction between HAV and the host, especially focusing on how HAV abrogates

the antiviral effects of the innate immune system.
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INTRODUCTION

HAV is a positive-strand RNA virus lacking a lipid envelope. As a member of the Picornaviridae
family, it has strong tropism for the human hepatocyte like hepatitis C virus (HCV). It is the sole
member of the genus Hepatovirus. Enveloped HAV (eHAV) were formed by hijacking cellular
membranes, thereby virion were protected from antibody-mediated neutralization (Feng et al.,
2013). The HAV genome is ∼7,500 nucleotides in length and contains a 5′-untranslated region
(UTR), a single open reading frame (ORF) and a 3′-UTR with a polyadenosine tail. The large
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single open-reading frame encodes a polyprotein that consists
of the structural genes (VP1 to VP4, i.e., P1 segment) and the
non-structural genes (2A−2C, i.e., P2 segment and 3A−3D, i.e.,
P3 segment) (Martin and Lemon, 2006; Debing et al., 2014).
The investigators use high-resolution X-ray structures to observe
HAV mature virus and empty particle. The structures of the
two particles are very similar, both forming an icosahedral
protein capsid. However, the HAV mature virus has the small
viral protein VP4, whereas the empty particle contains only
the uncleaved precursor, VP0 (Wang et al., 2015b). A putative
receptor for HAV, the HAV cellular receptor (HAVcr-1), is
an integral membrane mucin-like glycoprotein with unknown
natural function and was identified in African green monkey
kidney cells (AGMK) (Kaplan et al., 1996). The human homolog
(HuHAVcr-1), otherwise known as T-cell immunoglobulin and
mucin-containing domain protein 1 (Tim-1), was also identified
and characterized as a human HAV receptor (Feigelstock et al.,
1998). In addition, Tim-3 and HAV-specific immunoglobulin
A (IgA)-HAVcr-1 association facilitated virus entry into target
cells (Dotzauer et al., 2000; Sui et al., 2006; Tami et al.,
2007).

In this review, we summarize recent advances in the
understanding of induction and suppression of innate antiviral
responses by the hepatitis A virus.

POLYPROTEIN PROCESSING OF HAV

The large ORF encodes a single ∼2230 amino acid polyprotein
that is cleaved into 10 mature proteins primarily by a single
virally encoded proteinase, 3Cpro and unknown cellular protease
(Schultheiss et al., 1994; Gosert et al., 1996; Debing et al., 2014).
Six non-structural proteins, each involved in replication of the
HAV RNA, are derived from the P2 and P3 segments of the
polyprotein: 2B, 2C, 3A, 3B, 3Cpro, and 3Dpol. Interestingly,
3A is targeted to mitochondrial membranes (Yang et al., 2007).
3Cpro is a cysteine protease, while 3Dpol is the viral RNA-
dependent RNA polymerase and the catalytic core of the replicase
complex (McKnight and Lemon, 2018). The 3ABC processing
intermediate is unique among picornaviruses in that it is
relatively stable and has distinct activities in particle assembly
(Probst et al., 1998). Processing at the 3CD site is more efficient
than at 3AB and 3BC, and 3CD is proteolytically active like 3ABC
(Probst et al., 1998).

INDUCTION OF INNATE ANTIVIRAL
RESPONSES BY HAV

Hepatocytes, the primary cell type targeted by HAV for infection,
express both retinoic acid activated gene I (RIG-I)-like RNA
helicases (RLRs) and Toll-like receptors (TLRs) (Li et al., 2005).
However, the nucleotide-binding domain and leucine-rich repeat
(NLR) proteins play an extensive role in the innate immune
and inflammatory reactions, and have not been well-studied in
the liver and hepatitis virus infection (Qu and Lemon, 2010).
RIG-I, melanoma differentiation- associated gene 5 (MDA5)
and Toll-like receptor 3 (TLR3) are pathogen-associated pattern

