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In this paper, we propose a novel principal bundle model and apply it to the image

denoising problem. This model is based on the fact that the patch manifold admits

canonical groups actions such as rotation. We introduce an image denoising algorithm,

called the diffusive vector non-local Euclidean median (dvNLEM), by combining the

traditional nonlocal Euclidean median (NLEM), the rotational structure in the patch space,

and the diffusion distance. A theoretical analysis of dvNLEM, as well as the traditional

nonlocal Euclidean median (NLEM), is provided to explain why these algorithms work. In

particular, we show how accurate we could obtain the true neighbors associated with the

rotationally invariant distance (RID) and Euclidean distance in the patch space when noise

exists, and how we could apply the diffusion geometry to stabilize the selected metric.

The dvNLEM is applied to an image database of 1,361 images and a comparison with

the NLEM is provided. Different image quality assessments based on the error-sensitivity

or the human visual system are applied to evaluate the performance.

Keywords: non-local means, diffusion geometry, principal bundles, patch size, image denoising

1. INTRODUCTION

A widely accepted approach to model the low dimension structure is by considering the manifold;
that is, we assume that the collected dataset, while might be of high dimension, is located on a low
dimensional manifold [1–3]. Under this assumption, several algorithms were proposed toward this
goal, like isomap [1], locally linear embedding [4], eigenmaps (EM) [2], diffusion maps [3], Hessian
LLE [5], vector diffusion maps [6, 7], non-linear independent component analysis or empirical
intrinsic geometry [8, 9], alternating diffusion [10, 11], horizontal diffusion maps [12] etc.

One example of such model is the patch manifolds. It is well-known that the non-local mean
(NLM) [13] algorithm leads to a better edge preservation [14], and this improvement is directly
related to the diffusion process on the nonlinear geometric structure [15]. One can further consider
the rotational structure of patch spaces to denoise images [16–21]. Two patches are viewed the
same or called rotationally invariant, if they are the same up to rotation. While the patch space
model and diffusion-based algorithms have been successfully applied to different fields, such as the
inpainting problem [22–25] and the medical imaging problem [19, 26, 27], however, to the best of
our knowledge, a companion theoretical study is lacking. It is not clear how we could correctly find
the neighbors when noise exists, and why the patch size should be neither too big nor too small and
thus why patch space approaches are better than pixel-based ones.

In this paper, we focus on the idea of manifold learning via the principal bundle approach
and its associated theoretical analysis. We model the patch space by a principal bundle so that
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rotationally invariant patches are modeled by fibers
diffeomorphic to SO(2). We further show that with high
probability, which depends on the patch size and the noise level,
one could accurately determine the neighborhood from the
noisy patches (Theorem 3.2 and Remark 3.3). We apply it to
the image denoising problem and propose an image denoising
algorithm, dvNLEM. Although the results indicate that a suitable
chosen patch size enhance the neighbor search accuracy, the
error is inevitable. We then further stabilize the above theoretical
results by applying the diffusion distance (DD), which has
been theoretically proved to be robust to noise [28]. Based on
the theoretical understanding, we consider the diffusive vector
nonlocal Euclidean median (dvNLEM) algorithm that combines
the rotational alignment, the DD, and the median. In the
dvNLEM, we consider the RID where the RID of two rotationally
invariant patches is 0. To reduce the noise influence, the RID
is further stabilized by the DD. With the DD, we determine
the neighboring patches, and evaluate the median value of
the central pixels of all neighboring patches. To overcome this
computational intensity, we use scale-invariant feature transform
(SIFT) features as a relaxation step to estimate the neighbors.

2. MATHEMATICAL MODEL

For the i-th pixel on a given grayscale image I ∈ R
N×N and an

odd integer q, we associate it with a patch Pi of size q×q centerd at
the i-th pixel. If the i-th pixel is close to the boundary of I, we pad
the image by 0 and generate the corresponding patch. Denote the

set of all patches asXI : = {Pi}
N2

i=1 ⊂ R
q2 . To express the notation

in a compact format, we stack the columns of the matrix I into

a vector I∨ ∈ R
N2
, where the ((ℓ − 1)N + 1)-th to the (ℓN)-th

entries in I∨ is the ℓ-th column of I, where ℓ = 1, . . . ,N. We
represent the image I and patches Pi in the matrix form and the
column form interchangeably.

