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Definition of the reservoir permeability field according 
to pressure measurements on wells 

with the use of spline function
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Abstract. The problem of reservoir permeability identification based on known well pressures under 
conditions of single-phase fluid filtration is considered in the article. The permeability field is identified in 
the spline function class from the solution of the inverse coefficient problem for the filtration equation. The 
problem of identification is reduced to the problem of minimizing the residual function, having the form 
of a sum of squares of the difference between the pressure values known from measurements at the wells 
and obtained with the help of a numerical model. Minimization of the residual function is carried out by 
the Levenberg-Marquardt method. The solutions of model problems of permeability identification for a 
two-dimensional reservoir, penetrated by a system of production and injection wells, are presented. The 
calculated permeability fields are close to the true fields. The example of a problem with errors in pressure 
measurements shows the stability of the solution.
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Introduction
In solving tasks of single-phase fluid filtration, field 

of the reservoir permeability must be known. In practice, 
permeability is usually determined only at individual 
points of the reservoir by hydrodynamic methods or by 
the results of core studies. In this paper, the permeability 
field is identified in the class of spline functions from the 
solution of the inverse coefficient tasks for the filtration 
equation. Methods for solving inverse coefficient tasks 
are divided into explicit and implicit tasks (Sun, 1994). 
In explicit methods, the values of the parameters are 
determined from the solution of the nonlinear system 
of equations (Golubev et al., 1978; Zinoviev, 1984). In 
this case, the pressure field must be known. If pressure 
values are known only at the wells, the parameter values 
are determined only in the wellbore regions. 

In implicit methods, iterative procedures are used 
to determine the values of parameters of the entire 
reservoir, in which only pressure values are used in wells 
(Neuman, Carrera, 1986; Khairullin et al., 2006; Elesin 
et al., 2009; Khairullin et al., 2017). Unlike the proposed 
approach, the reservoir parameters are represented in the 
form of piecewise-constant functions.

The use of spline functions is one of the parametrization 
methods (Sun, 1994), and in this case for the obtained 
permeability field, no further processing and correction 
is required in most cases and it can be easily and 
unambiguously converted to any grid. To solve inverse 
tasks, in addition to the data needed to solve a direct 
hydrodynamic task, additional information is used. In 
the present work, such information is taken to be the 
bottomhole pressure, which is known along with well 
production rates. The flow rate is used to solve a direct 
task for determining the pressure field. Known wellhead 
pressures are included in the residual function, in the 
process of minimization of which the field of reservoir 
permeability is determined. To minimize the residual 
function, the classical Levenberg-Marquardt method is 
used. The stability of the solution to the errors in pressure 
measurements is investigated.

Formulation of the task
Single-phase stationary filtration in a two-dimensional 

layer is described by the equation (Aziz, Settari, 1982; 
Basniev et al., 1986):

, 	 (1)

where s = kh/µ – coefficient of hydroconductivity, k –
permeability, h – thickness of the reservoir, µ – viscosity 

of the liquid, p – pressure, , Qi, (xi, yi) – 
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flow rate and coordinates of the i-th well, M – number 
of wells, d(xi, yi) – delta function. For equation (1), the 
boundary conditions are given:

 	
(2)

where Г1+Г2=Г – boundary of the reservoir W,  – the 
normal vector to the reservoir boundary, w – normal 
component of the filtration rate.

Equation (1) with boundary conditions (2) is solved 
numerically. To approximate the spatial variables, 
the method of control volumes on a rectangular grid 
is used. The resulting system of linear algebraic 
equations is solved by the method of conjugate gradients 
with preconditioning as an incomplete Kholesky 
decomposition (Golub, Van Loan, 1999; Hill, 1990; 
Larabi, De Smedt, 1994).

The determination of the pressure field from 
solution (1)-(2) is a direct task. The inverse task is to 
determine permeability values in all control volumes at 
known pressure points at individual points. To obtain 
a unique solution of the inverse task, it is necessary 
that the number of identifiable parameters does not 
exceed the number of known pressure values. Since in 
solving practical tasks the number of control volumes 
covering the design area (layer) is much larger than 
the number of known pressures, two approaches are 
commonly used to reduce the number of identifiable 
parameters. In the first approach, the calculated region 
is divided into zones, each of which is characterized by 
a constant value of permeability. The second approach 
uses different interpolation options. 

First, the permeability values at the interpolation 
nodes are determined, and the remaining values are 
obtained by interpolation throughout the calculation 
area. In this paper, unlike the second approach, in 
the course of solving the inverse task, the field of 
permeability in the form of a spline function is directly 
restored (Ashkenazy, 2003; Harder, Desmarais, 1972), 
the number of determining parameters of which 
corresponds to the number of wells with known 
bottomhole pressure.

