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Diffusion MRI requires sufficient coverage of the diffusion wavevector space, also known

as the q-space, to adequately capture the pattern of water diffusion in various directions

and scales. As a result, the acquisition time can be prohibitive for individuals who are

unable to stay still in the scanner for an extensive period of time, such as infants.

To address this problem, in this paper we harness non-local self-similar information

in the x-q space of diffusion MRI data for q-space upsampling. Specifically, we first

perform neighborhood matching to establish the relationships of signals in x-q space.

The signal relationships are then used to regularize an ill-posed inverse problem related

to the estimation of high angular resolution diffusion MRI data from its low-resolution

counterpart. Our framework allows information from curved white matter structures to be

used for effective regularization of the otherwise ill-posed problem. Extensive evaluations

using synthetic and infant diffusion MRI data demonstrate the effectiveness of our

method. Compared with the widely adopted interpolation methods using spherical radial

basis functions and spherical harmonics, our method is able to produce high angular

resolution diffusion MRI data with greater quality, both qualitatively and quantitatively.

Keywords: diffusion MRI, upsampling, non-local means, neighborhood matching, regularization

1. INTRODUCTION

Infant brain development involves complex cerebral growth and maturation with the white matter
(WM) undergoing rapid myelination and synaptogenesis (Qiu et al., 2015). Diffusion MRI (DMRI)
has been widely employed to study this developmental process in vivo (Yap et al., 2011; Huang
et al., 2013; Dubois et al., 2014; Qiu et al., 2015). For instance, using diffusion tensor imaging (DTI),
researchers have observed an increase in the fractional anisotropy (FA) during the first few years of
life (Dubois et al., 2014; Qiu et al., 2015), implying more restriction on water movement owing to
the ensheathment of oligodendrocytes around the axons. Mean diffusivity (Dubois et al., 2014; Qiu
et al., 2015) and structural connectivity (Yap et al., 2011; Huang et al., 2013) have also been used to
study early brain development.

Existing brain development studies mainly rely on DTI. However, DTI utilizes a simple but
insufficient tensor model to characterize local fiber configurations. More sophisticated diffusion
models are needed to better characterize realistic configurations, such as crossing, fanning, and
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bending, and to tease out inter- and extra-cellular compartments
(Ning et al., 2015; Yap et al., 2016b; Ye et al., 2016). However,
unlike the tensor model that only requires 6 diffusion-weighted
(DW) images and one non-DW image, these advanced models
requires high angular resolution (HAR) DMRI data. The angular
resolution of DMRI data is determined by the number of
gradients used in data acquisition. Each gradient corresponds to
a point in q-space. A larger number of DW images allows the use
of advanced diffusion models but prolong the acquisition time,
which is prohibitive in clinical settings.

In practice, the window of opportunity for imaging infants
is short. To put this in perspective, in the Human Connectome
Project (HCP) (Van Essen et al., 2012) each individual was
allotted a DMRI scan time of about an hour. However, in the
Baby Connectome Project (BCP) (Fallik, 2016; Cao et al., 2017;
Howell et al., 2018), the tolerable scan time is well below 15
min. Infants are typically scanned without sedation while they are
asleep. The scanning may also need to be terminated prematurely
if the infant is awakened by the loud acoustic noise and sudden
vibrations caused by the rapid switching of gradient amplitude
and polarity (McJury and Shellock, 2000; Hutter et al., 2017). The
short acquisition time precludes a denser coverage of q-space,
limiting studies to simpler models such as the diffusion tensor.

To increase the angular resolution without inducing
additional acquisition time, post-acquisition angular upsampling
methods have been proposed. Tuch (2004) proposed to
interpolate q-space using spherical radial basis functions
(SRBFs). This method interpolates one point in q-space
by weighted averaging of angularly neighboring q-space
measurements. An alternative method is interpolation using
spherical harmonics (SHs) (Descoteaux et al., 2007). For each
voxel, this method first decomposes the DMRI measurements
into an SH coefficient vectors. DMRI measurements are then
reconstructed with the coefficients and the corresponding SH
basis. Despite the promising performance of these methods, one
major limitation is that only q-space information is considered
during interpolation, and valuable x-space information is
overlooked.