recognition receptors, which identify the presence of RNA viruses
and stimulate signaling pathways that lead to induction of an
antiviral state (Meylan and Tschopp, 2006). RIG-I seems to be the
major recognition receptor that recognizes the 5′-triphosphate
group (5′-ppp) and blunt end of short (low molecular weight)
RNAs with high affinity (Hornung et al., 2006; Pichlmair
et al., 2006; Jiang et al., 2011; Luo et al., 2011). In contrast,
MDA5 appears to be the major recognition receptor that senses
the internal duplex structure of long (high-molecular-weight)
double-stranded (ds)RNAs with a weaker affinity (Takeuchi and
Akira, 2010; Kato et al., 2011). LGP2 (Laboratory of Genetics
and Physiology 2), a cytoplasmic DExH helicase that shares the
domain structure of RIG-I and MDA-5 with the exception of
the caspase-recruitment domain (CARD), has been reported to
exert both positive and negative effects on RIG-I and MDA5
regulation in different cell types in response to different viruses
(Venkataraman et al., 2007; Satoh et al., 2010; Kato et al.,
2011; Childs et al., 2012; Malur et al., 2012). TLR3 contains an
extracellular leucine-rich repeat (LRR) motif, a transmembrane
(TM) domain and an intracellular Toll and IL-1R (TIR) domain
(Bell et al., 2003; Leulier and Lemaitre, 2008). Compared with
short dsRNAs, long dsRNAs are more potent inducers of TLR3
signaling (Bouteiller et al., 2005; Okahira et al., 2005; Leonard
et al., 2008; Liu et al., 2008; Pirher et al., 2008; Botos et al., 2009).
Currently known RNA-sensing pathways are summarized in
Figure 1. MDA5 and TLR3 is likely to sense the genomic RNA of
HAV. As the HAV genome possesses the covalently linked 5′ VPg,
it is not likely to be sensed by RIG-I, which generally recognizes
RNAs with free 5′ triphosphate (Qu and Lemon, 2010). The
function of LGP2 during HAV infection was not investigated in
details. Changes in the intrahepatic transcriptome during acute
HAV infection in experimentally infected chimpanzees were
observed by microarray assay. With the exception of CXCL10
(IP10) and interferon-stimulated gene 20 kDa protein (ISG20),
both of which are dually regulated by IFN-α/β and IFN-γ, low-
level ISG induction is restricted to the first weeks of infection
and subsides before peak HAV RNA abundance in the liver
(Lanford et al., 2011). The early type I IFN response diminishes
before peak replication of HAV within the liver and the onset
of liver injury, when a type II IFN (IFN-γ) response becomes
evident (Lanford et al., 2011; Zhou et al., 2012; Feng et al.,
2015).

Plasmacytoid dendritic cells (pDCs) are “professional” type
I IFN-producer cells that play a central role in host antiviral
immunity (Gilliet et al., 2008; Reizis et al., 2011). pDCs mainly
sense viruses via endosomal TLR7 and TLR9 (Lund et al., 2003),
but they can also sense viral nucleic acids in the cytosol (Feng
et al., 2015). pDCs require either close contact with cells infected
with HAV or exposure to concentrated culture supernatants
for IFN-α production. Enveloped virions (eHAV), and not viral
RNA exosomes, are responsible for IFN-α induction. Although
membrane envelopment protects HAV against neutralizing
antibodies, it also facilitates an early but limited detection of HAV
infection by pDCs (Feng et al., 2015). During acute hepatitis A
(AHA), non-HAV-specific memory CD8+ T cells are activated
by the IL-15 produced by HAV-infected cells. These CD8+ T
cells exert innate-like cytotoxicity by activating receptors NKG2D
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FIGURE 1 | The overview of RNA-sensing pathway. TLR3 senses dsRNA and utilizes the adaptor TRIF to activate IRF3 and NF-κB. Upon recognition of dsRNA, RLRs

are recruited by the adaptor MAVS located on the outer membrane of the mitochondria, leading to the activation of several transcription factors including IRF3, IRF7,

and NF-κB. DExD/H-Box helicases other than the RLRs and some RNA-binding proteins have emerged as important for innate immune signaling and control of virus

infection. DDX1-DDX21-DHX36 forms a complex with TRIF. DDX3 has been shown to associate with RIG-I, MDA5, and MAVS. DDX60 has been shown to bind RIG-I,

whereas DHX9 has been shown to interact with MAVS. DHX33 has also been shown to bind MAVS, as well as the NLR NLRP3, to induce inflammasome assembly.

DHX15 may serve as a sensor for viral RNA in the cytosol to signal NLRP6-mediated interferon responses in a MAVS-dependent manner, independent of

inflammasome formation.

and NKp30 without TCR engagement. Innate-like cytotoxicity of
CD8+ T cells is associated with liver injury in AHA (Kim et al.,
2018).

HAV EVADES INNATE ANTIVIRAL
RESPONSES BY TARGETING RLRS/TLRS
PATHWAY

HAV was shown to restrain double-stranded RNA (dsRNA)-
induced IFNβ gene expression by intervening in RIG-I-mediated
IRF3 activation (Brack et al., 2002; Fensterl et al., 2005). Both
RIG-I andMDA-5 employ an adaptor protein calledMAVS that is
localized to the outer mitochondrial membrane via a C-terminal
transmembrane domain (Seth et al., 2005). Once activation by
RIG-I or MDA-5, MAVS recruits and activates TANK-binding
kinase 1 (TBK1) and NF-κB kinase ε (IKKε). TBK1 and IKKε

are both accountable for the phosphorylation of IFN regulatory
factor 3 (IRF-3), eventually causing IRF-3 dimerization, nuclear
translocation, and induction of IFNβ transcription.

