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Both Disrupted-In-Schizophrenia-1 (DISC1) and dopamine receptors D2R have
significant contributions to the pathogenesis of schizophrenia. Our previous study
demonstrated that DISC1 binds to D2R and such protein-protein interaction is enhanced
in patients with schizophrenia and Disc1-L100P mouse model of schizophrenia
(Su et al., 2014). By uncoupling DISC1 × D2R interaction (trans-activator of
transcription (TAT)-D2pep), the synthesized TAT-peptide elicited antipsychotic-like effects
in pharmacological and genetic animal models, without motor side effects as tardive
dyskinesia commonly seen with typical antipsychotic drugs (APDs), indicating that the
potential of TAT-D2pep of becoming a new APD. Therefore, in the current study, we
further explored the APD-associated capacities of TAT-D2pep. We found that TAT-D2pep
corrected the disrupted latent inhibition (LI), as a hallmark of schizophrenia associated
endophenotype, in Disc1-L100P mutant mice—a genetic model of schizophrenia,
supporting further APD’ capacity of TAT-D2pep. Moreover, we found that TAT-D2pep
elicited nootropic effects in C57BL/6NCrl inbred mice, suggesting that TAT-D2pep
acts as a cognitive enhancer, a desirable feature of APDs of the new generation.
Namely, TAT-D2pep improved working memory in T-maze, and cognitive flexibility
assessed by the LI paradigm, in C57BL/6N mice. Next, we assessed the impact of
TAT-D2pep on hippocampal long-term plasticity (LTP) under basal conditions and upon
stimulation of D2 receptors using quinpirole. We found comparable effects of TAT-D2pep
and its control TAT-D2pep-scrambled peptide (TAT-D2pep-sc) under basal conditions.
However, under stimulation of D2R by quinpirole, LTP was enhanced in hippocampal
slices incubated with TAT-D2pep, supporting the notion that TAT-D2pep acts in a
dopamine-dependent manner and acts as synaptic enhancer. Overall, our experiments
demonstrated implication of DISC1 × D2R protein-protein interactions into mechanisms
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of cognitive and synaptic plasticity, which help to further understand molecular-cellular
mechanisms of APD of the next generation.

Keywords: DISC1, D2R, Disc1-L100P mouse model of schizophrenia, latent inhibition, synaptic plasticity

INTRODUCTION

Schizophrenia is a chronic brain disorder associated with severe
psychotic symptoms which lead to disability. The prevalence
of schizophrenia remains stably high and currently near
21 million people suffer from this mental disorder, according
to World Health Organization (World Health Statistics, 2017).
Schizophrenia is characterized by negative (social withdrawal,
motivational deficit), positive (delusions, hallucinations and
bizarre thoughts) symptoms and cognitive symptoms, which are
considered as core symptoms of this mental illness (Elvevåg and
Goldberg, 2000) since they are observed among all subtypes
of schizophrenia (Heinrichs and Awad, 1993). However,
there are no effective treatments of cognitive impairments
in schizophrenics as typical and atypical antipsychotic drugs
(APDs) only partly ameliorate the positive or negative symptoms
of schizophrenia (Meltzer, 1995) and near 60% of schizophrenics
are resistant to APDs treatment (Meltzer and Kostacoglu,
2001). Moreover, currently used APDs often cause side-effects,
including extrapyramidal syndrome, gain weight, dyskinesia,
diabetes and dysfunction of reproductive system (Leucht et al.,
2009).

D2 dopamine receptor (D2R) is a classical target of current
APDs and most effective APDs antagonize the D2R (Seeman
and Kapur, 2000; Glatt et al., 2003). Clinical efficacy of APDs
positively correlates with their binding capacity to D2R (Seeman
et al., 1976). Additionally, D2R mRNA and protein expression
levels are elevated in the brain of patients with schizophrenia as
shown in post-mortem, PET and SPECT studies (Roberts et al.,
1994; Seeman and Kapur, 2000). There is a need for a deeper
understanding of the D2R signaling pathways in order to reveal
new therapeutic targets for more effective APDs with reduced
side effects.

D2R belong to a family of G-protein coupled receptors
mainly mediating G-protein dependent pathways (Missale et al.,
1998). D2R elicits its action through intracellular Gi/Go proteins,
which control adenylate cyclase enzymatic activity, exchange
of phosphatidylinositol, release of arachidonic acid, activities
of K+ and Ca2+ ionic channels and protein kinases (Missale
et al., 1998). D2R may also act independently on G-proteins,
e.g., via β-arrestin-2, which initiates the formation of a complex
with protein phosphatase-2A (PP2A), protein kinase B (PKB or
Akt), activation of glycogen synthase kinase-3 (GSK-3; Beaulieu
et al., 2009). The main mechanism for regulating D2R is kinase-
dependent desensitization of D2R, endocytosis and endosomal
trafficking, which then leads to the formation of a complex with
β-arrestin-2, adaptor protein-2 (AP2) and clathrin (Hanyaloglu
and von Zastrow, 2008).

Studies of D2R interacting proteins, using yeast two-hybrid,
co-immunoprecipitation, glutathione S-transferase (GST) pull-

down and in vitro binding assays, have identified about 20
proteins with many of them relevant to schizophrenia (Wang
et al., 2008; Shioda et al., 2010; Kabbani et al., 2012). These
proteins selectively regulate specific signaling pathways and
function of D2R via protein-protein interactions, without
affecting other signaling pathways. Thus, targeting protein-
protein interactions may represent a promising alternative
approach to treat schizophrenia, which might eliminate side
effects of current APDs.

