Lower bounds on the signed (total) k-domination number depending on the clique number

Lutz Volkmann
Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de

Received: 18 October 2017; Accepted: 9 August 2018
Published Online: 11 August 2018

Communicated by Zehui Shao

Abstract

Let G be a graph with vertex set $V(G)$. For any integer $k \geq 1$, a signed (total) k-dominating function is a function $f: V(G) \rightarrow\{-1,1\}$ satisfying $\sum_{x \in N[v]} f(x) \geq k\left(\sum_{x \in N(v)} f(x) \geq k\right)$ for every $v \in V(G)$, where $N(v)$ is the neighborhood of v and $N[v]=N(v) \cup\{v\}$. The minimum of the values $\sum_{v \in V(G)} f(v)$, taken over all signed (total) k-dominating functions f, is called the signed (total) k domination number. The clique number of a graph G is the maximum cardinality of a complete subgraph of G. In this note we present some new sharp lower bounds on the signed (total) k-domination number depending on the clique number of the graph. Our results improve some known bounds.

Keywords: signed k-dominating function, signed k-domination number, clique number

AMS Subject classification: 05C69

1. Terminology and introduction

Let G be a finite graph with vertex set $V=V(G)$ and edge set $E=E(G)$. We use [4] for terminology and notations which are not defined here. The order of G is given by $n=n(G)=|V|$ and its size by $m=m(G)=|E|$. If $v \in V(G)$, then $N_{G}(v)=N(v)$ is the open neighborhood of v, and $N_{G}[v]=N[v]=N(v) \cup\{v\}$ is the closed neighborhood of v. The degree $d_{G}(v)=d(v)$ of a vertex $v \in V(G)$ is defined by $d(v)=|N(v)|$. The minimum degree of a graph G is denoted by $\delta=\delta(G)$. The clique number $\omega(G)$ of a graph G is the maximum cardinality of a complete subgraph of G. If $S \subseteq V(G)$, then $G[S]$ is the subgraph of G induced by S. For disjoint subsets S and T of vertices of a graph G, we let $[S, T]$ denote the set of edges between S and T. For a real-valued
function $f: V(G) \rightarrow \mathbf{R}$ we define $f(S)=\sum_{v \in S} f(v)$. The weight of f is $f(V(G))$.
Let $k \geq 1$ be an integer, and let G be a graph with minmum degree $\delta \geq k-1(\delta \geq k)$. A signed (total) k-dominating function, abbreviated SkDF (STkDF), of G is defined by Changping Wang in [15] as a function $f: V(G) \rightarrow\{-1,1\}$ such that $f(N[v]) \geq k$ $(f(N(v) \geq k)$ for every $v \in V(G)$. The minimum of the values of $f(V(G))$, taken over all signed (total) k-domination functions f, is called the signed (total) k-domination number, abbreviated SkDN (STkDN), of G and is denoted by $\gamma_{s k}(G)\left(\gamma_{s k}^{t}(G)\right)$. As the condition $\delta \geq k-1(\delta \geq k)$ is clearly necessary, we will always assume that when we discuss $\gamma_{s k}(G)\left(\gamma_{s k}^{t}(G)\right)$ all graphs involved satisfy $\delta \geq k-1(\delta \geq k)$.
If $k=1$, then $\gamma_{s 1}(G)=\gamma_{s}(G)$ is the classical signed domination number, introduced by Dunbar, Hedetniemi, Henning and Slater [3]. Investigation and bounds on the signed k-domination number in graphs and digraphs can be found, for example, in $[1,2,6,8,9,14,15,17]$. The signed total domination number $\gamma_{s 1}^{t}(G)=\gamma_{s}^{t}(G)$ was introduced by Zelinka [16]. Results on the signed total k-domination number can be found in $[5,7-11,13,15]$.
In this note, we derive some new lower bounds on $\gamma_{s k}(G)$ and $\gamma_{s k}^{t}(G)$ in terms of order and clique number. We improve some results of Henning [5] and Wang [15]. In addition, examples will demonstrate that all our bounds are sharp.

2. Lower bounds

The main tool of our results is the famous theorem of Turán [12].

Theorem 1. Let $r \geq 1$ be an integer, and let G be a graph of order n. If the clique number $\omega(G) \leq r$, then

$$
2|E(G)| \leq \frac{(r-1) n^{2}}{r}
$$

Theorem 2. Let $r \geq 2$ and $k \geq 1$ be integers. If G is a graph of order n with clique number $\omega(G) \leq r$, then

$$
\gamma_{s k}(G) \geq \frac{2}{r-1} \sqrt{(r-1) r(k+1) n+r^{2}}-n-\frac{2 r}{r-1}
$$

Proof. Let $f: V(G) \rightarrow\{-1,1\}$ be a SkDF of G such that $\gamma_{k s}(G)=f(V(G))$. Define the sets $P=\{v \in V(G) \mid f(v)=1\}$ and $M=\{v \in V(G) \mid f(v)=-1\}$. This definition yields to $\gamma_{s k}(G)=|P|-|M|=2|P|-n$. Since $f(N[v]) \geq k$ for $v \in V(G)$, we observe that each vertex $v \in M$ has at least $k+1$ neighbors in P. Furthermore, $|N(v) \cap M| \leq|N(v) \cap P|-k+1$ for each vertex $v \in P$. Therefore Theorem 1 leads to

$$
\begin{aligned}
(k+1)(n-|P|) & =(k+1)|M| \leq|[M, P]|=\sum_{v \in P}|N(v) \cap M| \\
& \leq \sum_{v \in P}(|N(v) \cap P|-k+1)=2|E(G[P])|-(k-1)|P| \\
& \leq \frac{r-1}{r}|P|^{2}-(k-1)|P| .
\end{aligned}
$$

We deduce that

$$
|P|^{2}+\frac{2 r}{r-1}|P| \geq \frac{r(k+1) n}{r-1}
$$

and thus

$$
\left(|P|+\frac{r}{r-1}\right)^{2} \geq \frac{r(k+1) n}{r-1}+\frac{r^{2}}{(r-1)^{2}}
$$

and so

$$
|P|+\frac{r}{r-1} \geq \frac{1}{r-1} \sqrt{(r-1) r(k+1) n+r^{2}}
$$

It follows that

$$
\gamma_{k s}(G)=2|P|-n \geq \frac{2}{r-1} \sqrt{(r-1) r(k+1) n+r^{2}}-n-\frac{2 r}{r-1},
$$

and the proof is complete.
Theorem 2 is an extension of a result by Wang [15], who has proved the bound of Theorem 2 for bipartite graphs.