To overcome this limitation, in this paper, we propose to
harness joint x-q space information for angular upsampling
of DMRI data. For this purpose, we first establish signal
correspondences in x-q space using a robust neighborhood
matching technique described in Chen et al. (2016a, 2017a). We
then recover the HAR DMRI data in a regularization framework
based on the signal correspondences. Angular upsampling is
achieved by using the signal relationships in the joint x-q
space. Extensive experiments on synthetic and infant DMRI data
demonstrate that our method is able to recover HAR DMRI data
with a remarkably improved quality.

Part of this work has been reported in our recent conference
paper (Chen et al., 2017b). Herein, we present (1) New insights
into the application of our method to infant DMRI data; (2)More
detailed descriptions of the proposed method; (3) More complete
mathematical derivation details; (4) Comparison with the state-
of-the-art method, SH interpolation; (5) New experimental
results on synthetic data and infant data acquired at different time
points. None of these is part of the conference publication.

The rest of the paper is organized as follows. In Section 2,
we give a detailed description of the proposed method. In
Section 3, we demonstrate the effectiveness of the method with
both synthetic and real infant DMRI data. In Section 4, we
provide further discussion on this work. Finally, in Section 5, we
conclude this work.

2. METHODS

Each signal in the x-q space is associated with a voxel location in
the x-space and a set of diffusion gradient direction and strength
in the q-space. The signals are typically collected via a set of DW
images, each corresponding to a point in q-space. In this section,
we will first detail in how to establish the signal relationships in
x-q space and then clarify how to utilize these relationships to
regularize the ill-posed inverse problem associated with angular
upsampling of DMRI data.

2.1. Signal Correspondences in x-q Space
We utilize a neighborhood matching technique to determine
signal correspondences in x-q space. Neighborhood matching
techniques have a wide range of applications in medical image
analysis, including statistical group comparison (Chen et al.,
2015), atlas building (Yang et al., 2017; Saghafi et al., 2017;
Kim et al., 2017), fiber orientation estimation (Chen et al.,
2016b), and denoising (Chen et al., 2016a,c). Instead of using
the conventional methods designed mainly for x-space (Buades
et al., 2005; Chen et al., 2016c), we employ the method described
in Chen et al. (2016a, 2017a) for accurately establishing signal
correspondences in x-q space. The signal relationships in x-q
space is quantified using similarity weights (Chen et al., 2016a,
2017a). A large weight is assigned to two matching signals,
while the weight of two mismatching signals is low. To compute
the similarity weight, robust rotation-invariant features are first
computed for each node in x-q space. As in Chen et al. (2016a,
2017a), we represent the q-space using a graph and employ
a technique, named graph framelet transforms (GFTs), for the
feature computation. The resulting features are then employed to
compute the similarity weights, essentially establishing the signal
correspondence in x-q space. Figure 1 illustrates an overview of
this method. We flesh out these steps in the following.

2.1.1. Graph Representation for q-space
As illustrated in Figure 1, we use a graph G to represent the
q-space. For this purpose, we compute the adjacency weight
between each two nodes in q-space using two kernels for
diffusion gradient directions and strengths. In this way, the
geometric relationships in q-space are encoded in the graph G

where a large edge weight indicates two nodes sharing similar
gradient directions and diffusion weightings. Since q-space is
now represented as a graph, we can view the signals at each voxel
as a function f defined on the graph.

2.1.2. Feature Computation
We then compute the multi-scale features using GFTs. The key
idea of GFT is to slice the frequency spectrum of f in a multi-
scale fashion by using a set of masks. This involves how to
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FIGURE 1 | Overview. (Left) Representing the q-space sampling domain using a graph with affinity matrix determined by kernels for diffusion gradient directions and

strengths. (Middle) Feature computation using GFTs. (Right) Neighborhood matching.

perform convolutions on a graph. As clarified in Dong (2017), the
eigenvectors and eigenvalues of graph Laplacian are the Fourier
spectrum and basis of one graph. Therefore, the convolution
can be defined in the transform domain by slicing the Fourier
spectrum using a mask. In this way, the graph framelet analysis
transformW up to level L and mask R can be defined as

α : = Wf : = {αl,r : = Wl,rf : (l, r) ∈ BL,R}, (1)

whereBL,R:={(1, 1), (1, 2), . . . , (1,R), (2, 1), . . . , (L,R)} ∪ {(L, 0)}
and Wl,r is a matrix representing the GFT operator associated
with l and r.