For a clean image I(c), we represent its noisy image as

I(n) : = I(c) + σξ , where ξ ∼ N (0, I) is Gaussian noise, (1)

the i-th clean patch as P
(c)
i and its associated noisy patch as

P
(n)
i = P

(c)
i + σξi, (2)

where ξi is additive Gaussian white noise with mean 0 and
standard deviation 1.

Definition 2.1. The rotationally invariant distance (RID) between
two patches, Pi and Pj is defined as

dRID(Pi, Pj) : = min
O∈SO(2)

‖Pi − O.Pj‖, (3)

where ‖ · ‖ denotes the ℓ2 norm and O.Pj means rotating the patch
P by O.

By identifying patches up to rotation, we make the following
assumption. First, recall the definition of a fiber bundle with
group structure G [29].

Definition 2.2 (Fiber bundle with group structure G). Let F and
M be manifolds. A fiber bundle E with fiber F over M consists of
a topological space E together with a map π :E : → M satisfying
the local triviality condition. Let G be a Lie group, for example the
rotation group SO(2). Let the map . :G× F → F be a smooth left
action of F. That is, the map (the action of G) . :(x, g) 7→ g.x from
G× F to F satisfies

e.g = g for all g ∈ G, (4)

where e is the neutral element of G and

(gh).x = g.(h.x) for all x ∈ M and g, h ∈ G. (5)

This group G is often called the gauge group or the transition
group. If the fiber is equal to the structure group, then
(π ,E,M,G) is called a principal G bundle. See Definition 5.7
in Gallier [30]. This definition is equivalent to the definition
of principal bundle requiring G as a right action on E. See,
Propositions 5.5 and 5.6 in Gallier [30]. Suppose P : R

2 → R

represents a patch. For O ∈ SO(2) and s ∈ R
2 expressed by a

column vector, we define the action on P as

(O.P)(s) = P(O−1s). (6)

This is a left group action since for any O1,O2 ∈ SO(2),

O2.(O1.P)(s) = O1.P(O
−1
2 s) (7)

= P(O−1
1 O−1

2 s) = (O2O1).P(s)

Since each fiber, including a patch and its rotated patches, can be
identified as S1, and SO(2) is diffeomorphic to S1, the patch space
XI could be viewed as a principal SO(2) bundle.

Assumption 2.3 (SO(2)-principal bundle). The patch space XI is
a finite subset of the fiber bundle E with π :E → M and a left
SO(2) group action so that the quotient space XI/SO(2) is a finite
subset of the corresponding base manifold.

Note that the SO(2) action preserves the fiber that is
diffeomorphic to SO(2). In Supplementary Material, we further
discuss how patch spaces naturally carry principal bundle
structures.

3. THEORETICAL ANALYSIS

The theoretical findings below show that with high probability,
the clean patch neighbors could be “accurately” evaluated from
the noisy patch neighbors with respect to RID. Lemma 3.1 gives
that the square distance between non-overlapping patches is
distributed according to a non central chi-squared distribution.
We approximate the square distance between overlapping
patches by a chi-squared distribution. Theorem 3.2 gives the large
deviation bound for the RID, which allows us to take the RID into
account to denoise the image. If we omit the rotation action, then
we obtain the large deviation bound for the Euclidean distance
(Corollary 3.4), which explains why the traditional NLM/NLEM
algorithms work.
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We introduce the following sets associated with P
(n)
i and P

(n)
j ,

and O ∈ SO(2):

KO(O) : = {(a, b)| ξi(a) = [O.ξj](b)} (8)

whose cardinality is the size of the overlapping pixels;

KS(O) : = {(a, b)| ξi(a) = [O.ξj](b); ξi(b) = [O.ξj](a)} (9)

which is associated with the “swapped” pixel indices after
rotation; and

KI(O) : = {(a, a)| ξi(a) = [O.ξj](a)} (10)

which is associated with the overlapped pixels with “identical
indices” after rotation and depends on O. By definition, KI(O) ⊆
KS(O) ⊆ KO(O). Note that KI(O) has only at most one element.
For the NLEM, KI(O) and KS(O) are both empty.

Lemma 3.1. For any two patches P
(n)
i and P

(n)
j and a fixed O,

denote P = P
(c)
i − O.P

(c)
j and X =

‖P
(n)
i −O.P

(n)
j ‖2

2σ 2 .

1. If P
(n)
i and P

(n)
j are disjoint, then X ∼ χ2

q2
( ‖P‖

2

2σ 2 ) is a noncentral

χ2 random variable with q2 degrees of freedom and non-

centrality parameter ‖P‖2

2σ 2 .