HAV proteins 3ABCpro and 2B have been described to
interfere with MAVS, thereby disturbing the innate cellular
antiviral defense mechanism (Yang et al., 2007; Paulmann et al.,
2008). The 3ABC cleavage of MAVS requires both the protease
activity of 3Cpro and a transmembrane domain in 3A that

targets 3ABC to the mitochondria (Yang et al., 2007). The non-
structural HAV 2B protein partially colocalizes with MAVS and
interferes with the activities ofMAVS and the TBK1/IKKε kinases
(Paulmann et al., 2008). However, the exact mechanism of this
protein still needs to be investigated in detail.

The TLR3 signaling pathway is mediated exclusively by the
TRIF adapter, which is recruited to TLR3 by the interaction
between the TIR domains of the two molecules (Oshiumi et al.,
2003; Yamamoto et al., 2003). TRIF is proteolytically cleaved
by 3CD but not by the mature 3Cpro protease or the 3ABC
precursor that degrades MAVS. 3CD-mediated degradation of
TRIF depends on both the cysteine protease activity of 3Cpro

and the downstream 3Dpol sequence but not 3Dpol polymerase
activity (Qu et al., 2011).

NEMO has been shown to link the TLR3-IRF3 pathway (Zhao
et al., 2007). 3Cpro-mediated proteolytic cleavage of NEMO is
directly involved in inhibition of IFN-β transcription (Wang
et al., 2014).

The key innate immune signaling proteins degraded by HAV
proteases are illustrated in Figure 2.

NLR PROTEINS IN HAV INFECTION

Nod-like receptors (NLRs) can play an important role in
the host response to infections by RNA viruses by both
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FIGURE 2 | HAV evades innate antiviral responses by degradation key innate immune signaling proteins. A virally encoded, catalytically active polyprotein processing

intermediate, 3ABC, degrades MAVS. A second catalytically active 3Cpro processing intermediate, 3CD, cleaves the TLR3 adaptor protein TRIF. 3Cpro can mediate

the degradation of NEMO.

promoting and suppressing innate immunity and inflammation
(Wen et al., 2013; Jha and Pan-Yun Ting, 2015). Of note,
activated RIG-I has been shown to associate with apoptosis-
associated speck-like protein containing CARD (ASC) to form
an NLR-independent RIG-I inflammasome complex that induces
caspase-1 activation, leading to IL-1β and IL-18 release (Poeck
et al., 2010; Pothlichet et al., 2013). Kupffer cells and monocytes
express high levels of NLRs, which play important roles in
mediating inflammatory responses and modulating liver injury
(Dixon et al., 2013). Exposure to either eHAV or HAV neither
initiates nor blocks NLRP3 inflammasome assembly or IL-1β
secretion by THP-1 cells, a human monocyte cell line derived
from an acute monocytic leukemia (Feng and Lemon, 2018).
Nonetheless, NLRX1 positively regulates very early (3 h) RLR-
induced cytokine responses to HAV in PH5CH8 cells, which
are T antigen-transformed adult human hepatocytes. NLRX1
promotes IL-6 and other early cytokine responses by inhibiting
activation of the dsRNA-induced PKR. Suppression of PKR
activation allows for early, virus-induced increases in synthesis
of the IRF1 protein, which plays a key role in regulating these
cytokine responses in hepatocytes (Feng et al., 2017).

THE ROLE OF INNATE IMMUNITY IN HOST
RANGE RESTRICTION

The host range of HAV is believed to be restricted to humans
and non-human primates. The range of the HAV host species
mainly depends on its capacity to evade MAVS- mediated type
I IFN responses, which have revealed an unexpected role for
MAVS signaling in virus-mediated liver injury (Hirai-Yuki et al.,
2016). Type I IFNs, but not type II IFNs, are a major barrier
for cross-species infection by HAV. MAVS-dependent, RLR-
induced IFN responses play a much more important role in
restricting HAV replication than TLR3 in vivo, at least in mice,
despite the fact that HAV targets adaptors in both signaling
pathways for degradation (Feng and Lemon, 2018). Since the
sequences targeted in human MAVS and TRIF are not conserved
in small mammals, the failure of HAV to infect these species
could derive from inability to disrupt IFN responses (Hirai-Yuki
et al., 2016). RLR signaling through MAVS in the mitochondria
and mitochondria-associated membranes (MAM) results in the
expression of both type I and type III interferons, whereas
RLR signaling through MAVS in the peroxisome induces the
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expression of type III interferon alone (Odendall et al., 2014;
Bender et al., 2015; Chow et al., 2018). Although type I IFNs
clearly play a pivotal role in restricting HAV infection in
mice (Hirai-Yuki et al., 2016), type III IFNs are predominantly
detected in cultured human hepatocytes infected with HAV
(Feng and Lemon, 2018). Human hepatocytes produce and
respond robustly to type III interferon as noted above, but
mouse hepatocytes express negligible amounts of the receptor
for type III IFN and respond poorly to type III interferon
(Hermant et al., 2014; Chow et al., 2018). Studies are needed in
Ifnlr1−/− mice lacking functional expression of the type III IFN
receptor.

