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Direct Utilization of Organic Nitrogen
by Phytoplankton and Its Role in
Nitrogen Cycling Within the Southern
California Bight
Michael Morando* and Douglas G. Capone

Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States

The new production model attempts to quantify the amount of organic material exported
from surface waters based on the form of nitrogen (N) being utilized. Dissolved organic
N (DON) is rarely assessed during such investigations and even less is understood
about the organisms involved in these different transformations within the complex N
cycle. Stable isotope probing (SIP) and uptake activity measurements were combined
to investigate the dynamics of new and regenerated production during the spring within
the Southern California Bight (SCB). We examined the uptake and assimilation of several
nitrogenous substrates at several depths to quantify these processes and identify the
active communities across all three domains of life that are driving each transformation.
Several reoccurring members closely related to the eukaryotic diatom Chaetoceros,
dominated assimilation of NO3

− and urea through the water column, and contributed
greatly to the overall production. Prokaryotic growth was predominantly carried out
through NH4

+ assimilation with transitions from Flavobacteria to Rhodobacteraceae
and Marine Group II Euryarchaeota to Marine Group I Thaumarchaeota with increasing
depth for bacterial and archaeal clades, respectively. Only urea uptake and SIP activity
correlated with each other, likely demonstrating that cellular transport and incorporation
of urea were coupled. SIP was therefore able to identify the organisms primarily
responsible for urea cycling at each depth during this investigation. The role of diatoms
within high nutrient areas are well defined but their part in DON cycling in highly stratified
regimes is less well understood. Here we demonstrate their ability to efficiently scavenge
urea in situ, allowing certain diatoms to outcompete the rest of the community. This
diversion of DON away from the trophically inefficient microbial loop directly back into the
larger, particle forming populations would alter the current view of microbial food webs.
This proposed “phytoplankton shunt” of organic material could potentially enhance the
biological pump by mitigating losses due to trophic transfers while increasing DON flux
due to ballasting. Our results provide unique biogeochemical and ecological insight into
the dynamics and diversity of N cycling and the organisms involved within the surface
waters of the SCB.

Keywords: stable isotope probing, DNA-SIP, function, microbial diversity, nitrogen cycling, new and regenerated
production, urea assimilation, diatoms
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INTRODUCTION

The fate of marine primary production has been of ecological
interest for decades due to its implications for the control of
the biological pump and carbon sequestration. Constraining the
factors that influence the magnitude and variability of production
is critical to understanding marine ecosystems. Production can
be further broken down into two main categories, that which
relies on allochthonous Nitrogen (N) sources (imported or “new
production”) and that which is recycled within the system
(autochthonous or “regenerated production”). According to the
new production model (Dugdale and Goering, 1967; Eppley and
Peterson, 1979), new production is generally associated with
net import fluxes of NO3

−, while recycled production depends
largely on NH4

+ released by heterotrophic consumption within
the system. It was not until decades after this model’s inception
that N2 fixation, a new N source, was fully considered. Together,
they provide a basis to estimate total productivity as well as
C export and export efficiency which can be readily compared
among different systems (Eppley et al., 1979; Platt and Harrison,
1985; Harrison et al., 1987; Aufdenkampe et al., 2001).

Traditionally studies investigating these processes focus on
dissolved inorganic N (DIN) sources, i.e., NH4

+ and NO3
−, but

typically do not assess organic N even though it is the second
most abundant form of fixed N in the ocean (Bronk, 2002). The
degradation of organic matter is critical in turning over resources
that become “trapped” in detritus and a portion of this is released
as dissolved organic N (DON). Without this process, the euphotic
zone would have to solely rely on new sources of N to fuel
primary production, which can be slow and limited in certain
environments, e.g., by the diffusive flux of NO3

− from below the
nitracline (Falkowski, 1998).

Organic N, primarily in the form of urea, has been shown to be
an important N source in aquatic systems, especially when NO3

−

concentrations are low, usually ranging from 15 to 80% of total
N uptake (Varela and Harrison, 1999; Bronk, 2002; Bradley et al.,
2010), averaging ∼20% across a diverse range of marine systems
(Bronk, 2002; Mulholland and Lomas, 2008). Despite this, urea
is often missing from biogeochemical and ecological surveys
(Antia et al., 1980), with NH4

+ representing the only measured
regenerated source (Eppley and Peterson, 1979; Harrison et al.,
1987). Rates of urea uptake are not well characterized globally
but are often comparable to and can exceed that of NH4

+;
ignoring this aspect of production in N uptake surveys was shown
to grossly underestimate primary production over a variety of
ecosystems (Wafar et al., 1995). f -ratios estimated from these
surveys, used to assess the proportion of production derived from
new N sources, were inflated by as much as 55% compared to
calculations including urea uptake (Wafar et al., 1995).

Further complicating our understanding of these dynamics
is the lack of information on the identities of individual
organisms responsible for the mediation of these processes
in situ, such as organic matter degradation, as well as the
mechanisms that regulate them (Berman and Bronk, 2003).
Most new production investigations rely almost exclusively
on biogeochemical measurements, with the composition of
the community involved being viewed as a “black box”

(Aufdenkampe et al., 2001; Michaels et al., 2001; Lipschultz et al.,
2002). This was done originally to avoid further complicating
nutrient-phytoplankton-zooplankton (NPZ) models due to
limited computing capacity, necessitating the use of a simplistic
view of new and regenerated production, where distinct roles
for phytoplankton, i.e., new N uptake, and the prokaryotic,
i.e., recycling of organic matter, communities were pre-
defined. We now know that N cycling is much more
dynamic with members from all three domains of life
participating in a multitude of facets at each level of these
transformations (Zehr and Ward, 2002; Zehr and Kudela,
2011). Yet, questions still remain about the diversity of these
organisms as well as the factors that regulate their individual
activity.