Indeed, synthesized peptides that mimic the binding
domain responsible for D2R-protein interactions interfere
with D2R-protein interactions and can effectively disrupt such
D2R-protein complexes to selectively block certain signaling
pathway. The trans-activator of transcription (TAT) domain
of the human immunodeficiency virus (HIV) can be fused
to these small peptides to facilitate their intracellular entry to
initiates the action of these peptides. There are accumulating
studies shown various effects of TAT-peptides affecting
D2R-peptide interactions on function of the central nervous
system (CNS; Su et al., 2015). For instance, administration
of TAT-peptide that affects D2R × dopamine transporter
(DAT) interaction in mice decreased dopamine uptake and
increased their ambulation in a similar way as in the DAT
knockout mice (Lee et al., 2007). D2Rs also directly interact
with the C-terminus of the GluN2B subunit of N-Methyl-D-
aspartate (NMDA) ionotropic glutamate receptors through
an N-terminal 10 amino acid motif of its third cytoplasmic
domain (Liu et al., 2006). Cocaine enhances this interaction
in the striatum and treatment with TAT-tagged peptide that
encodes the interacting site of the D2R-NR2B interaction,
inhibits cocaine-induced locomotion, highlighting another
dopamine-glutamate system interaction that may be a useful
target for treating addiction (Liu et al., 2006). Another example
of affecting the function of the CNS via TAT-peptides affecting
D2R protein-protein interactions is the peptide interfering with
interaction of D2R with neuronal calcium sensor-1 (NCS-1)
which showed decreased explorative behavior, hippocampal
long-term potentiation (LTP) and spatial memory in mice
(Saab et al., 2009). NCS-1 regulates the phosphorylation,
trafficking and signaling transduction of D2R in neurons.
NCS-1 may contribute to the molecular mechanisms of
schizophrenia and might be involved in the action of APDs
(Koh et al., 2003; Bai et al., 2004). Our recent study (Su et al.,
2014) found that Disrupted-In-Schizophrenia-1 (DISC1),
one of robust gene-candidate associated with schizophrenia
(Brandon and Sawa, 2011; Porteous et al., 2011) interacts
with D2R through the third intracellular loop of D2R. The
levels of DISC1 × D2R protein complex is increased in the
postmortem brain tissues of schizophrenics and Disc1-L100P
mutant mice, a genetic model of schizophrenia (Clapcote et al.,
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2007; Lipina and Roder, 2014). DISC1 × D2R interactions
facilitated D2R-mediated GSK-3 signaling and inhibited D2R
internalization, supporting hyperactivity of dopaminergic
system which was observed in patients with schizophrenia
(Davis et al., 1991). TAT-peptide uncoupling DISC1 × D2R
complex reversed hyperactivity and deficit of sensorimotor
gaiting, induced by either amphetamine/apomorphine in rats or
by genetic Disc1-L100P mutation in mice (Su et al., 2014), hence,
eliciting APDs features in both pharmacological and genetic
animal models of schizophrenia. Notably, pharmacological
inhibitors of other DISC1 interacting proteins, such as GSK-3
(Lipina et al., 2011a) and PDE4B (Clapcote et al., 2007), also
induced APD-like capacities in Disc1-L100P mice and dual
inhibitor of GSK-3 and PDE7, VP1.15, elicited APDs features in
amphetamine pharmacological model of schizophrenia (Lipina
et al., 2013).

Given that TAT-D2R peptide uncoupling DISC1 × D2R
protein-protein interactions exhibited APD-related capacities
without side effects (Su et al., 2014), we aimed in the
current study to further explore APD-related features of
TAT-D2R peptide (TAT-D2pep). Animal assays associated
with schizophrenia represent an important preclinical tool for
testing novel pharmacological compounds in the treatment
of schizophrenia. Disc1-L100P mutant mice exhibit several
schizophrenia-related behavioral phenotypes, including
hyperactivity, deficits of sensorimotor gaiting, assessed by
pre-pulse inhibition (PPI) of acoustic startle response, working
memory and latent inhibition (LI) of fear conditioning (Clapcote
et al., 2007). LI is among important behavioral models in
neuropharmacological research of schizophrenia with face,
predictive and construct validity (Geyer and Ellenbroek, 2003).
LI reflects an organism’s ability to ignore irrelevant stimuli (Gray
et al., 1992). LI paradigms are usually based on between-subject
design and consist of one group of subjects being pre-exposed
(PE) to a neutral to-be-conditioning stimulus (CS), whereas
another group of subjects are not pre-exposed (NPE). The
CS is subsequently paired with an unconditioned stimulus
(US). LI is measured by the difference to learn the CS–US
association between the PE and NPE groups and consists of
a retardation of learning in the PE group. Healthy humans
or rodents treated with amphetamine show the disrupted LI
(Weiner et al., 1984; Gray et al., 1992; Lipina and Roder, 2010)
and in the acute stages of schizophrenia (Weiner et al., 1984,
1988; Gray et al., 1992; Thornton et al., 1996; Rascle et al.,
2001). Both typical and atypical APDs reverse amphetamine-
induced disruption of LI and reliably potentiate LI under
conditions that normally do not yield robust LI (Weiner and
Feldon, 1997; Moser et al., 2000). We showed that clozapine,
GSK-3 and PDE4 inhibitors corrected the disrupted LI in
Disc1-L100P mice (Clapcote et al., 2007; Lipina et al., 2011a).
TAT-D2pep was able to improve hyperactivity and PPI deficit
in Disc1-L100P mice (Su et al., 2014), however, it remains
to be explored if LI deficit could be rescued by uncoupling
Disc1 × D2R interactions in Disc1-L100P genetic model of
schizophrenia.