ANTIVIRAL RESPONSE OF DEXD/H-BOX
HELICASES OTHER THAN THE RLRS

Some DExD/H-Box Helicases may act as bona fide RNA
sensors, while others may instead act as accessory factors
required to promote innate immune signaling through one of
the aforementioned RNA-sensing pathways (Figure 2). DDX3
has been shown to bind poly(I:C), VSV RNA, and abortive
RNA products from HIV replication (Gringhuis et al., 2017).
DHX9 was proposed as an RNA sensor during viral infection
in myeloid dendritic cells (Zhang et al., 2011b). A cytosolic
complex formed by DDX1, DDX21, and DHX36 has been
reported to sense dsRNA in cDCs in order to induce interferons
in response to poly(I:C), IAV, and reovirus (Zhang et al., 2011a).
DHX33 may act as a sensor for cytosolic PAMP RNA and
activate the NLRP3 inflammasome (Mitoma et al., 2013). DHX15
may diverge in its signaling of innate immune responses in
different cell types (Lu et al., 2014; Mosallanejad et al., 2014;
Wang et al., 2015a). DDX60 has been shown to be required
for RIG-I- mediated signaling in response to dsRNA or virus
infection (Miyashita et al., 2011; Oshiumi et al., 2015). Small
nuclear ribonucleoprotein U5 subunit 200 protein (SNRNP200),
typically involved in spliceosome processes, associates with
TBK1 to activate IRF3 during SeV infection (Tremblay et al.,
2017). The interaction between HAV and these DExD/H-
Box Helicases needs to be investigated in detail in future
research.

ANTIVIRAL RESPONSE OF OTHER
RNA-BINDING PROTEINS

When activated by binding to dsRNA, oligoadenylate synthetase
(OAS) catalyzes the conversion of ATP into 2′-5′-linked
oligoadenylates (2–5A), which in turn become second
messengers that bind to and activate RNase L. RNase L functions
to cleave ssRNA, and the products of this cleavage can cooperate
to trigger RIG-I- and MDA5-dependent interferon induction
(Malathi et al., 2007, 2010). Protein kinase R (PKR) functions
to suppress translation in virus-infected cells by inhibiting
eukaryotic translation initiation factor 2A (eIF2A) (Hull
and Bevilacqua, 2016). The interferon-induced protein with
tetratricopeptide repeats (IFIT) family of proteins can inhibit

viral translation and sequester viral RNA (Fensterl and Sen,
2015). LRRFIP1 activates β-catenin to enhance transcriptional
activation of Ifnb1 (Yang et al., 2010). A DNA-dependent
activator of IRFs (DAI), otherwise known as ZBP1/DLM-1, can
activate RIPK1/3/ MLKL (Thapa et al., 2016) and the NLRP3
inflammasome (Kuriakose et al., 2016). High-mobility-group
box (HMGB) proteins have been implicated in the signaling
of interferon and proinflammatory responses to control
virus infection (Ugrinova and Pasheva, 2017). The interplay
between some RNA-binding proteins and RLRs pathways
is shown in Figure 2. The effect of the aforementioned
RNA-binding proteins on HAV hasn’t been studied
systematically. It would be intriguing to further investigate
the function of these RNA-binding proteins during HAV
infection.

CONCLUSIONS AND PERSPECTIVES

In HAV-infected cells, viral dsRNA replication intermediates
are sensed by cytosolic RLRs (RIG-I and MDA5) as well as
endosomal TLR3. However, adaptor proteins MAVS and TRIF
and the IκB kinase complex’s regulatory subunit, NEMO, are
degraded by viral proteinases. This disrupts signals extending
from RLRs and TLR3 such that little or no activated IRF3 and
NF-κB reach responsive promoters in the nucleus, and therefore,
little or no IFNs are produced. Despite many interesting
features, HAV remains a largely understudied virus on a
fundamental biological level. Future studies on the interactions
between HAV and the host immunological system will shed
light on the pathogenesis and therapeutic approaches of this
virus.
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