Stable isotope probing (SIP) was employed to provide a
more complete view of new versus regenerated production by
combining this relatively new ecological technique with more
traditional biogeochemical methods. SIP is able to provide a
unique perspective into nutrient cycling because the identity of
the organisms actively involved in the transformation of specific
15N-substrates is directly determined through the incorporation
of the isotopically labeled N into their DNA (Cadisch et al.,
2005; Buckley et al., 2008; Wawrik et al., 2009; Orsi et al.,
2018). SIP’s power comes from its ability to identify active
assimilators of these substrates in the environment, particularly
uncultivated taxa (Buckley et al., 2007b; Nelson and Carlson,
2012; Orsi et al., 2016; Morando and Capone, 2016) where
often little, if anything is known about their ecological roles or
metabolic functions. Multiple N substrates were implemented
to assess both bulk uptake rates as well as the composition of
the active prokaryotic and eukaryotic communities using SIP.
Our goal was to identify the major players involved in new and
regenerated production within the photic zone of the Southern
California Bight (SCB) and thereby to better understand the
dynamics of their marine microbial food webs. The distribution
of this activity was also assessed over several depths to further
understand how differences in environmental parameters, e.g.,
nutrients and light, may have influenced these community
compositions. To the best of our knowledge, the employment of
multiple substrates over multiple depths has not been attempted
previously.

MATERIALS AND METHODS

Water Sampling
Water was collected on the morning of April 10, 2014 aboard
the R/V Yellowfin during a monthly cruise at the San Pedro
Ocean Time-series (SPOT; 33◦33′N, 118◦24′W). SPOT is located
∼20 km offshore within the SCB and has a depth of ∼900 m.
A Niskin rosette system was used to collect water from
surface, 10% light, and 1% light, as determined by PAR sensor
measurements taken during the retrieval of the samples. These
light levels corresponded to depths of approximately 5, 17, and
35 m, respectively (Table 1). All samples were stored in coolers
on blue ice until it was transported back to our laboratory at the
University of Southern California for further processing.

Frontiers in Microbiology | www.frontiersin.org 2 September 2018 | Volume 9 | Article 2118

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02118 September 12, 2018 Time: 17:29 # 3

Morando and Capone Direct Nitrogen Utilization by Phytoplankton

TABLE 1 | Characteristics of the sampling site.

Ambient SIP amendments

Percent light Depth [Chl a] [NH4
+] [NO3

−] [Urea] [NH4
+] [NO3

−] [Urea]

m µg l−1 µM µM µM µM µM µM

50 5 0.31 (0.01) 0.20 (0.06) 0.10 (0.02) 0.28 (0.03) 0.8 1.0 1.0

10 17 0.54 (0.02) 0.25 (0.05) 0.15 (0.02) 0.32 (0.005) 0.8 1.0 1.0

1 35 2.75 (0.05) 0.76 (0.03) 10.7 (0.1) 0.75 (0.01) 0.8 20.0 1.0

Brackets designate concentrations measured with the values in parentheses representing the standard deviation of the mean.

Environmental Variables
Hydrographic data was collected from depth using a CTD system.
Water collected from each depth was either processed within 4–
8 h or frozen at−20◦C for later analysis. Concentrations of NH4

+

and urea were measured (triplicate) as previously described
(Price and Harrison, 1987; Holmes et al., 1999; Taylor et al., 2007).
NOx concentrations (the combined measurement of NO3

− plus
NO2

− and will be referred to as NO3
− from here on) were

analyzed (in triplicate) at the Marine Science Institute Analytical
Laboratory at University of California, Santa Barbara by standard
colorimetric methods (Parsons et al., 1984). Chlorophyll samples
(triplicate) were processed as previously described (Holm-
Hansen and Riemann, 1978).

15N-Isotope Experiments
All isotope experiments were done in acid-washed polyethylene
bottles, followed by three rinses with ambient seawater.
Quadruplicate 1 L samples from each depth were amended to a
final concentration of 0.03, 0.03, and 0.015 µM, with 15N-labeled
(> 98% 15N) NO3

−, urea, or NH4
+ (Sigma-Aldrich, St. Louis,

MO, United States), respectively, to assess the uptake rates of
the microbial community. Three ml of 15N2 gas (Sigma-Aldrich,
St. Louis, MO, United States) were used to measure N fixation
in 2 L incubations. A single bottle was filtered immediately
to establish a T0 atom% 15N of the particulate N for each
substrate at each depth. The remaining bottles were placed in
circulating temperature-controlled incubators that were shaded
by different mesh size combinations of aluminet screening to
simulate ambient light intensity and temperature of the collection
site. Incubations were carried out for ∼24 h. All samples were
filtered onto precombusted (∼5 h at 400◦C) 25 mm GF/F filters
(Whatman, Maidstone, VT, United States), dried, and stored
until analysis on an IsoPrime continuous flow isotope ratio mass
spectrometer (CF-IRMS). IRMS data were corrected for both size
effect and drift before being calculated as previously described
(Dugdale and Goering, 1967).