Interpolation by a spline function
Let us assume that the values of a certain quantity 

ai are known at the points Pi(xi,yi), i=1, n, of a two-
dimensional region. The task of interpolation is to 
construct a spline function φ(x,y) (spline surface) 
defined on the whole region so that its values at the 
points Pi coincide with the values ai. Points are called 
interpolation nodes. Interpolation by a spline surface 
has a simple mechanical meaning. The spline surface 
is a model of an elastic thin plate bent under the action 
of external forces applied at points Pi. Finding such a 
spline surface is to solve the variational task of finding 

the minimum free energy of a thin plate. The spline-
surface equation has the form:

, 	 (3)

where . To determine coefficient 
ci, i=1,n+3, of spline function φ(x,y), it is necessary to 
solve the system of equations:

φ(xi,yi)=a, i=q, n,

For n > 3 there is solution to this system, and the 
solution is unique, if among the points (xi,yi), i=1,N, 
there are at least three points not lying on one line 
(Ashkenazy, 2003).

Method for solving the inverse task
A frequently used method for solving inverse 

coefficient tasks is to reduce them to the tasks of 
minimizing the residual function (Sun, 1994). In this 
paper, the residual function is constructed from known 
pressure values and has the form,

,
	

(4)

where K – the control vector, arguments of which  
, ki – permeability values at the spline 

interpolation nodes, pj , pj
* – pressure tasks, obtained 

as a result of solving equation (1), and known from the 
well measurements, M – the number of known pressure 
values. 

The minimization process is carried out in two stages. 
At the first stage, the permeability of the entire reservoir 
is considered constant and is determined in the process 
of minimizing the residual function by the gradient 
method (Panteleev, Letova, 2005). At each iteration of 
the gradient method, the permeability is recalculated 
using formula:

,

where g – gradient of the residual function, pitch r is 
determined by the golden section method. The resulting 
permeability value is then used as the initial value. At the 
second stage, the permeability values at the interpolation 
nodes are determined in the process of minimizing 
the residual function by the Levenberg-Marquardt 
method (Aziz, Settari, 1982; Dennis, Schnabel, 1988; 
Panteleev, Letova, 2005). The new parameter values at 
each iteration of the Levenberg-Marquardt method are 
calculated by the formula:

,

where E – the unit matrix, H = ATA – the approximate 
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matrix of the second derivatives,  – the 

sensitivity matrix, mn – the Marquardt parameter, n – the 
iteration number. The initial value of the Marquardt 
parameter is chosen one order of magnitude larger than 
the maximum singular number of the matrix H. If the 
residual function is decreased at the current iteration 
J(Kn) < J(Kn-1) the Marquardt parameter is halved, if the 
descending condition is violated, the Marquardt 
parameter is doubled until this condition is satisfied. 
Then, a new iteration is performed. Elements of the 
sensitivity matrix are computed numerically.

The process of minimizing the residual function was 
stopped by fulfilling one of two criteria: the achievement 
of a given accuracy with respect to pressure measurements 

 or the slow convergence of the 

minimization process J 

n – J 

n+1 < 0,01J 

n  during 3 
iterations.

Model tasks
In the model tasks, the exact solution is always 

known. This allows us to test the solution methods and 
evaluate the sufficiency of the initial data to obtain an 
exact solution. The model tasks of reservoir permeability 

identification are constructed as follows. First, the 
formation points (interpolation nodes) are selected in 
which permeability values are specified. From these 
values, the spline function (3) is constructed and the 
permeability field of the entire reservoir is calculated, 
which is taken as the true permeability field. Then, from 
the solution of Eq. (1) using the Peaceman formula 
(Peaceman, 1978), the pressure values at the wells are 
determined. After that, it is assumed that the permeability 
values are unknown and it is required to determine them 
in the process of minimizing the residual function (4) 
from known well pressures.

The model task 1
A rectangular reservoir with dimensions of 

2000 m × 2000 m with a capacity of 10 m, opened by 
5 injection wells and 20 producing wells is considered. 
The radius of the wells is 0.1 m. A pressure of 20 MPa 
is set at the boundary of the reservoir. The viscosity 
of the liquid is 10 mPas. The coordinates of the wells, 
their production rates and the given permeability 
values ktr are given in Table 1. The coordinates of the 
interpolation nodes of the spline function coincide 
with the well coordinates (Fig. 1). To approximate the 
filtration equation (1) with respect to spatial variables, 
the layer is covered by a square grid with a step of 40 m 
(2500 reference volumes).

Table 1. The values of flow rate and permeability (true and calculated) in the wells (model task 1)