2. If P
(n)
i and P

(n)
j overlap, then

E (X) =
‖P‖2

2σ 2
+ q2 − |KI|, and (11)

Var (X) =
2

σ 2
(‖P‖2 −

∑

(a,b)∈KO\KI

P(a)P(b)) (12)

+ 2q2 + |KS| + |KO| − 4|KI|.

Moreover, X can be approximated by Y ∼ cχ2
f
, where

c =
Var (X)

2E (X)
and f =

2E2 (X)

Var (X)
. (13)

Since 2σ 2(q2 − |KI|) > 0, ‖P
(n)
i − O.P

(n)
j ‖2 is a biased estimator

of ‖P
(c)
i − O.P

(c)
j ‖2. When two patches overlap, depending on

the clean patches’ structure, the RID estimator from the noisy
patches might be biased toward overlapped patches. Thus, if the
overlapping patches are included in the denoising process, the
search of the nearest neighboring patches might be biased to the
“local patches” that have overlaps.

Theorem 3.2. Suppose P
(c)
i and P

(c)
j are disjoint patches and

σq < ǫ. If dRID(P
(c)
i , P

(c)
j ) < ǫ, then

Pr
(

dRID(P
(n)
i , P

(n)
j ) ≥ 2ǫ

)

≤ (14)

exp






−







√

ǫ2

σ 2
−

q2

4
−

√

q2

4
+

d2
RID

(P
(c)
i , P

(c)
j )

4σ 2







2





which decreases as q decreases. If dRID(P
(c)
i , P

(c)
j ) > 2ǫ, then

Pr
(

dRID(P
(n)
i , P

(n)
j ) < ǫ

)

≤ (15)

exp



−





2σ 2q2 + d2
RID

(P
(c)
i , P

(c)
j )− ǫ2

4σ
√

σ 2q2 + d2
RID

(P
(c)
i , P

(c)
j )





2



which decreases as q increases.

Remark 3.3. For overlapping patches,
‖P

(n)
i −O.P

(n)
j ‖2

2σ 2 can be

approximated by Y ∼ cχ2
f
where c and f are given by (13).

By direct computation, one can see c decreases and the degree
of freedom f increases as q increases. This suggests similar
conclusion as in Theorem 3.2 due to the behaviour of chi-squared

distributions. That is, if dRID(P
(c)
i , P

(c)
j ) < ǫ, the tail-area

probability Pr
(

dRID(P
(n)
i , P

(n)
j ) ≥ 2ǫ

)

decreases as q increases; if

dRID(P
(c)
i , P

(c)
j ) > 2ǫ, then Pr

(

dRID(P
(n)
i , P

(n)
j ) < ǫ

)

decreases as

q increases.
The above observations suggest that we need to choose a suitable

patch size q to rule out unwanted patches and keep desired patches.
In practice, we found that an odd value q between 7 and 15 leads
to a good performance, but the optimal q depends on the image. If
O is the identity, the same argument explains why the ℓ2 distance
between two clean patches could be well approximated by noisy
patches.

Corollary 3.4. Suppose P
(c)
i and P

(c)
j are disjoint patches and

σq < ǫ. If ‖P
(c)
i − P

(c)
j ‖ < ǫ, then

Pr
(

‖P
(n)
i − P

(n)
j ‖ ≥ 2ǫ

)

≤ (16)

exp






−







√

ǫ2

σ 2
−

q2

4
−

√

q2

4
+

‖P
(c)
i − P

(c)
j ‖2

4σ 2







2





which decreases as q decreases. If ‖P
(c)
i − P

(c)
j ‖ > 2ǫ, then

Pr
(

‖P
(n)
i − P

(n)
j ‖ < ǫ

)

≤ (17)

exp



−





2σ 2q2 + ‖P
(c)
i − P

(c)
j ‖2 − ǫ2

4σ
√

σ 2q2 + ‖P
(c)
i − P

(c)
j ‖2





2



which decreases as q increases.

The quantity σ 2q2 could be understood as the “total energy”
of the added noise, and the condition σ 2q2 < ǫ2 means that the
RID estimated from two noisy patches is controlled by the square
root of the energy of the noise. With this energy viewpoint, we
could apply the technique developed in El Karoui and Wu [28].
However, we carried out the proof in the above way to emphasize
the main purpose of the RID, and to find the true neighbors and
the dependence on the patch size.
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Before closing this section, we mention that even if by
choosing suitable patch size we could more accurately find
the neighbors, the error is inevitable. Thus, to further find
correct neighbourhoods, we need more tools to stabilize the
found neighbors. In this work, we apply the diffusion geometry
framework to stabilize the RID for the image denoising purpose,
which is detailed in the next section.