Stable isotope probing samples were amended with 15N-
labeled (experimental sample) or 14N-unlabeled (control sample)
NH4

+, NO3
−, or urea. Samples were incubated under in situ

light and temperature as described above. Incubations were
terminated after ∼24 h by peristaltic filtration onto 0.2 µm
Supor filters (Pall Life Sciences, Ann Arbor, MI, United States),
immediately flash frozen, and stored under −80◦C until
extraction in the laboratory. Final concentrations for all SIP
amended samples can be found in Table 1.

DNA Extraction and CsCl Gradient
Ultracentrifugation
DNA was extracted from SIP samples using DNeasy kit (Qiagen,
Hilden, Germany) with additional bead beating (30 s) prior to
extraction. DNA was quantified with the Qubit assay (Invitrogen,
Carlsbad, CA, United States) and ∼2000 ng of DNA from
each sample was added to separate centrifuge tubes containing
CsCl. Centrifugation was carried out in an NVT65.2 rotor
(Beckman Coulter, Indianapolis, IN, United States) at ∼44 krpm
for ∼66 h at 20◦C. Gradients were fractioned intact and purified
based on a modified protocol (Neufeld et al., 2007). Individual
gradients were displaced by mineral oil from above and collected
from below as fifty ∼100 µl fractions. Each fraction’s density
was determined using a modified AR200 handheld digital
refractometer (Reichert, United States), as described by Buckley
et al. (2007a). DNA was purified by the addition of two volumes
30% polyethylene glycol (PEG) solution and 20 µg glycogen with
a final 70% ethanol wash.

After elution in 30 µl of TE buffer, the distribution of DNA
in the CsCl gradient was determined through the quantification
of each fraction using the Qubit assay (Invitrogen). Thirty
fractions containing almost all of the bulk DNA distribution
from both isotopically labeled and control samples were
selected for further processing from each experiment. PCR was
carried out on each of these fractions using fusion primers
that amplified a segment of the V4-V5 region of the 16S
rRNA gene (515F 5′-GTGYCAGCMGCCGCGG) and 926R (5′-
CCGYCAATTYMTTTRAGTTT), which allowed multiplexing
through the use of an inline five base pair (bp) barcode on
the forward primer and a unique six bp index on the reverse
primer (Huse et al., 2014). PCR conditions and sequences of
taxa potentially not amplified by these primers are discussed
extensively in Parada et al. (2015). All amplicons were sequenced
on the Illumina MiSeq platform at the University of California,
Davis sequencing core. These reads were first quality filtered
using Trimmomatic (Bolger et al., 2014), prior to merging
forward and reverse reads. Mothur (Schloss et al., 2009) was
then used to stich these reads together and further quality
filter Chimeras were removed using UCHIME (Edgar et al.,
2011) and clustered into OTUs (at 99%) using the average
neighbor algorithm in Mothur (Schloss et al., 2009). Taxonomy
was assigned with Mothur (Schloss et al., 2009) using the
SILVA database v123 (Quast et al., 2013) available on the
Mothur wiki at the time this data was analyzed. OTUs with
low abundance over the majority of fractions being assessed at
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each depth were removed from further analysis to minimize
potential artifacts that may be caused by random banding of low
abundance organisms. Chloroplast sequences analysis followed
the methodology outlined and established by Needham and
Fuhrman (2016). The analysis of dinoflagellate chloroplasts were
not part of this study due to the abnormal nature of these
sequences (Koumandou et al., 2004), so this fraction of the
eukaryotic community has not been evaluated in these results.
Genomic data have been deposited in the European Nucleotide
Archive under accession numbers ERS2402332 to ERS2402751.

An R script was created to process sequencing and gradient
data, isolating and evaluating the DNA bands of each OTU
within their respective gradients. The identity of density shifts,
and therefore assimilation, of the labeled substrate for each taxon
was then determined. Only DNA bands of the same OTU were
compared to limit organism-to-organism variations, such as GC
content, which has been shown to affect DNA density (Buckley
et al., 2007a). Read counts were converted to relative abundance
within each fraction and low abundance fractions were removed.
The bulk DNA distribution measured within each gradient was
used to convert relative abundance into ng DNA per fraction for
each specific OTU, and finally to the percentage of DNA for each
OTU per fraction. Tails of these distributions were trimmed to
the same approximate densities and reintegrated to better isolate
each DNA band and facilitate comparisons. DNA density was
determined for each individual OTU by calculating the weighted
mean density of the entire DNA band measured over all fractions
sequenced. Weighted mean densities were compared between
individual controls and treated OTUs to determine if isotopic
incorporation of the labeled substrate occurred.

The incorporation of unlabeled N does not affect the buoyant
density of DNA. Any variation in banding between the controls
of an individual OTU, i.e., incubated with unlabeled N substrates,
is likely due to the measurement precision associated with that
particular OTU (Hungate et al., 2015). Therefore, all control
fractions from a single OTU were combined over all treatments
prior to calculating DNA density (Supplementary Figure 1). This
enabled a better estimation of the mean density and variance for
the native unlabeled DNA of each individual control OTU, crucial
to evaluating changes in density concomitant with isotopic
uptake. Pooled control DNA density was then compared to a
weighted mean and variance estimate for each OTU exposed to
isotopically labeled substrate, similarly to Hungate et al. (2015).
Statistically significant shifts in DNA density were evaluated
using Welch’s t-test, which can control for potential differences
in variances and samples sizes.