We then have the feature vector for graph node k as φ[k] : =
{αl,r[k] : (l, r) ∈ BL,R}. GFT has three major advantages: (1)
Due to the multi-scale nature, it provides rich characterizations
of the signal information; (2) As proven in Yap et al. (2016a);
Dong (2017), the GFT feature is rotation-invariant, allowing the
neighborhood matching in the curved domain. (3) As shown in
Equation (1), GFT is linear and thus computationally efficient.

2.1.3. Neighborhood Matching in x-q Space
The resulting GFT features are then employed for neighborhood
matching. We define the similarity weight as a Gaussian function
of GFT feature distance, i.e.,

w[k; l] = GGFT(||φ[k]− φ[l]||). (2)

For the x-q space neighborhood matching in DMRI data, we
extend Equation (2) with the consideration of spatial location and
diffusion-weighting variations. The new form of Equation (2) is

w[i, k; j, l] = GGFT(||φi[k]− φj[l]||)Gb(
√
bk −

√
bl), (3)

where i and j are the indices of two spatial locations;
bk is the b-value for the gradient with index k. Through

neighborhood matching, similarity weights are assign to paired
nodes in x-q space, ultimately establishing dense node-to-node
correspondences.

2.2. Angular Upsampling
We use the x-q space data relationships determined in the
previous section to guide data upsampling in the q-space. In
general, recovering the high angular resolution (HAR) data from
the low angular resolution (LAR) data is an ill-posed inverse
problem. Solution can however be feasible by imposing structure
via harnessing prior information to reduce the dimensionality of
the problem. Our approach uses the signal correlation in the x-q
space to help reduce the complexity of the problem by imposing
that the reconstructed signal should be smooth in a non-local
sense. That is, neighboring points in the product space of the
signal space and the x-q space should be reconstructed using
similar values. Unlike the commonly used x-space regularization
(Coupé et al., 2013), which takes into account spatial correlation,
x-q space regularization allows correlation across DW images
collected using different gradient directions and strengths to be
considered. This is fitting when considering the fact that WM
structures might be curved and hence causing rapid changes
within a DW image.

We formulate the angular upsampling problem in a
regularization framework and define our objective function as

ǫ2(x) =
λ

2
‖Ax− y‖22
︸ ︷︷ ︸

Data Fidelity Term

+
1

4

∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]‖Ri,kx− Rj,lx‖22

︸ ︷︷ ︸

Regularization Term

, (4)
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where x and y are two vectors representing the HAR and LAR
data, respectively; A is a q-space downsampling operator; Ri,k

is an operator that extracts the diffusion signal associated with
index (i, k). The penalty function consists of a data fidelity term
and a regularization term based on x-q space neighborhood
matching. The data fidelity termwell preserves the information of
original LAR data, while the regularization term encourages that
each signal to be represented by its matching signals, essentially
establishing the non-local smoothness (Protter et al., 2009).

2.3. Optimization
Tominimize (4), we compute the derivative and equate it to zero:

0 =
dǫ2(x)

dx

= λA⊤(Ax− y)+
1

2

∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l](Ri,k − Rj,l)

⊤

(Ri,k − Rj,l)x

= λA⊤(Ax− y)+
1

2

∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRi,kx

−
1

2

∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRj,lx

−
1

2

∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

j,lRi,kx

+
1

2

∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

j,lRj,lx. (5)

Based on the facts that the neighborhood is symmetric (i.e., if
(j, l) ∈ V(i, k), then (i, k) ∈ V(j, l)) and the weights are symmetric
(i.e., w[i, k; j, l] = w[j, l; i, k]) (Protter et al., 2009), we have

∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRi,kx

=
∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

j,lRj,lx

∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

j,lRi,kx

=
∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRj,lx. (6)

Equation (5) can be simplified using (6), giving

0 = λA⊤(Ax− y)+
∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRi,kx

−
∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRj,lx. (7)

Equation (7) can be solved directly but involves the inversion
of a very large matrix, therefore we choose instead to use fixed-
point iteration to solve the problem, as suggested in Protter et al.