Of particular interest was also to probe the efficacy of
TAT-D2pep as a cognitive enhancer. Indeed, a special program,

Cognitive Neuroscience measures of Treatment Response
of Impaired Cognition in Schizophrenia (CNTRICS) was
developed, which suggests that screening of novel APDs for
their capacities as cognitive enhancers by incorporating a
variety of cognitive behavioral tests, suitable genetic mouse
models and parametric manipulations of the behavioral
models (Barak and Weiner, 2011). Since the main aim in
animal research on cognitive enhancement is to develop
compounds to ameliorate cognitive deficits associated with
e.g., schizophrenia, then it should be asked how these drugs
may affect cognition in normal individuals. For instance,
typical antipsychotics, sulpiride or clozapine ameliorated
attentional deficit or working memory deficit in animals with
disrupted prefrontal cortical functions but these antipsychotics
impaired performance of control animals (Murphy et al., 1997;
Passetti et al., 2003a,b; Baviera et al., 2008). Hence, there is an
important discussion in the field whether interventions that
will improve cognition in patients with mental disorders can
be also successfully detected in healthy subjects. Therefore, the
second goal of the current study was to probe if TAT-D2pep
can facilitate cognitive functions in control inbred mouse
strain C57BL/6NCrl and examine whether TAT-D2pep affects
synaptic plasticity to underlie its potential cognitive enhancing
capacities.

MATERIALS AND METHODS

Animals
Disc1-L100P homozygous male mice and their wild-type
(WT) littermates, C57BL/6NCrl (C57BL/6N) inbred strain
were bred in the animal facility of Scientific Research Institute
of Physiology and Basic Medicine (SRIPhBM). Experiments
were conducted on 2–3 months old Disc1-L100P\WT
mice (Experiment 1) and C57BL/6N mice (Experiments
2–3). Homozygous Disc1-L100P male mice and WT mice
(DISC1-L100P+/+ or C57BL/6NCrl; WT) were obtained from
breeding of heterozygous pairs. Genotyping was performed
with mild modifications as described before Clapcote et al.
(2007), using primers: F, 5′-CCACTGCCAAGCCTCACT-
3′ and R: 5′-GGCCACAGCAGGGACAA-3′. All mice were
housed five per cage in the vivarium of the SRIPhBM in
plastic cages (OptiMice Biotech AS, 34 × 29 × 15 cm) in
a temperature-controlled room (21–23◦C) with a reversed
light-dark cycle (12 h/12 h; lights on: 18:00 h; lights off:
6:00 h) with food and water available ad libitum. This study
was conducted in accordance with the recommendations of
European Communities Council Directive of September 22,
2010 (2010/63/EU; Ethics Committee of the SRIPhBM). All
experimental protocols were approved by the Ethics Committee
of the SRIPhBM.

Behavioral Studies
Behavioral tests were done between 9 am and 4 pm. Prior to all
experiments mice were acclimatized to the experimental room
for 30 min. The behavioral equipment was cleaned with 70%
ethanol between mice to remove residual odors.
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Latent Inhibition (LI) in the Conditioned
Freezing Paradigm
The LI in the conditioning freezing paradigm was performed
according to previously published protocol (Yee et al., 2006). The
experiment was conducted in a fear conditioning apparatus (Med
Associates, St. Albans, VT, USA) consisting of a test chamber
(25 cm high × 30 cm wide × 25 cm deep) equipped with
a computer-controlled fear conditioning system (Actimetrics,
Wilmette, IL, USA). Freezing behavior was recorded using
automated fear conditioning software (Actimetrics software;
FREEZFRAME v 1.6e) during the four phases of the procedure as
follows: pre-exposure, conditioning (day 1), and tone test (day 2).
Pre-exposure and conditioning were conducted consecutively,
on the same day of the experiment. The peptide was
injected 30 min before the behavioral procedure on the 1st
day. The PE animals received 40 presentations of a 30 s
tone CS (80 dB, a 3.6 kHz pulsated tone) at a variable
interstimulus interval of 40 ± 30 s; non-pre-exposed (NPE)
mice were confined to the chamber for an equivalent period
of time. Conditioning commenced immediately at the end of
pre-exposure without removing the animals from the chambers.
Conditioning comprised either two discrete trials of CS-US
pairing (Experiment 1) or five CS-US pairs in order to detect
cognitive facilitation in C57BL/6N mice (Experiment 2). Each
trial began with the 30 s tone stimulus (the same as the
one used during pre-exposure) followed immediately by the
delivery of a 1 s foot shock set at 0.4 mA with 180 s
interval between CS-US trials. On the tone test (24 h after
the conditioning), the context was altered and each mouse
was placed into the altered chamber and allowed 180 s for
exploration (pre-tone freezing), after which the auditory tone
cue was turned on for 300 s. The citrus scent was used on
the 1st day and vanilla scent on the 2nd day as additional
environmental cues. Data are presented as percentage of freezing
every 60 s during the tone test. Percentage of the averaged
freezing was calculated based on the freezing in response to
the CS.

T-Maze
T-maze was performed as described before (Lipina et al., 2013).
In this test, the animal alternates between two goal arms during
repetitive visits based on the recall of the previously visited arm.
The T-maze apparatus is made of gray Plexiglas with a main
stem (65 × 14 × 30 cm) and two arms (30 × 14 × 30 cm)
positioned at a 90◦ angle relative to the left and right of the
main stem. A start box (10 × 14 × 30 cm) is separated from
the main stem by a sliding door. The experimental protocol
consists of one single session, which starts with trial, when the
animal is confined for 5 s in the start box and then released
while both the left and right arms were not blocked by the
sliding door and the mouse is free to choose between the left,
right arms and the main stem. The animal is considered as
entered when it places its four paws in the arm. A session
is terminated and the animal is removed from the maze after
5 min. Spontaneous alternation is defined as entry in a different
arm of the T-maze over successive trials (i.e., ABC, CBA). The

percentage of alterations was defined according to the following
equation: % Alteration = [(Number of alterations)/(Total arm
entries − 2)]∗100. The number of arm entries serves as an
indicator of ambulation.