Fractions from OTUs with low total reads can greatly affect
the precision and accuracy of determining the overall density of
each OTU’s DNA band, since the presences or absence of just
a few reads could drastically affect the calculated mean density
(Connelly et al., 2014). OTUs with fractions containing such
low abundance were removed prior to P-value corrections for
multiple comparisons using the Benjamini-Hochberg method
(Benajmini and Hochberg, 1995), with a false discovery rate of
0.1 [a typical threshold used in molecular analysis, including
previous SIP work (Pepe-Ranney et al., 2016)]. Shifts in
DNA density identified through this analysis (Supplementary

Figure 1) represent the incorporation of 15N and ultimately
activity associated with the particular substrate being evaluated
in each experiment.

Stable isotope probing activity at the OTU level and bulk
uptake of each N source was measured in parallel. Uptake
activity occurs upon the transport of substrate into the cell
and while no utilization of the substrate is required, it is often
assumed. This may hold true generally, but instances of uptake
and incorporation becoming decoupled do occur (Falkowski and
Raven, 1997; Falkowski et al., 1998) and the conditions that
promote this are likely different among and within phylogenetic
clades and even individual cells. SIP activity goes a step further
than uptake, by also requiring assimilation of the substrate
into DNA, providing insight into the potential role individual
organisms play in the both the transport and utilization of specific
N sources.

Each OTU has to reach a certain threshold of relative
abundance and 15N incorporation in order to be identified as
enriched, with previous N based SIP studies requiring > 30%
DNA enrichment for positive identification of assimilation
(Murrell and Whiteley, 2011; Connelly et al., 2014). This in
combination with short incubation periods, i.e., 24 h, facilities
the targeting of the most active fraction of the microbial
community that are contributing to the bulk of N assimilation.
Isotopically enriched OTUs identified in this study generally had
similar shifts in DNA density, suggesting comparable rates of
assimilation. Though the absolute amount of N assimilation for
each substrate could not be quantified per OTU, the total number
of OTUs actively assimilating each N substrate was used to
estimate the potential amount of N assimilation occurring at each
depth, assuming each OTU present had a similar assimilation
potential. Assimilation potential would therefore increase as the
number of active organisms identified via SIP increased. This
framework was employed in an attempt to compare bulk uptake
rates and organismal level assimilation to identify common
trends between these related but independent measures of
metabolism.

A rotor failure occurred during an ultracentrifugation causing
the loss of the 10% light NO3

− set of SIP samples and so no data
was generated or included in any of the analysis.

Phylogenetic Analysis
16S rRNA gene sequences of SIP OTUs of interest were aligned
in Geneious (Kearse et al., 2012) with related publically available
sequences obtained from GenBank (Benson et al., 2015) with
ClustalW (Thompson et al., 2002). The K80 model (Kimura,
1980) was used to construct a maximum-likelihood tree with
PhyML (Guindon et al., 2010), which were bootstrapped 1000
times.

RESULTS

Water Sampling and Environmental
Variables
The water column was highly stratified with a shallow mixed
layer depth (MLD) that was estimated to be ∼17 m (Figure 1A),
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FIGURE 1 | Depth profiles of nutrient and uptake rates as compared to eukaryotic OTUs driving urea assimilation. (A) NO3
− (red), NH4

+ (orange), urea (purple), and
Chl a (green) concentrations (B) and uptake rates measured at each light level; N-fixation was also measured (pink). (C) SIP activity for the eukaryotic OTUs
controlling urea assimilation found at each sampling depth depicted in the nutrient and uptake profiles (A,B). Urea utilizers, OTUs showing DNA enrichment, are
identified by a dark blue square and the outline color of each box corresponds to a specific clade. Each measurement corresponds to a specific light level that is
designated on the far left axis. Dashed line represents the mixed layer depth (MLD).

the depth where σθ differed by 0.125 kg m−3 from the surface.
The upper mixed layer where the two shallower samples were
collected was nutrient-poor (Table 1 and Figure 1A). A third
sample was collected from the 1% light level layer in the well-
mixed nutrient-rich waters below (Table 1 and Figure 1A). NH4

+

and NO3
−, were quite low above the MLD, while concentration

maxima for both nutrients were found at the 1% light level
(Table 1 and Figure 1A). Urea concentrations were relatively
higher than dissolved inorganic nitrogen (DIN) within the mixed
layer and also peaked at the deepest depth. The deep chlorophyll
maxima (DCM) coincided with the 1% light level at 35 m, with
2.75 µg l−1, and was the second highest measured chlorophyll
concentration at this or any depth during 2014 at SPOT.