4. DIFFUSIVE VECTOR NON-LOCAL
EUCLIDEAN MEDIAN ALGORITHM

Take a clean grayscale image denoted as I(c) ∈ R
N×N normalized

to be of mean 0 and standard deviation 1. Take the associated
noisy image I(n), the noisy patches P

(n)
i with σ > 0. The

goal of the denoising problem is finding an algorithm that will
recover I(c) from I(n) as accurately as possible. Based on the
theoretical analysis shown in section 3, we now discuss the
dvNLEM algorithm.

4.1. dvNLEM Algorithm
Theorem 3.2 essentially says that evenwhen noise exists, we could
still find the true neighbors with the RID with high probability; in
other words, it is possible to find wrong neighbors. Based on the
principal bundle model, we apply the diffusion map and the DD
to “filter out” wrong neighbors and improve the overall accuracy.
The idea is to combine the fiber bundle structure underlying the
patch space with the diffusion map (DM). With the RID, define

the affinity matrixW ∈ R
N2×N2

by

Wij = exp(−d2
RID

(P
(n)
i , P

(n)
j )/ǫ), (18)

where i, j = 1, . . . ,N2 and ǫ > 0 is the pre-determined
bandwidth. With the affinity matrix W, the graph Laplacian and
the associated transition matrix. A = D−1W where D is the
degree matrix which is diagonal and defined as Dii =

∑N2

j=1Wij.

By taking the topm eigenvalues and eigenvectors of the transition
matrix, we then embed each patch into a low-dimensional space
via the DM (24) and calculate the DD to evaluate the true

neighbors of each patch. For each patch P
(n)
i , we identify its

N1 ∈ N nearest neighbors in the sense of DD and denote this set
as NDD(i). Based on the robustness property of the DM [28, 31],
this step acts as an additional filtering procedure to dismiss the
patches in the initial nearest neighbors set determined by the
RID. The denoised image, denoted as Ĩ(dvNLEM) ∈ R

N×N .

If we identify a patch P
(n)
i its N1 ∈ N nearest neighbors

associated with the RID instead of DD, denoted as NRID(i), and
denoise the noisy image by the Euclidean median, we obtain
an intermittent denoising algorithm, which we call the vector
nonlocal Euclidean median (vNLEM) and denote the denoised
image as Ĩ(vNLEM).

4.1.1. Numerical Techniques to Speed Up the

Computation–Search Window
While the proposed algorithm seems a straightforward
generalization of the NLM/NLEM/NLPR, there are numerical
issues we have to handle.

Obtaining the pairwise distances between all pairs of
patches is computationally intense and time-consuming. One

practical solution is to only consider a pre-assigned number of
nearest neighbors. By doing so, we simultaneously reduce the
computational time and the memory required to saveW.

We further limit our algorithm to consider only patches
within a given search window centered at the reference patch. For

a patch P
(n)
i , we consider the search window of size (2N2 + 1) ×

(2N2 + 1) centered at the patch

Si = {P
(n)
j | the difference of i and j is bounded by N2 },

where N2 ∈ N so that (2N2 + 1) × (2N2 + 1) > N1. With this
search window, we form the affinity matrix by the following:

Wij =

{

exp(−d2
RID

(P
(n)
i , P

(n)
j )/ǫ), for P

(n)
j ∈ Si

0, otherwise
. (19)

4.1.2. Numerical Techniques to Improve the RID

Evaluation–SIFT
Finding the RID between two given patches incurs huge
computational costs. Also, performing a direct numerical
rotation might lead to a non-negligible error and deviate the
estimated RID. To alleviate these two troubles and facilitate
the derivation of the affinity matrix, we use the scale invariant
feature transform (SIFT) [32] to approximate the RID. We could
consider the central moments [16, 17, 19], the curvelet transform
[21], or the Fast Affine TemplateMatch [33] algorithm, to capture
the rotational feature. To simplify the discussion, we focus on the
SIFT algorithm.