Electrophysiological Studies
Transverse hippocampal slices (400 µm thick) were prepared
from the brains of C57BL/6N inbred adult male mice. Mice were
sacrificed by cervical dislocation, brains were rapidly removed
and chilled in ice-cold Ca2+-free solution, and slices were
prepared in ice-cold Ca2+-free cutting solution (Mathis et al.,
2011) using a vibroslicer (NVSL, World Precision Instruments).
Cutting solution composition included: 124 mM NaCl, 2 mM
KCl, 1.25 mM KH2PO4, 2 mM MgSO4, 26 mM NaHCO3 and
10 mM dextrose, pH 7, 4.

Experiments were conducted as described previously
(Beregovoy et al., 2011). Briefly, the slices were allowed to
recover for at least 1 h before an experiments in artificial CSF
(ACSF), saturated with 95% O2 and 5% CO2 at temperature
34◦C and were then transferred to an experimental chamber for
extracellular recordings. The flow rate of the solution through
the chamber was 1 ml/min. The composition of the ACSF
was 124 mM NaCl, 2 mM KCl, 26 mM NaHCO3, 1.25 mM
KH2PO4, 2.5 mM CaCl2, 2 mM MgSO4 and 10 mM dextrose,
bubbled with a 95% O2–5% CO2 mixture, and had a final pH
of 7.4. All experiments were performed at room temperature.
Quinpirole (Sigma) or peptides (TAT-D2pep or TAT-D2pep-sc)
were added into experimental solution in final concentration
10 µM.

Extracellular recordings of field excitatory postsynaptic
potentials (fEPSPs) were obtained from the stratum radiatum of
the CA1 region of the hippocampus using glass micropipettes
filled with ACSF. The stimulating electrode was a bipolar
concentric electrode, and the recording electrode was 1.5 mm
borosilicate glass (Institute for Biological Instrumentation of
the Russian Academy of Sciences, IBI RAS) containing ACSF
with a resistance of about 2–4 MΩ. Stimulus was applied to
the Schaffer collateral via a concentric bipolar stainless steel
electrode (A 360, World Precision Instruments). Stimulus pulses
consisted of a single square wave of 100 µs duration delivered at
30–150 µA.

To determine the test stimulus intensity, a paired-pulse test
was done, and the stimulus intensity was adjusted to the point
at which a population spike was evoked on the second, but not
the first, pulse as shown in Figure 3A. This protocol resulted
in a stimulus that was 30%–50% of the intensity required to
elicit a maximum response (Salazar-Weber and Smith, 2011).
Subsequent fEPSPs were elicited once per 1 or 2 min at
this stimulation intensity. High frequency stimulation (HFS
or tetanization; three 1 s trains at 100 Hz, intertrain interval
20 s) was used to induce LTP. Signals low pass filtered at
1 kHz, digitized with a Digidata 1200 A/D converter at 10 kHz,
and analyzed with pCLAMP software (Axon Instruments).
Data was analyzed offline using pClamp and Microcal Origin
8.1 software (OriginLab). Amplitudes of fEPSPs were normalized
with respect to the 10-min control period before drug application
or HFS.
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Drug application: Quinpirole (LY-1, 71, 555; Sigma),
TAT-D2pep and TAT-D2pep-sc were dissolved in standard
ACSF for the concentration of 10 µM for all compounds, used
in the electrophysiological experiments. All experiments were
monitored drug-free for at least 10min tomeasure potential drug
effects on baseline fEPSP responses. Experiments in which no
drugs were used were then tetanized at t = 10min. In experiments
using one drug, it was added at t = 10 min; tetanization at
t = 20 min. In experiments using two drugs, the first was added
at t = 10 min, the second at t = 20 min with tetanization at
t = 30 min. All drugs, once added, were maintained throughout
the experiment.

Peptide
Disc1 × D2R uncoupling peptide (TAT-D2pep) and its
controlled compound—Disc1 × D2R scrambled peptide (TAT-
D2pep-sc) were synthesized as previously described (Su et al.,
2014). TAT-D2pep (Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-
Arg-Arg-Lys-Ile-Tyr-Ile-Val-Leu-Arg-Arg-Arg-Arg-Lys-Arg-V
al-Asn-Thr; molecular weight: 3513.3) and TAT-D2pep-sc (Tyr-
Gly-Arg- Lys- Lys- Arg- Arg- Gln- Arg- Arg- Arg- Val- Leu-
Arg- Lys-Thr- Arg-Ile- Arg- Arg-Tyr- Lys- Ile- Arg-Asn-Val
molecular weight: 3511.2) were dissolved in 0.9% NaCl saline
(3 nmol/g, i.p.) and administrated in a volume 10 ml/kg with
30 min as injection-testing interval in the 1st day of LI procedure.

Statistics
Behavioral data were analyzed by ANOVA with genotype as a
between-subject main factor and time-intervals as a repeated
measure. Significant main effects and interactions were followed
by LSD post hoc comparisons to assess the differences between
experimental groups. Electrophysiological and cell culture data
were analyzed using Microcal Origin (OriginLab, Northampton,
MA, USA) software. Statistical significance was evaluated using
one-way ANOVA to compare unpaired conditions. Paired
samples between the control condition (before drug application
or before HFS) and a given time after HFS were analyzed using
the parametrical t-test.

Experimental Design
Experiment 1
The efficacy of TAT-D2pep was probed to rescue LI deficit in
Disc1-L100P mice in comparison with their WT littermates,
using regular LI protocol with 2 CS-US.

Experiment 2
Next, the cognitive enhancing capacities of TAT-D2pep were
estimated in C57BL/6N mice to facilitate working memory
in T-maze and cognitive flexibility assessed in LI paradigm
disrupted by parametric manipulations using five CS-US
pairings.