15N-Isotope Experiments
Bulk uptake rate experiments were carried out over a 24 h
period in order to capture both day and night periods and
were treated as net rates integrated over a full day. DIN uptake
rates within the upper mixed layer were fairly constant with an
increase of ∼4-fold at the 1% light level, where it comprised
∼86% of the total uptake (Figure 1 and Supplementary
Table 1). A sharp transition occurred in the major N source
from a predominance of urea uptake in the upper mixed
layer where urea accounted for ∼55% of total integrated
uptake, with a peak at the 10% light level, dropping to only
∼14% at the 1% light level. N2 fixation was measureable but
low above the MLD, and decreased to below detection at
the DIN rich 1% light level (Figure 1A and Supplementary
Table 1). Regenerated N sources, NH4

+ and urea, fueled
production above the 1% light level, where new production,
NO3

− uptake and N fixation, comprised less than a third

of total production. In contrast, below the MLD, regenerated
production was just slightly below 40%. Total integrated nitrogen
uptake for this sampling site was ∼9 mmol N m−2 d−1,
sufficient to support ∼60 mmol C m−2 d−1 (Table 2) based on a
Redfield conversion (Redfield, 1963). Urea uptake accounted for
∼38% of total integrated N uptake and was the major source of
nitrogen supporting production during this sampling, followed
closely by nitrate uptake. An f -ratio, calculated as the ratio of new
(the sum of NO3

− uptake and N fixation) to total production (the
sum of N fixation, NH4

+, urea, and NO3
− uptake; (Eppley and

Peterson, 1979), of ∼0.37 was derived from the total integrated
production (Table 2).

Identification of Activity by 15N
Incorporation by Individual OTUs
Based on our SIP analysis, the prokaryotic fraction of
active assimilators dominated uptake over all light levels
(Supplementary Figure 2) and was composed almost entirely

TABLE 2 | Total N uptake rates integrated over the entire euphotic zone.

Substrate N uptake Total uptakea C fixationb

mmol N m−2 d−1 Fraction mmol C m−2 d−1

Urea 3.4 0.38 21.1

NO3
− 3.1 0.34 20.6

NH4
+ 2.4 0.26 15.8

N2 0.19 0.02 1.3

Total 8.8 1.0 58.7

af-ratio was equal to ∼0.37.
bConverted from N uptake using C:N 6.7.
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Urea NO3
-NH4

+

N substrate

50 10 1
% light

Flavobacteria

γ-proteobacteria

Archaea
Candidatus Nitrosopelagicus
Candidatus Nitrosopumilus
Candidatus Nitrosopumilus 1
Marine Group II
Marine Group II 1
Marine Group II 2
Marine Group II 3
Marine Group II 4
Marine Group II 5
Candidatus Actinomarina
Candidatus Actinomarina 1
OM190
Blastopirellula
Pir4 lineage
Prochlorococcus
Roseibacillus
Roseibacillus 1

Saprospiraceae
Saprospiraceae 1
Aureispira
Marinoscillum

Owenweeksia
Owenweeksia 1
Owenweeksia 2
Wenyingzhuangia
Wenyingzhuangia 1
Wenyingzhuangia 2
Wenyingzhuangia 3

Flavobacteriaceae
Flavobacteriaceae 1
Tenacibaculum
Flavobacteriaceae 2
Tenacibaculum 1
Tenacibaculum 2

Polaribacter
Polaribacter 1
Polaribacter 2
Polaribacter 3
Polaribacter 4

NS5 marine group
NS5 marine group  1
NS5 marine group  2
NS4 marine group
NS4 marine group  1
NS4 marine group  2
NS4 marine group  3
NS4 marine group  4

NS5 marine group  3

Candidatus Nitrosopelagicus
Candidatus Nitrosopumilus
Candidatus Nitrosopumilus 1
Marine Group II
Marine Group II 1
Marine Group II 2
Marine Group II 3
Marine Group II 4
Marine Group II 5
Candidatus Actinomarina
Candidatus Actinomarina 1
OM190
Blastopirellula
Pir4 lineage
Prochlorococcus
Roseibacillus
Roseibacillus 1

Saprospiraceae
Saprospiraceae 1
Aureispira
Marinoscillum

Owenweeksia
Owenweeksia 1
Owenweeksia 2
Wenyingzhuangia
Wenyingzhuangia 1
Wenyingzhuangia 2
Wenyingzhuangia 3

Flavobacteriaceae
Flavobacteriaceae 1
Tenacibaculum
Flavobacteriaceae 2
Tenacibaculum 1
Tenacibaculum 2

Polaribacter
Polaribacter 1
Polaribacter 2
Polaribacter 3
Polaribacter 4

NS5 marine group
NS5 marine group  1
NS5 marine group  2
NS4 marine group
NS4 marine group  1
NS4 marine group  2
NS4 marine group  3
NS4 marine group  4

NS5 marine group  3
NS5 marine group  4
NS5 marine group  5
NS5 marine group  6
NS5 marine group  7
NS5 marine group  8
NS5 marine group  9

NS2b marine group
NS2b marine group 1
NS2b marine group 2
Flavobacteriaceae 3
Flavobacteriaceae 4
Formosa
Formosa 1
Formosa 2
Formosa 3
Formosa 4
Formosa 5

Ulvibacter
Ulvibacter 1

NS9 marine group
NS10 marine group
NS9 marine group 1
NS9 marine group 2
NS9 marine group 3
NS9 marine group 4
NS9 marine group 5

NS9 marine group 6
NS9 marine group 7
NS9 marine group 8
Owenweeksia 3

NS7 marine group
NS7 marine group 1
NS7 marine group 2
NS7 marine group 3

Fluviicola
Fluviicola 1
Fluviicola 2

SAR202 clade
Marinimicrobia  SAR406 clade 
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of two phyla, Bacteroidetes and Proteobacteria, each making
up ∼50% of the total (Figure 2). Enrichment was largely
restricted to NH4

+ assimilation, ∼96% of enriched prokaryotes
were found within these treatments. Only six prokaryotic
OTUs were isotopically labeled with either NO3

− or urea
across all incubations, accounting for ∼12% of the combined
activity within these treatments (Figure 2), while prokaryotes
in general composed ∼74% of the active community across all
NH4

+ treatments (Figure 2 and Supplementary Figure 3). The
eukaryotic phototrophic fraction, as determined by chloroplast
identity (see section “Materials and Methods”), encompassed
∼12% of the total active community across all incubations,
representing ∼38% (36 OTUs) of the eukaryotic phototrophic
community assessed (Figure 3). OTUs with high sequence-
similarity to diatom chloroplasts, including multiple members of
Chaetoceros spp. and Pseudo-nitzschia seriata, largely represented
the active eukaryotic community (Figure 3).