The particular feature we extract by SIFT is the orientation
feature. For each pixel, based on the local image gradient
direction, an orientation angle is calculated and assigned. We
use this orientation to approximate the RID distances between

the patches. Denote the orientation for the center of P
(n)
i as

θ
(n)
i . The relative angle between P

(n)
i and P

(n)
j achieving the

RID is approximated by θ
(n)
i − θ

(n)
j . We then rotate P

(n)
j by

R
θ
(n)
i
.R−1

θ
(n)
j

.P
(n)
j , where Rθ ∈ SO(2) means the rotation by θ

degrees. Next, we perform the exhaustive search over a small

range centered around the estimated angular relationship θ
(n)
i −

θ
(n)
j :

θij : = argmin

θ∈{θ : |θ−(θ
(n)
i −θ

(n)
j )|<θl}

‖UkP
(n)
i − Rθ .UkP

(n)
j ‖, (20)

where Uk : R
q2 → R

k2q2 is the chosen upsampling operator that

increases the sampling rate of the patch P
(n)
i by k ∈ N times and

θl > 0 is the parameter chosen by the user. The use of Uk is to
improve the accuracy of numerical rotation. Hence the estimated
RID is

d̃RID(P
(n)
i , P

(n)
j ) : = ‖P

(n)
i − Rθij .P

(n)
j ‖. (21)

We use the following affinity weights in (25):

W′
ij = exp(−d̃2

RID
(P

(n)
i , P

(n)
j )/ǫ), where j ∈ Si. (22)
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4.1.3. The Proposed dvNLEM Algorithm
The proposed algorithms after the above modifications are
summarized in Algorithm 1. We slightly abuse the terminology
and also call the modified denoising scheme in (25) based on the
estimated DD the dvNLEM and denote Ĩ(dvNLEM) as the denoised
image by dvNLEM. Similarly, we call the modified denoising

Algorithm 1 Diffusive vector non-local Euclidean median
algorithm.

Input : Noisy image I(n), patch size q ∈ N, the number of
nearest neighbors N1 ∈ N, the search window size N2 ∈ N,
the kernel bandwidth ǫ > 0, the DM embedding dimension
m ∈ N, the diffusion time t > 0, and the power 0 < γ ≤ 1.
Output : Denoised image Ĩ.
[pre-1] Pad the image array with a border of ⌈q/2⌉ pixels.

[pre-2] Create the patch spaceX (n)
: = {P

(n)
i }N

2

i=1 ⊂ R
q2 , where

the center of P
(n)
i is I(n)(i).

[pre-3] Find SIFT orientation feature for each patch and form
an affinity matrix W using these orientations from the search
window Si of size (N2 + 1) × (N2 + 1) according to equation
(19).
[vNLEM. Step 1] For each i, find N1 nearest neighbours from
Si according toW.
[vNLEM. Step 2] Find the more accurate estimation of RID,

d̃RID in (21), and form NRID(i) that contains ⌈N1/2⌉ patches

that are closer to patch i according to d̃RID, where ⌈x⌉ means
the smallest integer greater than or equal to x ∈ R.
[vNLEM. Step 3] For each i, set Ĩ(vNLEM)(i) to be the center
point of

argmin
P∈Rq×q

∑

P
(n)
j ∈NRID(i)

W′
ij‖P − Oij.P

(n)
j ‖γ . (23)

[dvNLEM. Step 1] Form the eigenvalue decomposition of

D−1W, where D ∈ R
N2×N2

is the diagonal matrix determined

by Dii =
∑N2

j=1Wij.

[dvNLEM. Step 2] Embed P
(n)
i into R

m by

8
(m)
t (P

(n)
i ) = (λt2φ2(i), . . . , λ

t
m+1φm+1(i)) (24)

and evaluate the DD between patches.

[dvNLEM. Step 3] For each P
(n)
i , findN1 nearest neighbours in

terms of DD.
[dvNLEM. Step 4] Find ⌈N1/2⌉ closest patches with respect to

d̃RID among the N1 patches from the previous step to form
NDD(i).
[dvNLEM. Step 5] For each i, set Ĩ(dvNLEM)(i) to be the center
point of

argmin
P∈Rq×q

∑

P
(n)
j ∈NDD(i)

W′
ij‖P − Oij.P

(n)
j ‖γ . (25)

scheme in (23) based on the approximated RID (22) the vNLEM
algorithm and denote Ĩ(vNLEM) as the denoised image by vNLEM.