(2009). If we let xn be the solution at iteration n, the following can
be proven to be convergent (Protter et al., 2009):

0 = λA⊤(Axn − y)+
∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRi,kx
n

−
∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRj,lx
n−1. (8)

The solution x can be obtained iteratively using

xn =



λA⊤A+
∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRi,k





−1

×



λA⊤y+
∑

(i,k)∈�

∑

(j,l)∈V(i,k)
w[i, k; j, l]R⊤

i,kRj,lx
n−1



 . (9)

Note that A⊤A is an identical matrix and
∑

(i,k)∈�

∑

(j,l)∈V(i,k) w[i, k; j, l]R⊤
i,k
Ri,k is a diagonal matrix,

therefore the matrix inversion in (9) can be done effectively.

2.4. Implementation Issues
2.4.1. Initialization
The data are transformed so that the noise is Gaussian distributed
as described in Koay et al. (2009). The algorithm is then
initialized using an upsampled version of y, which is obtained via
interpolation using SHs.

2.4.2. Neighborhood Matching
Neighborhood matching is performed based on the upsampled
version of y. The resulting weights remain unchanged until a
solution x is obtained. In principle, we can use x to re-estimate
the weights and rerun the algorithm to obtain a refined solution.
However, our experimental results indicate that the benefit of
doing so is minimal. Therefore, we will only show results without
weight re-estimation.

2.4.3. Stopping Criterion
We stop the algorithmwhen themean absolute difference (MAD)
between the outcomes of two iterations, i.e., xn−1 and xn, is less
than a constant tol. We define tol = βσG, where σG is the
standard derivation of the Gaussian noise and β is a constant.

3. EXPERIMENTS

The proposed angular upsampling method was evaluated using
both synthetic and real data. Through grid search, we found that
λ = 100 and β = 10−3 give the best results. We compared the
proposed method with two baselines, SRBF interpolation and SH
interpolation.

3.1. Datasets
3.1.1. Synthetic Data
For quantitative evaluation, we generated a set of synthetic data
using phantomαs (Caruyer et al., 2014) and the fiber geometric
model of ISBI 2013 HARDI challenge1. We utilized 321 gradient

1http://hardi.epfl.ch/static/events/2013_ISBI/
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FIGURE 2 | MNAD Comparison – Synthetic Data. Quantitative evaluation using synthetic data via MNAD of FA images.

directions, uniformly distributed on the surface of a sphere, to
simulate the HARDMRI data. The number of gradient directions
was reduced to 81 for the simulation of corresponding LAR
counterpart. In the data simulation, we used three b-values,
including 1, 000, 2, 000, 3, 000 s/mm2. After obtaining the noise-
free LAR data, we added four levels (SNR = 15, 20, 25, 30) of
32-channel noncentral chi (nc-χ) noise to the data to simulate
noise disturbances. The noise-free HAR DMRI data was used as
the ground truth for quantitative evaluations.

3.1.2. Real Data
DMRI data were acquired for three infants at three different time
points: 0 month, 6 months, and 12 months. All enrolled subjects
had written informed consent provided by parent/guardian.
The experimental protocols were approved by the Institutional
Review Board of the University of North Carolina (UNC) School
of Medicine. The study was carried out in accordance with the
approved guidelines. All the data are acquired using a Siemens
3T Magnetom Prisma MR scanner and a standard imaging
protocol: 140 × 140 imaging matrix, 1.5 × 1.5 × 1.5 mm3

resolution, TE = 88ms, TR = 2,365ms, 32-channel receiver coil,
b = 700, 1500, 3000 s/mm2, and 144 non-collinear gradient
directions. We uniformly selected 72 gradient directions to
generate the LAR data for evaluation.