The type of N substrate assessed in each incubation appeared
to have a greater effect on SIP activity than light. The majority
of enriched OTUs were found in the NH4

+ treatments (∼79%)
(Supplementary Figure 3 and Figures 2, 3), which greatly
influenced the overall SIP results. Light did, however, affect the
number of OTUs enriched, as the total amount of SIP activity
decreased with decreasing light (Supplementary Figure 2). The
biggest decline occurred from the 10% to the 1% light level, where
< 3% of all OTUs examined were enriched. Of the enriched OTUs
from the 1% light level, none were enriched with NO3

− and only
two showed significant enrichment from urea, accounting for
just ∼18% of the active OTUs at this depth. Both urea-enriched
OTUs were identified as photosynthetic eukaryotes. Urea was
the only substrate to deviate from this trend of diminishing SIP
activity with depth and had a slight increase in the total number
of enriched OTUs at the 10% light level before falling to close to
zero at the 1% light level. Light appeared to have less of an effect
on the overall SIP activity of the prokaryotic community relative
to the eukaryotic community. The ratio of enriched prokaryotes
to photosynthetic eukaryotes remained fairly constant above
the MLD, however, an increase was observed at the 1% light
level, where eukaryotes only composed ∼32% of the enriched
community (Supplementary Figure 2).

Enrichment of each OTU was compared over all treatments
to identify each organism’s relative contribution to SIP activity.
OTUs were considered to be more active as the number of
treatments in which they were isotopically labeled increased,
since this would indicate that they were either able to assimilate
multiple substrates and/or show activity at multiple depths. These
organisms likely made a relatively greater overall contribution to
activity and N cycling at SPOT during the time of this study.
OTUs enriched in at least two or more treatments made up
∼24% of the total population assessed. Of these enriched OTUs,
∼35% were photosynthetic eukaryotes, an increase of almost
3× compared to the eukaryotic fraction of OTUs labeled in
at least one treatment. Phaeocystis globosa and several diatom
clades were active and assimilating in five of the eight treatments.
The prokaryotic community showed greater diversity in activity,
where enrichment was spread out over a higher percentage of
organisms, with no single OTU being enriched in more than three

different treatments. On average, an enriched prokaryotic OTU
was shown to be statistically significantly enriched, via Welch’s
t-test, in 1.6 treatments, vs. 2.5 for a eukaryotic taxon. Several
members of the Flavobacteriaceae and Rhodobacteraceae were
among the most active OTUs of the prokaryotic community.

DISCUSSION

N Uptake and SIP Activity
The increased availability of nutrients with depth likely drove the
increase in overall uptake (Figures 1A,B). However, a similar
trend was not observed in SIP activity, as defined by the
total number of active OTUs, which decreased over this same
range (Supplementary Figures 2, 3). This may point toward
nutrient concentrations potentially having a stronger effect upon
transport and uptake with light playing a larger role in SIP
activity due to the great costs associated with assimilation. This
was bolstered by enriched OTU’s minimums occurring for each
substrate at the lowest light level (Supplementary Figure 3),
with enrichment minimums for both NH4

+ and NO3
− occurring

at depth despite peak DIN concentrations and chlorophyll
(Figures 1A,B). Less light and, therefore, less energy can lead
to reduced growth efficiency and rates (Hickman et al., 2009,
2012), which may have influenced the increased disassociation
seen between the uptake and assimilation potential with depth.

Storage of substrate prior to incorporation could also affect
SIP activity with many of the taxa present during this study, e.g.,
Chaetoceros, Thalassiosira, and Skeletonema, having the capacity
to take up and store nutrients (Dortch, 1982; Dortch et al.,
1985). Internal storage without utilization would be quantified
as uptake, but since SIP activity requires assimilation as well, no
detectable DNA enrichment would occur. Even short periods of
storage could still delay incorporation long enough to prevent
significant amounts of DNA enrichment from taking place during
these incubations.

Previous investigations of N transformations in the SCB have
also found that a portion of N uptake is often unaccounted for
in the particulate fraction and have linked this “missing DIN
uptake” to DON release (Ward et al., 1989; Bronk and Ward,
2005). They reported that DON release increased dramatically
within the nitracline relative to the nutrient poor surface and was
generally higher with NO3

− compared to NH4
+ as the nutrient

source. Stukel et al. (2011) examined grazing just north of the SCB
and found that phytoplankton growth rates exceeded grazing
rates near the surface, but decreased rapidly with depth relative
to grazing. This higher turnover at depth could result in the
decoupling of uptake from utilization and incorporation by not
allowing enough time for cellularly transported nutrients to be
assimilated through multistep incorporation pathways.