Experiment 3
This experiment probed action of TAT-D2pep to alter synaptic
plasticity on hippocampal slices of C57BL/6N mice using
electrophysiological approach. To prove dopamine-dependent

action of the peptide, D2 receptor agonist (quinpirole) was
applied.

RESULTS

Experiment 1
Efficacy of TAT-D2pep to Rescue the Disrupted
Latent Inhibition in Disc1-L100P Mutant Mice
Disc1-L100P mice express deficit of LI, which was
rescued by atypical APD, clozapine and pharmacological
compounds—GSK-3 and PDE4 inhibitors, as potentially new
APDs (Clapcote et al., 2007; Lipina et al., 2011a). TAT-D2pep
elicited APD-like effects on PPI and hyperactivity in rodents
as it was previously showed (Su et al., 2014). However, the
disrupted PPI was also observed in patients with other mental
disorders (Braff et al., 2001), whereas impaired LI was reported
specifically in patients with schizophrenia (Weiner et al.,
1984, 1988; Gray et al., 1992; Thornton et al., 1996; Rascle
et al., 2001). Hence, to further prove APD-like activity of
TAT-D2pep, the current experiment estimated ability of
TAT-D2pep to correct deficit of LI induced by Disc1-L100P
mutation.

MANOVA found amain effect of pre-exposure (F(1,51) = 62.9;
p < 0.001), peptide (F(1,51) = 11.7; p < 0.01), time interval
(F(7,357) = 105.6; p < 0.001), genotype × time interval
(F(7,357) = 2.6; p < 0.05), peptide × pre-exposure (F(1,51) = 22.1;
p < 0.001), pre-exposure × time interval (F(7,357) = 25.1;
p < 0.001), genotype × peptide × pre-exposure (F(1,357) = 9.1;
p < 0.01), genotype × peptide × time interval (F(7,357) = 2.1;
p < 0.05), peptide× pre-exposure× time interval (F(7,357) = 7.3;
p < 0.001) and genotype × peptide × pre-exposure × time
interval (F(7,357) = 6.2; p < 0.001) interactions on percent
of freezing. NPE-WT mice expressed significantly higher
freezing in response to the CS than PE-WT mice regardless
TAT-D2pep-sc TAT-D2-pep treatments (Figures 1A,B). In
opposite, both PE and NPE groups of Disc1-L100P mice
treated by TAT-D2pep-sc showed comparable freezing
in response to the tone (Figure 1C), indicating on their
disrupted LI. TAT-D2pep-treated PE-Disc1-L100P mice
reduced their freezing, whereas TAT-D2pep-treated NPE
Disc1-L100P mice increased freezing as compared to
TAT-D2pep-sc-treated Disc1-L100P mice (Figures 1D,E).
MANOVA detected a main effect of pre-exposure
(F(1,51) = 71.3; p < 0.001), peptide (F(1,51) = 16.6; p < 0.001),
pre-exposure × peptide (F(1,51) = 23.5; p < 0.001) and
genotype × pre-exposure × peptide (F(1,51) = 6.7; p < 0.05)
on percentage of the averaged freezing (Figure 1E). As can be
seen, TAT-D2pep-sc-treated Disc1-L100P mice showed no LI,
whereas TAT-D2pep-treated mutant mice expressed robust LI
(Figures 1D,E).

Experiment 2
Facilitation of Citive Flexibility Assessed in LI
Paradigm by TAT-D2pep in C57BL/6N Mice
Given that APDs were able to correct the impaired LI, induced
by extended conditioning in C57BL/6N mice (Lipina et al.,
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FIGURE 1 | (A–E) Trans-activator of transcription (TAT)-D2pep reversed deficient latent inhibition (LI) in disrupted-in-schizophrenia-1 (Disc1)-L100P mice.
(A) TAT-D2pep-sc (3 nmol/kg; i.p.; 30 min) did not affect LI in wild-type (WT) mice. (B) TAT-D2pep increased the duration of the freezing in response to the tone
(conditioned stimulus, CS; gray colored line) in WT mice. (C) TAT-D2pep-sc had no effect on the disrupted LI in Disc1-L100P mice. (D) Uncoupling DISC1 × D2R by
the peptide significantly improved expression of LI in Disc1-L100P mice. (E) Percentage of the averaged freezing in response to the CS for each experimental group.
Saline-treated mice did not differ from TAT-D2pep-treated animals (data not shown). N = 7–8 mice per group; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001—in comparison
with non pre-exposed (NPE) group within each treatment. #p < 0.05; ##p < 0.01—in comparison with TAT-D2pep-sc-treated pre-exposed (PE)\NPE groups within
each genotype.
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FIGURE 2 | (A–C) TAT-D2pep facilitated working memory and LI in C57BL/6N mice. (A) LI is disrupted by five CS-US pairings in TAT-D2pep-sc-treated C57Bl/6N
mice since the PE to the tone (CS; PE) and NPE to the tone (NPE) groups of experimental mice expressed comparable freezing (%) in response to the CS (gray
colored line), whereas (B) TAT-D2-pep-treated PE mice significantly reduced their freezing in response to the CS as compared with their NPE group, demonstrating
LI under conditions with five CS-US pairings. (C) Percentage of the averaged freezing in response to the CS for each experimental group. Saline-treated mice did not
differ from TAT-D2pep-treated animals (data not shown). N = 6–8 mice per group; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001—in comparison with NPE group.
(D) TAT-D2pep (3 nmol/kg; i.p.; 30 min) increased the number of spontaneous alterations (%), assessed in T-maze. N = 8 mice per group; ∗p < 0.05—in comparison
with TAT-D2pep-sc-treated animals.