3.2. Evaluation Methods
Quantitative and qualitative evaluations were performed as
described in the following:

1. RMSE maps: We computed voxel-wise RMSE value between
two sets of DMRI datasets to measure their similarity locally.

2. FA images: We computed the FA images using the iterative
weighted tensor fitting method presented in Salvador et al.
(2005).

3. Absolute difference (AD) maps: We compute the AD map
between one FA image and the ground truth FA image to
evaluate the performance of the algorithm locally.

4. Mean normalized absolute difference (MNAD): We
computed MNAD value by 1) computing AD map, 2)
normalizing the AD map using the ground truth FA image

voxel-wisely, and 3) computing the mean value of the
normalized map within the brain region.

5. Peak signal-to-noise ratio (PSNR): PSNR is used for
quantitative evaluation of FA images, and is defined as

PSNR = 20 log10
MAX

RMSE
, (10)

where MAX is the maximum FA value, which is 1 in our case.
6. Fiber ODFs: We compute fiber orientation distribution

functions (ODFs) using the method presented in Yap et al.
(2016b), which caters to multiple tissue types using multi-shell
data.

3.3. Results
3.3.1. Quantitative Comparison – Synthetic Data
Using the FA image of noise-free HAR data as ground truth,
we evaluated the quality of the upsampled data using MNAD
and PSNR. The results, shown in Figures 2 and 3, indicate that
the proposed method outperforms SRBF interpolation and SH
interpolation for all noise levels. The largest improvement over
the second best method, SH interpolation, is 0.017 in term of
MNAD when SNR = 25. The corresponding PSNR improvement
is 5.74 dB.

3.3.2. DW Images – Synthetic Data
The full views and close-up views of DW images, shown in the
top two rows of Figure 4, indicate that the proposed method
results in better structural contrast. The close-up views of RMSE
maps, shown in the bottom row of Figure 4, indicate that our
method gives lower RMSE than SRBF interpolation and SH
interpolation, which demonstrates that the upsampled data given
by our method is closer to ground truth.

3.3.3. FA Images – Synthetic Data
The top row of Figure 5 shows the FA images given by
ground truth data and upsampled data. We use warm colors to
represent large FA values for a better visualization. Compared
with SRBF interpolation and SH interpolation, our method
produces an FA image closer to the ground truth. This
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FIGURE 3 | PSNR Comparison – Synthetic Data. Quantitative evaluation using synthetic data via PSNR of FA images.

FIGURE 4 | DW Images and RMSE Maps – Synthetic Data. Comparison of upsampling results for b = 1, 000 s/mm2 and nc-χ noise (SNR = 30).

observation is further confirmed by the AD maps of the
FA images, shown in the bottom row of Figure 5. Our
method yields the lowest MAD value, indicating the best
performance.

3.3.4. Fiber ODFs – Synthetic Data
Accurate ODF estimation relies on sufficient angular samples.
The ODFs, shown in Figure 6, indicate that our method gives
clean and coherent ODFs that are close to the ground truth. In
contrast, spurious peaks are introduced by SRBF interpolation
and SH interpolation.

3.3.5. Diffusion Signal Profiles – Synthetic Data
For a more direct visualization of the upsampled data, we
rendered the signal values on a sphere. The results, shown in
Figure 7, indicate that our method gives values that are close to
the ground truth.

3.3.6. MNAD Comparison – Real Data
We also computed MNAD values for the quantitative evaluation
of real data experimental results. Figure 8 shows the MNAD
between the FA images given by the upsampled data and the
original HAR data. For all time points, our method outperforms
SRBF interpolation and SH interpolation, with a largest MNAD
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FIGURE 5 | FA Images and AD Maps – Synthetic Data. Evaluation of accuracy in terms of FA using synthetic dataset with nc-χ noise (SNR = 30). The color of FA

images represents the FA value, e.g., warmer color means a larger FA value. MAD values are shown at the top left corners.

FIGURE 6 | Fiber ODFs – Synthetic Data. Fiber ODF comparison using synthetic data with nc-χ noise (SNR = 30).

FIGURE 7 | Diffusion Signal Profiles – Synthetic Data. The diffusion signals are rendered on a sphere for visual comparison. The colored FA image is shown on the far

left for reference.
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FIGURE 8 | MNAD Comparison – Real Data. Quantitative evaluation using infant data via MNAD of FA images.