5. IMAGE QUALITY ASSESSMENT

In the literature, the denoising performance is commonly
evaluated by the “error-based” measurements, such as the signal-
to-noise ratio (SNR) or the peak SNR. However, it is well
known that those error-based quantities might capture only
partial information of the image quality. In this study, we
consider different image quality assessment (IQA) methods that
additionally take different aspects of the image into account, like
the human visual system, to evaluate the performance of different
denoising algorithms. IQA is an important subfield in image
processing. The goal is to find an index quantifying “how good”
an image is that is suitable for different scenarios. We consider
measures of two major. The first category consists of objective
measures based on a chosen theoretical model without taking the
human visual system (HVS) into account. The second category
consists of objective measures based on models taking the HVS
into account. Below we summarize these measures. Denote the
clean image as I ∈ R

N×N . We are concerned with how close the
noisy observation I + σξ is to I, or the denoised image Ĩ is to I.

The SNR and peak-signal-to-noise ratio (PSNR) belong to the
first category.

While SNR and PSNR are widely applied IQA’s in the field,
they do not necessarily tell us all aspects of howwell the denoising
methods performed. For example, they do not readily capture the
edge preserving capability of an algorithm.

To capture the edge preservation performance, we consider
the third measurement, the Sobolev index [34], which also

belongs to the first category. Let Î and ˆ̃I denote the discrete
Fourier transforms of I and Ĩ, respectively. The Sobolev index of
order κ is then defined by the Sobolev norm, and is given by

SOB =

[

1

|�|2

∑

ω∈�

(1+ |ηω|
2)κ |Î(ω)− ˆ̃I(ω)|2

]1/2

, (26)

where � is the lattice of the frequency domain and ηω is the
two-dimensional frequency vector associated with ω ∈ �.

We further consider the earth mover’s distance (EMD) [35].
The EMD between two probability distributions µ and ν on R is
defined as

dOT(µ, ν) : =

∫

R

|fµ(x)− fν(x)| dx , (27)

where fµ(x) : =
∫ x
−∞ dµ is the cumulative distribution function

of µ and similarly for fν . We will evaluate the EMD to compare
how close the distribution of the estimated noise is to the added
noise.

While the above measurements have been widely applied in
different problems and provide useful information, it has been
well-accepted that they do not capture all aspects from the
perspective of image quality. In generally, it is not statistically
consistent with human observers [36].
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Several metrics have been designed in the past decades to
faithfully take theHVS into account. Thesemetrics emphasize the
importance of luminance, the contrast, and the frequency/phase
content. We consider the state-of-art measurement the Feature
SIMilarity (FSIM) index [36] in this category. The FSIM is based
on the model that the HVS perceives an image mainly based on
its low-level features, such as edges and zero crossings, and it
separates the similarity measurement task into phase congruency
and gradient magnitude. Here we summarize the FSIM index.
Suppose the dynamical range of the image is R. The definition
of FSIM depends on the definition of the phase congruency and
gradient magnitude. The phase congruent of I at i, denoted as
PI(i), and the gradient magnitude of I at i, denoted as GI(i), are
defined in Zhang et al. [36]. Similarly, we can define PĨ(i) and

GĨ(i). The FSIM between I and Ĩ is defined as

FSIM(I, Ĩ) : =

∑N2

i=1 SL(i)Pm(i)
∑N2

i=1 Pm(i)
, (28)

where

Pm(i) = max{PI(i), PĨ(i)}, SL(i) : = SP(i)SG(i), (29)

SP(i) : =
2PI(i)PĨ(i)+ T1

PI(i)2 + PĨ(i)
2 + T1

, (30)

and

SG(i) : =
2GI(i)GĨ(i)+ T2

GI(i)2 + GĨ(i)
2 + T2

. (31)

Here, we follow [36] and choose T1 = 0.85 and T2 = 160. There
are several other measures of this kind in the field, and we refer
interested readers to Zhang et al. [36] and Wang et al. [37] for a
review of these indices.

6. NUMERICAL RESULT

We fix the following parameters for NLEM, vNLEM, and
dvNLEM for a fair comparison. Fix q = 13. We build 13 × 13
patches around each pixel of the noisy image. We chose ǫ =

(16.5)2, the number of nearest neighbors as N1 = 100, the size
of the search window for creating the initial affinity matrix is
determined by N2 = 10; that is, 21 × 21 neighbours in each the
search window. The θl in (20) is set to 30 degrees, the upsampling
operatorUk is implemented by the bicubic interpolation, and k is
set to 2. After building the transition matrix, we choose m = 30
to evaluate the DM and DD. We select γ = 0.1 for the final
denoising step. The Matlab code is available via request.