2005; Lipina and Roder, 2010), the current experiment estimated
efficacy of TAT-D2pep to facilitate deficit of LI induced by five
CS-US as potentially new APD.

LI with two CS-US pairs: ANOVA found a main effect of
pre-exposure (F(1,10) = 21.5; p < 0.001) on average freezing
assessed during 5 min in response to the tone (CS). NPE mice
froze significantly more in response to CS (averaged freezing
in response to CS: 47.6 ± 8.2%) than PE group (8.6 ± 1.5%;
p < 0.001). Baseline freezing of C57BL/6N mice of both PE and
NPE groups did not differ from each other (p > 0.05).

LI with five CS-US pairs: MANOVA found a main
effect of pre-exposure (F(1,20) = 9.1; p < 0.01), peptide
(F(1,20) = 5.7; p < 0.05) and pre-exposure × peptide interactions
(F(1,20) = 5.1; p < 0.05) on freezing of experimental mice.

MANOVA with repeated measures detected a significant
effect of time intervals (F(7,140) = 59.9; p < 0.001), time
intervals × peptide (F(7,140) = 2.8; p < 0.001), time
intervals × pre-exposure (F(7,140) = 4.1; p < 0.001) on
freezing behavior. As can be seen in Figure 2A both PE
and NPE groups of TAT-D2pep-sc-treated C57BL/6N mice
expressed similar amount of freezing in response to CS,
which indicates that five CS-US pairs disrupted LI in mice as
expected. However, TAT-D2pep-treated PE mice exhibited
reduced freezing in response to tone as compared to NPE
TAT-D2pep-treated group under the same conditions with
5CS-US training (p’s < 0.05–0.01). Hence, TAT-D2pep-
treated C57BL/6N mice demonstrated LI (p’s < 0.05–0.01;
Figures 2B,C).
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FIGURE 3 | (A–I). Effects of TAT-D2pep on synaptic plasticity of the mouse hippocampal CA1 region. (A) Typical recordings from the mouse hippocampal slice. A
representative trace from the CA1 stratum radiatum (paired-pulse test at the stimulus intensity chosen for recording). Interstimulus interval 50 ms. Stimulating bipolar
concentric electrode in the Schaffer collateral. (B–G) Effects of TAT-D2pep-sc, TAT-D2pep and quinpirole on baseline fEPSP responses. Scale: 1 mV, 20 ms; (B–C)
representative traces responses before (B) and after (C) 10 min incubation with 10 µM TAT-D2pep-sc, respectively; (D–E) fEPSP before (D) and after (E) 10 min
incubation with 10 µM TAT-D2pep; (F–G) fEPSP before (F) and after (G) 10 min incubation with 10 µM quinpirole, respectively. (H) Effects of TAT-D2pep,
TAT-D2pep-sc on fEPSP amplitude in CA1 hippocampal region. Long term potentiation (LTP) was recorded for 2 min, 18 min, 34 min, 50 and 58 min after the
stimulation. Baseline: 0–10 min. Control—saline application. Ordinate: relative amplitude fEPSP. The normalized fEPSP amplitude is shown in the presence of 10 µM
TAT-D2pep or 10 µM TAT-D2pep-sc before and after application of High frequency stimulation (HFS) protocol (arrow). (I) Effects of TAT-D2pep, TAT-D2pep-sc and
Quinpirole on relative amplitude fEPSP in CA1. The normalized fEPSP amplitude in the presence 10 µM Quinpirole, 10 µM TAT-D2pep or 10 µM TAT-D2pep-sc in
different combination after application of HFS protocol (arrow). N = 6–7 mice per group, with 2–3 slices from each animal; ∗p < 0.05.

Experiment 3
Facilitation of Working Memory Assessed in T-Maze
by TAT-D2pep in C57BL/6N Mice
In agreement with CNTRICS’ goals (Barak and Weiner, 2011),
we probed TAT-D2pep’ capacity to act as a cognitive enhancer
and hence, tested its efficacy to facilitate working memory in
C57BL/6N mice.

ANOVA revealed a main effect of the peptide (F(1,14) = 4.5;
p < 0.05) on the sequences of visited arms, where TAT-D2pep
facilitated the performance of C57BL/6N mice in comparison
to TAT-D2sc-treated mice. Figure 2D depicts the percentage of
spontaneous alterations in T-maze task. Notably, TAT-D2-pep
did not affect motor activity since the number of entries into each
arm of T-maze was comparable in mice of both experimental
groups (TAT-D2pep-sc: 16.0± 1.2 vs. TAT-D2pep: 16.1± 1.5).

Experiment 4
Electrophysiological Effects of TAT-D2pep on
Synaptic Plasticity in Hippocampal Slices
The unique capacity of TAT-D2pep to rescue the disrupted
LI in genetic model (Disc1-L100P mouse line) and induced
by parametric manipulations (5CS-US in C57BL/6N
inbred strain), as well as to facilitate working memory
in C57BL/6N mice likely involves underlying synaptic
plasticity. The most direct mechanisms by which TAT-D2pep
may regulate cognitive functions is synaptic LTP. Hence,
the current experiment assessed ability of TAT-D2pep
to facilitate LTP of hippocampal neurons under basal
condition and under stimulation of D2 receptors by
quinpirole to experimentally prove action of TAT-D2pep
via D2 receptors.
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Effects of TAT-D2pep on hippocampal synaptic plasticity
were studied using LTP as a model of synaptic plasticity in the
CA1 pyramidal neurons. TAT-D2pep (10 µM) was added to
incubation medium and parameters of fEPSP were measured
for 10 min after addition. We did not observe any significant
changes in the latency or amplitude of fEPSP (Figures 3D,E).
For HFS-induced LTP, TAT-D2pep did not affect the amplitude
of fEPSP measured 60 min after HFS compared to that in the
control slices (Figure 3H).