No. x, m y, m Q(*), 
m3/day 

Permeability, mkm2  
ktr k1 k2 k3 k4 

1 300 300 40 0,1 0,100 0,099 0,100 0,100 
2 740 140 35 5 4,819 18,809 5,160 4,851 
3 1060 140 35 2 2,007 2,805 2,069 2,013 
4 1340 340 -100 0,6 0,600 0,581 0,598 0,600 
5 1620 180 45 4 3,978 7,966 4,176 3,997 
6 620 740 -150 0,75 0,750 0,725 0,747 0,750 
7 1020 540 60 0,8 0,801 0,814 0,803 0,801 
8 1420 660 50 2,4 2,405 2,665 2,433 2,407 
9 1860 740 30 2,8 2,791 4,718 2,908 2,802 
10 300 900 60 3 3,004 3,962 3,080 3,012 
11 500 1140 70 0,9 0,900 0,943 0,904 0,901 
12 940 1060 80 3,4 3,405 4,049 3,463 3,411 
13 1220 820 40 1,2 1,201 1,295 1,211 1,202 
14 1460 1140 -100 3 2,997 2,719 2,965 2,994 
15 1900 1020 40 0,88 0,880 0,986 0,890 0,881 
16 340 1460 50 5 5,028 6,993 5,190 5,043 
17 740 1540 -100 2,1 2,097 1,920 2,076 2,095 
18 1140 1300 60 2,4 2,403 2,636 2,427 2,406 
19 1420 1420 80 0,4 0,400 0,407 0,401 0,400 
20 1780 1540 -150 2 2,000 1,868 1,985 1,998 
21 220 1820 30 5 4,709 23,095 5,056 4,742 
22 700 1860 40 1,7 1,705 2,043 1,736 1,708 
23 1140 1660 45 0,2 0,200 0,202 0,200 0,200 
24 1300 1860 50 0,5 0,500 0,525 0,502 0,500 
25 1820 1820 40 0,1 0,100 0,101 0,100 0,100 
(*) Q<0 injection wells  , Q>0 producing wells . 
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Fig. 2. Calculated permeability field (Model task 1 without 
errors in pressure measurements)
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To study the stability of the solution, random errors 
εi were introduced into the pressure measurements. The 
results of solving the model task without error and with 
errors in pressure measurements are given in Table 1. 
The solution k1 was obtained without error in pressure 
measurements (εi = 0  MPa), solutions k2, k3, k4 were 
obtained in tasks with errors in pressure measurement 
|εi|<0,1 MPa, |εi|<0,01 MPa, |εi|<0,001 MPa respectively. 
When solving tasks, both with an error and without an 
error in measuring pressure, a predetermined accuracy of 
d = 0,01 МПа is achieved. The calculated permeability 
values without error in pressure measurements are close 
to the true ones (Fig. 2). 

From the results of the solution of tasks with 
errors in pressure measurements, it can be seen that 
with decreasing error, the values of the parameters 
approach the true values. Note that the maximum 
relative deviations in model task 1 are observed at the 
interpolation nodes with the maximum permeability 
values. This is explained by the fact that at the same 
values of flow rate, the value of bottomhole pressure at 
the well is more sensitive to a change in permeability at 
its small values, which is clearly seen from the Peaceman 

formula. Therefore, in order to achieve a given pressure 
accuracy, the small permeability values should be 
closer to the true values in comparison with the larger 
permeability values.

The model task 2
In the first model task, the true and calculated 

permeability fields were determined from the same 
nodes of interpolation of the spline function. The second 
model task differs from the first in that the true field of 
permeability was constructed from the interpolation 
nodes located at the nodes of the square grid with steps 
of 1000 m (9 knots). The coordinates of the interpolation 
nodes in solving the inverse task coincided with the well 
coordinates. The true permeability values obtained in 
the result of the solution of the second model task on 
wells without an error in pressure measurements are 
given in Table 2.

The corresponding permeability fields are shown 
in Fig. 3, 4. When solving the task, a predetermined 
accuracy of d = 0,01 MPa from measurements of 
pressure at the wells was achieved. The calculated 
permeability field is close to the true field.

Fig. 1. Producing (●) and injection (×) and injection wells 
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Table 2. Permeability values (true and calculated) at wells, mkm2 (model task 2)

No. ktr k No.  ktr k No.  ktr k
1 0,342 0,340 10 0,408 0,408 19 0,415 0,414
2 0,397 0,397 11 0,441 0,441 20 0,381 0,381
3 0,417 0,416 12 0,499 0,498 21 0,313 0,314
4 0,404 0,404 13 0,456 0,454 22 0,368 0,367
5 0,351 0,351 14 0,402 0,402 23 0,421 0,420
6 0,460 0,460 15 0,296 0,296 24 0,413 0,413
7 0,462 0,461 16 0,377 0,377 25 0,422 0,422
8 0,401 0,401 17 0,418 0,419    
9 0,300 0,302 18 0,458 0,457    
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Conclusion
The model tasks of identifying the permeability of 

a two-dimensional formation, opened by a system of 
producing and injection wells, were determined based 
on pressure measurements at wells under conditions of 
stationary single-phase fluid filtration. The permeability 
field was approximated by a spline function, constructed 
from the values at the wells. Unknown permeability 
values at the wells were determined in the process of 
minimizing the residual function using the Levenberg-
Marquardt method. When solving model tasks without 
errors in pressure measurements, the calculated 
permeability fields practically coincide with the given 
fields. For the task with errors in pressure measurements, 
the stability of the solution obtained is shown.
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Fig. 3. True permeability field (model task 2) Fig. 4. Calculated permeability field (model task 2)
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