To compare our results with those of the NLEM algorithm, we
also preformed the NLEM denoising with ǫ = (6.5)21 with the
same patch size q = 13 and search window 21 × 21. The kernel
bandwidth is chosen to give the best performance for the NLEM
algorithm in terms of SNR and PSNR.

1The code is available in https://www.mathworks.com/matlabcentral/fileexchange/

40624-non-local-patch-regression

In Table 1 we report the different IQA metrics, including
SNR, PSNR, RMS, SOB, OT, and FSIM discussed previously as
well as the computational time, by running the three denoising
algorithms on 1,361 sample images of size 512 × 5122. There
are 98 images for animals, 143 images for flowers, 52 images
for fruits, 115 images for landscapes, 450 images for faces, 419
images for manmade structures, and 44 miscellaneous images.
The SOB metric is applied to the image recovery error. This
measure particularly reflects the amount of edge information
wiped out due to the denoising process. Therefore, the scheme
with a lower SOB index performs the better. For the other indices,
the higher the index is, the better the performance is. Under
the null hypothesis that the performance of two algorithms
is the same, we reject the hypothesis by the Mann–Whitney
U-test with the p value less than 10−4. Note that based on
the overall statistics, VNELM and dvNLEM outperform NLEM
statistically significantly on all IQA metrics. On the other hand,
we cannot distinguish the performance of vNLEM and dvNLEM
statistically, except on the FSIM index. This result suggests that
dvNLEM could better recover features sensitive to HVS.

The execution times based on 17 images are 501.8 ± 203.3,
1489.8 ± 26.1, and 1619 ± 34.8 s for NLEM, vNLEM, and
dvNLEM, respectively. This execution time is obtained on a PC
with 8 Gb of RAMusing a single core from Intel Corei7 CPUwith
a clock speed of 3.7 GHz running on Microsoft Windows 7.

6.1. Application to the Cytometry Problem
In this last example, we apply the vNLEM and dvNLEM to
the third-harmonic-generation (THG) microscopy image. The
goal of the THG microscopy-based imaging cytometry is to
automatically differentiate and count different types of blood
cells with less blood ex vivo, or even in vivo [38]. One of the
many strengths of THG is reflecting the granularity of leukocytes,
which allows us to apply image processing techniques for the
automatic classification. However, the raw data is noisy most of
time, and a denoising technique is needed. We now apply the

TABLE 1 | Summary statistics over 1,361 images of different denoising algorithms

evaluated by different image quality assessment metrics.

NLEM vNLEM dvNLEM

PSNR (dB) 18.78 ± 2.92∗# 19.49 ± 2.72∗ 19.62 ± 2.81#

SNR (dB) 13.33 ± 2.78∗# 14.04 ± 2.36∗ 14.18 ± 2.49#

RMS×100 (a.u.) 5.77 ± 1.58∗# 5.35 ± 1.33∗ 5.24 ± 1.36#

SOB×100 (a.u.) 5.9 ± 1.63∗# 5.45 ± 1.37∗ 5.35 ± 1.4#

OT×100 (a.u.) 0.59 ± 0.4∗# 0.32 ± 0.16∗ 0.35 ± 0.22#

FSIM×100 (a.u.) 88.33 ± 2.98∗# 89.64 ± 2.13∗† 90.03 ± 2.13#†

∗#p < 10−8. † p < 10−6. au, the arbitrary unit.

2The images are collected from :

• Caltech-UCSD Birds-200-2011 collection at : http://www.vision.caltech.edu/

visipedia/CUB-200-2011.html

• Digital Image Processing, 3rd ed, by Gonzalez and Woods at : http://www.

imageprocessingplace.com/DIP-3E/dip3e_book_images_downloads.htm

• USC-SIPI image database at: http://sipi.usc.edu/database/
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NLEM, vNLEM, and dvNLEM to the THG sectioning image of
the whole blood smear at 1 hour post blood sampling. The data is
provided by Professor Tzu-Ming Liu, Faculty of Health Sciences,
University of Macau. The result is shown in Figure 1. Note that
since we do not have the “ground truth” for a comparison, we
only show the FSM for the quality evaluation purpose. While the
result is encouraging, a systematical study of the problem, and
a systematic comparison of the proposed algorithm with existing
algorithms is needed. The result will be reported in a future work.