Addition of selective D2R agonist quinpirole (10 µM) to
incubation medium 10 min prior to HFS did not affect fEPSP
(Figures 3F,G), but inhibited LTP expression (Figure 3I).
However, 10 min pre-incubation of slices with 10 µM
TAT-D2pep abolished this effect of quinpirole (Figure 3I).
The fEPSP normalized to baseline measured 60 min after
HFS was 1.486 ± 0.108, which was not differ from control
(saline application; P > 0.05) but significantly differed from
other experimental groups (p’s < 0.05). TAT-D2pep-sc did not
affect the basic parameters fEPSP of CA1 pyramidal neurons
(Figures 3B,C). We did not observe significant differences in
amplitude and latency of fEPSP after 10 min of incubation with
10 µM TAT-D2pep-sc (Figure 3H). HFS induced LTP in slices
incubated with TAT-D2pep-sc and normalized fEPSP amplitude
60 min after HFS in these slices was comparable with control
values (Figure 3H). In opposite to TAT-D2pep, TAT-D2pep-sc
was unable to reverse the quinpirole-induced inhibition of LTP
(Figure 3I).

DISCUSSION

The results of the present study can be summarized as follows:
(1) Deficit of LI in Disc1-L100P mutant mice with facilitated
DISC1 × D2R interactions was corrected by TAT-D2pep
uncoupling peptide. (2) Uncoupling DISC1 × D2R protein-
protein interactions improved working memory and ameliorated
latent inhibition disrupted by parametric manipulations in
C57BL/6N inbred mice. (3) TAT-D2pep did not affect LTP
under basal conditions, but reversed the deficit in LTP induced
by quinpirole-induced D2R stimulation. Overall, we found that
TAT-D2pep facilitated synaptic plasticity upon D2R stimulation,
which may contribute to its action as APD with nootropic
capacity.

Our recent discovery of DISC1xD2R protein-protein
interaction implicated DISC1 as a new molecular regulator of
D2R availability on the cellular membrane, acting via GSK-
3-dependent D2R internalization mechanisms upon D2R
stimulation (Su et al., 2014). Uncoupling of the facilitated
DISC1xD2R interaction induced by Disc1-L100P mutation in a
mouse by the peptide induced antipsychotic effects on genetic
(Disc1-L100P mutant line) and pharmacological (amphetamine)
models of schizophrenia (Su et al., 2014). Our current results
demonstrated that TAT-D2pep was also able to rescue LI deficit
in Disc1-L100P mice, behind hyperactivity and PPI deficit
previously reported by us (Su et al., 2014). Hence, DISC1xD2R
protein-protein interaction may offer a new therapeutic target in
the field of psychopharmacology.

Cognitive impairments in patients with schizophrenia are
most resistant to treatment by commonly used APDs. Hence,
the lack of efficacy of APDs switched the direction of drug
discovery towards generation of new APDs with capacities
as cognitive enhancers. Nootropic drugs were studied for a
long time to improve such cognitive functions as attention,
motivational aspect, learning and memory in several mental
disorders (Lanni et al., 2008). These cognitive enhancers,
include compounds with various mechanisms of action, such
as vitamins/supplements (vitamins B, D, omega-3), racetams
(piracetam, oxiracetam), stimulants (amphetamine, nicotine)
and dopaminergic drugs. However, although a wide range of
nootropic compounds have been tested, only a few of them
were able to improve cognitive symptoms in patients with
schizophrenia: e.g., inhibitors of glycine transporter-1 (GlyT1),
GABA(A)α5 inverse agonists (reviewed Wallace et al., 2011)
or amphetamine (Barch and Carter, 2005; Pietrzak et al.,
2010). Amphetamine improved speed performance, spatial
working memory (Pietrzak et al., 2010), language production,
executive function, visual attention and vigilance in patients with
schizophrenia (Barch and Carter, 2005; Pietrzak et al., 2010).
GlyT1 inhibitor, sarcosine, ameliorated cognitive symptoms
in schizophrenics when added to APD, risperidone but not
clozapine (Tsai et al., 1998; Lane et al., 2006). Similarly,
d-serine (agonist of the glycine site of NMDA receptors)
improved executive function in patients with schizophrenia
co-administrated with APDs (Goff et al., 1995), although
d-cycloserine alone had limited efficacy in this regard (Otto et al.,
2009).

As a first step to explore behavioral effects of TAT-D2pep as
a cognitive enhancer based on recommendations of CNTRICS
(Barch et al., 2009), we have probed its effects on working
memory and cognitive flexibility, as schizophrenia-related
cognitive phenotypes, assessed in T-maze and LI tests in control
C57BL/6N inbred mice. It still remains to be explored further
if TAT-D2pep may affect various cognitive domains, including
e.g., executive functions, episodic memory, spatial learning and
memory or motivational aspects to identify its specificity and
efficacy in the future studies. Nevertheless, there is a need
to understand how potentially new cognitive enhancers will
act on normal individuals before testing such compounds in
patients with schizophrenia to correct their cognitive deficits.
So, typical APDs, sulpiride or clozapine were able to improve
attentional deficit and impaired workingmemory in rodents with
disrupted prefrontal cortex but these APDs impaired cognitive
performance in control animals (Murphy et al., 1997; Passetti
et al., 2003a,b; Baviera et al., 2008). Another example is that the
chronic treatment with clozapine improved deficit of working
memory induced by maternal immune activation, but negatively
affected working memory in mice born to control mothers
(Meyer et al., 2010).