These factors could help provide a possible explanation for the
biggest discrepancies observed between uptake and assimilation
in this study, which occurred at the lowest light level and
included no detectable NO3

− SIP enrichment even though
NO3

− uptake rates peaked (Figure 1A and Supplementary
Figures 2, 4). Similar results were seen in the Alaskan Artic,
where the incorporation of 15NO3

− by the community was
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not detected by SIP despite measurable rates of NO3
− uptake

(Connelly et al., 2014). This missing NO3
− enrichment of the

microbial community may be indicative of a large portion of
new production not actually being incorporated into particles,
lowering the probably of sinking and export.

In contrast to what was observed with the other substrates,
urea SIP activity (Supplementary Figure 3) and diversity
(Figures 1C, 3) actually increased at the 10% light level
for eukaryotes, despite the decrease in availability of light
energy. These increases coincided with an overall rise in
urea uptake (Figures 1B,C), as well as the potential for
eukaryotic urea utilization (Supplementary Figure 3), marked
by a major increase in diatom enrichment and diversity
(Figures 1C, 3), doubling the number of active organisms,
including multiple OTUs of Rhizosolenia, Thalassionema, and
Thalassiosira (Figures 1C, 3). The positive correlation between
urea uptake and incorporation potential (Figures 1B,C and
Supplementary Figure 3) may indicate that these two processes
were more closely coupled than the other substrates investigated.
SIP was therefore likely able to delineate the organisms
responsible for the bulk of urea cycling during this study
(Figures 1B,C), particularly those responsible for the increased
uptake at the 10% light level (Figures 1B,C). Loss of activity by
these taxa at the 1% light level (Figure 1C) may have played a
role in the significant decrease in urea uptake below the MLD
(Figure 1B). This strongly suggests that these clades affected
this peak in urea uptake (Figures 1B,C), contributing a major
portion of the 1.9 mmol N m−2 d−1 of regenerated production
taking place in the mixed layer, 80% of which is associated with
urea.

Urea Assimilation by Diatoms
Profiles of nutrients, density, and temperature all demonstrated
that these waters were highly stratified during the time of
sampling (Figure 1A and CTD profiles not shown). This strong
stratification likely acted as a barrier between the upper surface
layer, i.e., 50 and 10% light levels, and the bottom of the euphotic
zone, i.e., 1% light level, where DIN concentrations were elevated.
Over time, this barrier would restrict DIN flux from depth to the
surface, eventually increasing primary production’s reliance on
the recycling of organic matter if stratification was not broken
down. Similar conditions in previous studies have demonstrated
urea’s potential to fuel regenerative production when other
sources are low, on some occasions even stimulating, enhancing,
and/or prolonging phytoplankton blooms (Kristiansen, 1983;
Kudela and Cochlan, 2000; Glibert et al., 2001, 2006). Urea, a
low-molecular weight, labile form of organic N, was the major
N source fueling uptake within the mixed layer, eclipsing both
DIN sources combined (Figure 1A and Supplementary Table 1).
Eukaryotic phytoplankton dominated urea assimilation, which
was highest within the mixed layer, increasing by almost twofold
at its base (Figures 1B,C, 3). Phytoplankton also dominated urea
uptake within the relatively organic-rich surface waters of the
Mid-Atlantic Bight (Bradley et al., 2010).

The main utilizers of urea within the mixed layer were
broadly identified as diatoms (Figures 1C, 3). The most
active clade across all depths was primarily composed of

OTUs most closely related to several genera of large, centric
diatoms, i.e., several Chaetoceros spp. (Figure 3). These diatoms
were assimilating urea at both depths above the mixed layer,
comprising ∼45% of the urea assimilating fraction at the
uppermost light level, declining to below 30% at the base of
the mixed layer (Figure 3). Their N demand was satisfied
concurrently by both NH4

+ and urea at the 50% light level,
suggested by the enrichment of the same OTUs in each treatment
(Figure 3). This multi-substrate growth for these organisms
continued at the 10% light level, where it peaked (Figure 3)
along with rates of urea uptake (Figure 1B). Multi-substrate
utilization by organisms broadly identified as diatoms, i.e.,
NH4

+, NO3
−, and urea assimilation, was shown via SIP in

the surface waters of the west Florida shelf (Wawrik et al.,
2009). The only activity found below the mixed layer at
SPOT amongst these diatoms were from members of the
Chaetoceros spp. and these organisms were solely utilizing urea
(Figures 1C, 3).

Previous culture work on diatoms has uncovered a functional
ornithine urea cycle along with evidence of near-constitutive
protein turnover and production of urease regardless of N
substrate or availability (Allen et al., 2011). This may be
indicative of having the capacity to rapidly take up, breakdown,
and utilize urea to fuel anaplerotic reactions, promoting the
generation of intermediates for critical metabolic pathways,
e.g., glutamine synthetase/glutamate synthase cycle, proline
syntheses, and tricarboxylic acid cycle (Allen et al., 2011).
Diatoms dominated urea assimilation, composing ∼69, ∼86,
and 100% of the enriched OTUs within each incubation
moving from the surface to depth (Figures 1C, 3). The
agreement between bulk uptake and assimilation of this
substrate within the mixed layer (Figures 1B,C) and the
relatively short incubations lengths, i.e., 24 h, implies these
organisms are not only likely driving the uptake of urea,
but also its incorporation into biomass (Figures 1B,C). This
apparently quick and efficient utilization and incorporation
of urea provides evidence for their use of an active urea
cycle in situ. Allen et al. (2011) hypothesized factors such as
these likely facilitate growth, contributing to their ability to
outcompete other members of the community. Though this was
not evaluated directly in the current study, our findings support
this hypothesis.