7. CONCLUSION AND DISCUSSION

In this paper, a principal bundle structure is applied to model
the patch space and describe the rotational structure, based on
which a theoretical analysis of the RID is provided to explain
how accurate we could obtain the true neighbors when noise
exists. Based on the well studied DD, the RID could be further
stabilized when noise exists; that is, we nonlinearly filter out
the wrongly found nearest neighbors. The theoretical result also
serves as an explanation of why NLM and NLEM work well. The
theoretical results lead to an image denoising algorithm, vNLEM
and dvNLEM, by combining the traditional NLEM, the rotational
structure in the patch space, and the DD. Numerically, we apply

the commonly applied SIFT as a relaxation step to estimate the
rotational alignment. The numerical simulation provides positive
evidence of the potential of the proposed algorithm. The potential
of the proposed model, algorithms, and the associated theory
are statistically supported by a large image database composed
of 1,361 images. Below, we discuss the limitations of the current
work and several future works.

First, the computational complexity needs to be further

improved. Note that the main difference between the
vNLEM/dvNLEM and the NLEM algorithms is the chosen

metric. In the vNLEM, there is no fast algorithm yet to determine

the nearest neighbors with respect to the RID, to the best of
our knowledge. Although we have delegated the problem of

evaluating the RID distance to that of evaluating the SIFT
distance, the numerical performance still has a significant room

for improvement.
Second, although the manifold model has been widely

accepted in the field, and the DD applied in dvNLEM is based on
themanifold structure, it is certainly arguable if in general a patch
space could be well approximated by a manifold. On one hand,
we might need different models, and hence different metrics,
for different kinds of images. For example, while the RID helps
reduce the dimension of the patch space of a “structured” image,

FIGURE 1 | The cytometry image. Since the “ground truth” is not available for a comparison, we only show the FSIM for the quality evaluation purpose. (A) Original

image. (B) NLEM, FSIM = 0.947. (C) vNLEM, FSIM = 0.967. (D) dvNLEM, FSIM = 0.97.
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its deterministic nature might render it unsuitable for analyzing
a “texture” image, since the texture features are stochastic in
nature. In short, it might be beneficial to take the metrics
designed for the texture analysis into account. On the other
hand, we could consider to segment the given noisy image
into different categories, and run the vNLEM on each category.
This segmentation step is related to the “multi-manifold model”
considered in the literature [39, 40], and could be understood as
a generalization of the search window method used in this paper.

Third, we should consider different structures in the denoising
procedure. In addition to taking the rotation group to fibrate the
patch space, it is an intuitive generalization to further consider
other groups, like the dilation group or even the general linear
group. Also, while the current work focuses on grayscale images,
the proposed algorithm has the potential to be generalized to
colored images. In colored images, more structures, like the color
space, will be taken into account. Furthermore, in practice we
would expect to have more than one image from the practical
problem. Under the assumption that the noise behavior is similar,
it is of great interest to see if we could further improve the
denoise performance by denoising multiple available images
simultaneously.

Fourth, note that the proposed algorithm could be understood
as aiming to reduce the error introduced to the clean image.
However, it has been widely argued in the IQA society that
simply reducing the error might not lead to the optimal result
in all scenarios. It might be more important to take the human
perception into account, if the images are meant to be watched
by a human being. While the proposed vNLEM provides a
satisfactory result by the FSIM evaluation, note that the “features”
considered in the FSIM are not used in the algorithm. It is
reasonable to expect that by taking these features into account,
we could further improve the result.

Fifth, in this paper we focus only on comparing our algorithm
with the NLEM and study the corresponding theoretical
properties and the geometric structure of the underlying patch
space model. For the image denoising purpose, there are several
other image denoising algorithms available in the field, and
we will do a systematic comparison in a upcoming report.
For example, while not specifically indicated, the widely used
algorithm BM3D [41] and its generalizations, for example [42],
and BPFA are also based on the patch spacemodel.We could view
the sparsity structure used in BM3D and the Bayesian approach

in BPFA as a different way to design a “metric” to compare
different patches.

Last but not least, although we compared the algorithm on a
big image database and reported the statistical significance, note
that statistical significance does not imply practical significance.
Particularly, the included images are not exhaustive. A more
systematic comparison is thus needed. Furthermore, we do
not claim that the proposed denoise algorithm is better than
any of the state-of-the-art image denoising algorithm, like
the BM3D. In practice, the overall performance depends on
the problems encountered, and the specific applications, like
the cytometry problem, and a systematic comparison with
other algorithms will be discussed in a upcoming research
report.
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