Acute administration of TAT-D2pep improved percentage of
spontaneous alterations in C57BL/6N mice without changes of
their motor activity, suggesting that it mainly acts on working
memory. Interestingly, similar effect on working memory
has been obtained after administration of dual inhibitor of
GSK-3 and PDE7textemdashVP1.15 (Lipina et al., 2013), GSK-3
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inhibitor (VP3.36; Lipina et al., 2016) as well as in PDE4B-
Y358C mutant mouse line (McGirr et al., 2016), supporting the
contribution of DISC1 interactome in cognitive enhancement.

Patients with schizophrenia also have impaired attention,
including an inability to ignore irrelevant stimuli (Heinrichs
and Zakzanis, 1998; Morris et al., 2013). LI reflects a process
of learning to ignore irrelevant stimulus (CS) and has a long
history in clinical and animal studies (Lubow, 2010). In other
words, LI is impaired learning of CS-US associations in PE
group, which was pre-exposed to CS without reinforcement in
comparison with NPE group, without pre-exposures to the CS.
APDs in humans and animals potentiate disrupted LI (Moser
et al., 2000; Lipina et al., 2005, 2011b; Weiner and Arad, 2009;
Lipina and Roder, 2010). To further explore the possibility of
TAT-D2pep as a new APD, we probed effects of the peptide
on the facilitation of LI disrupted by parametric manipulation.
First, LI phenomenon was observed in C57BL/6N mice with 40
pre-exposures and two CS-US conditioning trials, which is in
agreement with previous study (Rimer et al., 2005). However,
five CS-US pairings were able to disrupt LI in mice, supporting
our previous report (Lipina et al., 2005). TAT-D2pep facilitated
the disrupted LI in mice, supporting further its APD-like activity
reported earlier (Su et al., 2014), selectively reducing freezing
in response to the conditioned stimulus in the PE group of
mice, i.e., decreasing their capacity to ‘‘switch’’ attention once
CS, as previously irrelevant stimulus, become relevant. Notably,
TAT-D2pep had no effect of fear memory in the NPE group as
freezing levels in NPE TAT-D2pep- and TAT-D2pep-sc-treated
mice were comparable. Several compounds were able to facilitate
the disrupted LI by parametric manipulations eliciting APD-like
activity in rats (Weiner and Feldon, 1997) and mice (Lipina
et al., 2005; Lipina and Roder, 2010; Lipina et al., 2005, 2013),
including clozapine, d-serine, GlyT1 inhibitor (ALX5407; Lipina
et al., 2005), rolipram and haloperidol (Lipina and Roder, 2010),
GSK-3 blocker (TDZD-8; Lipina et al., 2011a) and dual inhibitor
of GSK-3 and PDE7—VP1.15 (Lipina et al., 2013). This effect
is specific for APDs and is not produced by a wide range of
non-APDs (Dunn et al., 1993). Interestingly, clozapine inhibits
GSK-3 activity in cell culture (Aubry et al., 2009), the rat frontal
cortex (Roh et al., 2007) and the mouse brain (Li et al., 2007),
suggesting that GSK-3 underlies APD-like activity. Study of the
molecular mechanisms of TAT-D2pep action (Su et al., 2014)
revealed that the peptide corrected the reduced phosphorylation
of GSK-3, reflecting its increased enzymatic activity, induced by
quinpirole D2R agonist (Su et al., 2014). Moreover, TAT-D2pep
facilitates β-arrestin-2× clathrin complex formation, promoting
D2R internalization and hence, reducing its availability on cell
surface (Su et al., 2014).

Next, we asked whether uncoupling Disc1 × D2R protein-
protein interactions by the TAT-D2pep is able to alter synaptic
plasticity, which may underlie its nootropic and APDs activities.
First, we did not find any significant facilitation of LTP by
TAT-D2pep in control C57BL/6N mice. This finding could be
viewed as added bonus of TAT-D2pep since acute administration
of APDs impaired LTP in WT animals in the majority of
studies (reviewed in Price et al., 2014). LTP is generally
regarded as the cellular basis of neuroplasticity which underlies

learning and long-term memory (Malenka and Bear, 2004).
We found that activation of D2 receptors by quinpirole
significantly abolished hippocampal LTP, in a way similar to
themethamphetamine-induced LTP impairment (Ishikawa et al.,
2005), which was reversed by TAT-D2pep. This observation
supports the efficacy of the peptide to reverse amphetamine-
induced hyperactivity and apomorphine-induced PPI deficit in
rats (Su et al., 2014). Whether the coincident of TAT-D2pep on
behavior and synaptic plasticity is caused by causality between
these two processes remains to be explored. Nevertheless, we
suggest that exploration of novel environment (in our case T-
maze) per se increases dopamine release in the hippocampus
(Moreno-Castilla et al., 2017) which may be mimicked to some
extend by quinpirole and, hence, the subsequent increase in
D2R internalization induced by TAT-D2pep might stabilize
dopamine neurotransmission and as result facilitate LTP and
improve working memory in mice. To our knowledge there
is no direct evidence for such association, although recent
study demonstrated link between DAT internalization and LTP
facilitation, induced by environmental enrichment (Kim et al.,
2016).

CONCLUSION

In summary, our current study provided further evidence that
TAT-D2pep uncoupling DISC1 × D2R interactions elicited
ability as antipsychotic drug in LI paradigm in genetic mouse
model of schizophrenia—Disc1-L100P mice. Moreover, our new
findings demonstrated for the first time, that the peptide that
uncouples the DISC1 × D2R protein-protein interactions also
exhibited effects as a cognitive enhancer by facilitating of working
memory and cognitive flexibility in C57BL/6Nmice and was able
to corrected LTP deficits induced by D2R stimulation. Future
studies should focus on impact of balanced DISC1 × D2R
protein-protein interactions and the precise molecular/cellular
mechanisms of TAT-D2pep action, with the aim to improve
diagnosis and treatment of schizophrenia.
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