Diatoms’ ability to take advantage of organic N release may
provide further explanation for their widespread distribution
and major contribution to production, including in stratified
N-poor surface waters. By utilizing DOM directly, diatoms
may help form a “phytoplankton shunt” that circumvents the
heterotrophic microbial loop that loses a relatively large portion
of C to respiration. Redirecting DOM released by phytoplankton
back into the larger size fractions of the marine food web
could influence the biological pump. The role this plays in
DOM cycling could have implications on future restructuring
of global marine food webs as many climate change models
predict an increase in stratification and subsequent drawdown
of DIN in surface waters over time (Sarmiento et al., 1998;
Falkowski and Oliver, 2007; Moore et al., 2018). Further work is
required to fully understand the mechanism(s) controlling urea
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assimilation by diatoms and its distribution in environmental
samples.

Prokaryotic Influence on NH4
+ Utilization

NH4
+ assimilation was dominated by prokaryotes over all light

levels (Supplementary Figure 3), with activity staying relatively
constant moving from the surface to depth (Figure 2 and
Supplementary Figure 3). Flavobacteria, mainly members of
clades NS2b, NS4, NS5, and NS9, decreased in activity at the
10% light level (Figure 2). This was accompanied by a rise
in growth within the Rhodobacteraceae, which was the most
active prokaryotic clade within the mixed layer (Figure 2). Only
two of the active Rhodobacteraceae OTUs remained enriched
at the 1% light level, with two new OTUs displaying metabolic
activity (Figure 2). Here, Bacteriodetes represented the bulk
of activity, caused mainly by an increase in Flavobacteriaceae
(Figure 2).

Archaea activity was restricted to the two deeper depths,
with NH4

+ as the only N source fueling growth during
this study (Figure 2). Several Marine Group II (MG-II)
Euryarchaeota OTUs accounted for the archaeal activity above
the MLD, while below there was a complete shift in the
active community, switching to the Marine Group I (MGI)
Thaumarchaeota Nitrosopumilus and Nitrosopelagicus (Figure 2).
Nitrosopumilus and Nitrosopelagicus are both known as major
contributors to the oxidation of ammonia to nitrite, the first
step in nitrification (Könneke et al., 2005; Martens-Habbena
et al., 2009; Santoro et al., 2010; Santoro and Casciotti,
2011), a key process regulating the global ocean reservoir
of inorganic N (Ingalls et al., 2006). Their lack of activity
above the 1% light level may be due to the light inhibition
often associated with nitrification (Olson, 1981), together
with the low availability of NH4

+, allowing other organisms,
such as MG-II, to outcompete them. Below the MLD, light
inhibition may have been sufficiently relieved, facilitating the
simultaneous use of NH4

+ for both energy production and
growth by these Thaumarchaeota, leading to a shift in the
dominant archaeal taxa. Archaea had their greatest potential
contribution to N assimilation below the MLD, comprising
almost 20% of the active community as compared to 0 and
∼6% at the 50 and 10% light levels, respectively. This further
demonstrates the importance of archaea in biogeochemical
cycling at the base of the euphotic zone (Francis et al.,
2005).

CONCLUSION

The combination of uptake and SIP employed in this current
study provides new insight into productivity within the
SCB, including the identification of key organisms, their
N substrate preferences, and their potential contribution to
new and regenerated production. The lack of NO3

− SIP
enrichment at depth brings into question what fraction of
new N is being incorporated into biomass and eventually
exported, while organic N is supporting a significant portion of
production and metabolism with a strong correlation between

transport (uptake rates) and assimilation (SIP enrichment).
A diverse array of diatoms, led by a clade of several closely
related, highly active Chaetoceros spp., drove the majority
production, using both inorganic and organic N sources for
growth.

Diatoms are known for their significant contribution to
new production under nutrient rich conditions, forming the
basis of some of the world’s most productive food webs, yet
much less is understood regarding their role in organic N
cycling. Here we reported several major clades that appear to
be able to quickly scavenge organic material and efficiently
utilize this for growth (Figures 1C, 3), i.e., within 24 h.
Diatoms comprised at least 70% of the enriched urea SIP
OTUs at each depth, suggesting they may also be able to
outcompete other members of the community within stratified,
nutrient poor surface waters. If much of the released organic
material is incorporated directly back into phytoplankton,
particularly into large diatoms with the potential to form long
chains and aggregations, DOM’s fate may be altered from
the canonical view (Azam and Malfatti, 2007). We propose
a “phytoplankton shunt” within the marine microbial food
web that could divert a portion of DOM away from the
inefficient microbial loop, where organisms have relatively low
sinking rates and high metabolic C demands (Azam and
Malfatti, 2007). This shunt of organic matter directly back
into these larger, particle forming populations, would further
mitigate losses caused by trophic transfer while increasing
DOM flux due to ballasting (Azam et al., 1983). Ultimately,
this reintroduction of DOM directly into the phytoplankton
community will increase the efficiency of the biological pump
and the flux of N and C, additionally blurring the lines
between new and regenerated N sources. With many climate
models predicting a shift toward increased stratification and
oligotrophy leading toward a major reduction in C flux
(Moore et al., 2018), a better understanding of the role of
DOM and the organisms involved in its transformations is
crucial.
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