FIGURE 9 | DW Images – Real Data. Comparison of DW images with b = 1, 500 s/mm2.

reduction of 0.026 over the second best method at 12-months
time point.

3.3.7. DW Images – Real Data
The observations from Figures 9 and 10 for real data are
consistent with that in Figure 4. The DW image given by our

method shows more subtle structural details and is closer to the
one in the original HAR data.

3.3.8. FA Images – Real Data
Figures 11 and 12 further confirm our observation in Figure 5.
Our method produces low AD values and gives an FA
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FIGURE 10 | Close-Up Views of DW Images – Real Data. Regional close-up views of the DW images of a 12-month infant subject.

FIGURE 11 | FA Images – Real Data. Comparison of FA images using infant data. The color of FA images represents the FA value, e.g., warmer color means a larger

FA value.
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FIGURE 12 | Absolute Difference Maps – Real Data. Comparison of absolute difference maps of FA images using infant data. MAD values are shown at the top left

corners.

image that is close to that given by the original HAR
data.

3.3.9. Fiber ODFs – Real Data
Figure 13 indicates that our method gives clean and coherent
ODFs that are very similar to those given by the original
HAR data. In contrast, SRBF interpolation and SH interpolation
produce ODFs with a large number of spurious peaks.

4. DISCUSSIONS

Our method is effective because it preserves the sharpness of
signal profiles in q-space during upsampling. Utilizing non-local
smoothness as prior, it takes into account signal similarity in x-
q space and avoids the pitfall of averaging over disparate signals.
For the curved white matter structures, considering only signal
correlation in x-space (i.e., a fixed point in q-space) is problematic
because the signal changes rapidly across space. On the other
hand, considering only signal correlation in q-space (i.e., a fixed

point in x-space) causes smoothing of anisotropic signal profiles
due to sharp changes across q-space measurements. Our method
harnesses the fact that the signal is smooth in the joint x-q space,
even for highly curved structures.

There are some recent works on using compressive sensing
(CS) (Baraniuk, 2007) to recover high-resolution (HR) DMRI
data from under-sampled k-q space data. For instance, Mani
et al. (2015) performed HR DMRI data reconstruction by
imposing sparsity on the coefficients of ODFs and by reducing
the total variation (TV) of the HR DMRI data. Cheng et al.
(2015) proposed a method, called 6D-CS-DMRI, to recover
the ensemble average propagator (EAP) and HR DMRI data
simultaneously in a CS framework. The associated ill-posed
inverse problem was regularized by the sparsity of the coefficients
of EAP, the DW image smoothness enforced by TV, and the
sparsity of the wavelet coefficients of DW images. Despite
achieving promising performance in recovering HR DMRI data,
these methods need dedicated imaging protocols, restricting
their widespread application. In contrast, our method enhances
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FIGURE 13 | Fiber ODFs – Real Data. Comparison of fiber ODFs using the DMRI data of a 6-Month infant subject.

the angular resolution post-acquisition and thus avoids special
imaging protocols.

In practice, our method is limited by its large memory
requirement. The memory issue is mainly caused by the need
to store the matching weights used in the fixed-point iteration
algorithm. To put this in perspective, if we have n x-q space
points, the number of matching weights then becomes n × m,
where m is the size of x-q space search volume. This indicates
that the size of matching weights is aboutm times larger than the
DMRI data, causing memory issues. A straightforward solution
to this problem is to perform angular upsampling in overlapped
blocks and then combine the results to form the HAR DMRI
data. Another solution is to reduce the number of matching
weights to save memory cost. For instance, we can select a certain
number of top weights, instead of using all the weights given by
neighborhood matching.

5. CONCLUSION

We have presented a regularization framework for q-space
upsampling. The relationships of signals in x-q space are used

to regularize the inverse problem associated with recovering the
HAR DMRI data. Extensive experiments on synthetic and infant
DMRI data indicate that our method is able to produce HAR
DMRI data with significantly improved quality. Future research
effort will be directed to extending the current framework for
resolution enhancement in joint x-q space.
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