Example 1. Let $r \geq 2$ and $k \geq 1$ be integers, and let $T_{r, k+1}$ be the complete r-partite graph with the partite sets $X_{1}, X_{2}, \ldots, X_{r}$ such that $\left|X_{1}\right|=\left|X_{2}\right|=\cdots=\left|X_{r}\right|=k+1$. In addition, let $Y_{1}, Y_{2}, \ldots, Y_{r}$ be further vertex sets such that $\left|Y_{1}\right|=\left|Y_{2}\right|=\cdots=\left|Y_{r}\right|=$ $k(r-2)+r$. Now define H as the union of $T_{r, k+1}$ with the vertex sets $Y_{1}, Y_{2}, \ldots, Y_{r}$ such that $H\left[X_{i} \cup Y_{i}\right]$ is the complete bipartite graph with the partite sets X_{i} and Y_{i} for $1 \leq i \leq r$. We define $f: V(H) \rightarrow\{-1,1\}$ by $f(v)=1$ for $v \in V\left(T_{r, k+1}\right)$ and $f(v)=-1$ for $v \in \bigcup_{i=1}^{r} Y_{i}$. Since $f\left(N_{H}[v]\right)=k$ for each $v \in V(H)$, the function f is a signed k-domination function of H with weight

$$
r(k+1)-r(k(r-2)+r)=r(3 k+1-k r-r),
$$

and therefore $\gamma_{s k}(H) \leq 3 k r+r-k r^{2}-r^{2}$. Since

$$
n(H)=r(k+1)+r(k(r-2)+r)=r(k r+r+1-k),
$$

Theorem 2 implies that

$$
\begin{aligned}
\gamma_{s k}(H) & \geq \frac{2}{r-1} \sqrt{(r-1) r(k+1) n(H)+r^{2}}-n(H)-\frac{2 r}{r-1} \\
& =\frac{2}{r-1} \sqrt{(r-1) r(k+1) r(k r+r+1-k)+r^{2}}-r(k r+r+1-k)-\frac{2 r}{r-1} \\
& =\frac{2 r}{r-1} \sqrt{(r-1)(k+1)(k r+r+1-k)+1}-r(k r+r+1-k)-\frac{2 r}{r-1} \\
& =\frac{2 r}{r-1} \sqrt{(k r+r-k)^{2}}-r(k r+r+1-k)-\frac{2 r}{r-1} \\
& =\frac{2 r}{r-1}(k(r-1)+r)-r(k r+r+1-k)-\frac{2 r}{r-1} \\
& =2 k r+\frac{2 r}{r-1}(r-1)-k r^{2}-r^{2}-r+k r \\
& =3 k r+r-k r^{2}-r^{2}
\end{aligned}
$$

and thus $\gamma_{s k}(H)=3 k r+r-k r^{2}-r^{2}$.

Recently, Volkmann [14] has proved the following theorem.
Theorem 3. Let $r \geq 2$ and $k \geq 1$ be integers, and let G be a graph of order n with clique number $\omega(G) \leq r$. If $c(G)=\lceil(\delta(G)+k+1) / 2\rceil$, then

$$
\gamma_{s k}(G) \geq \frac{r}{r-1}\left(-(c(G)-k+1)+\sqrt{(c(G)-k+1)^{2}+4 \frac{r-1}{r} c(G) n}\right)-n .
$$

Using Example 1, we observe that $\delta(H)=k+1$ and hence $c(H)=k+1$. Applying Theorem 3, we conclude that

$$
\begin{aligned}
\gamma_{s k}(H) & \geq \frac{r}{r-1}\left(-(c(H)-k+1)+\sqrt{(c(H)-k+1)^{2}+4 \frac{r-1}{r} c(H) n(H)}\right)-n(H) \\
& =\frac{r}{r-1}\left(-2+\sqrt{4+4 \frac{r-1}{r}(k+1) r(k r+r+1-k)}\right)-n(H) \\
& =\frac{2 r}{r-1} \sqrt{(r-1)(k+1)(k r+r+1-k)+1}-r(k r+r+1-k)-\frac{2 r}{r-1} \\
& =3 k r+r-k r^{2}-r^{2} .
\end{aligned}
$$

Thus Example 1 shows that Theorem 3 is sharp too.

Theorem 4. Let $r \geq 2$ and $k \geq 1$ be integers. If G is a graph of order n with clique number $\omega(G) \leq r$, then

$$
\gamma_{s k}^{t}(G) \geq 2 \sqrt{\frac{k r n}{r-1}}-n
$$

Proof. Let $f: V(G) \rightarrow\{-1,1\}$ be a STkDF of G such that $\gamma_{k s}^{t}(G)=f(V(G))$. Define the sets $P=\{v \in V(G) \mid f(v)=1\}$ and $M=\{v \in V(G) \mid f(v)=-1\}$. This definition leads to $\gamma_{s k}^{t}(G)=|P|-|M|=2|P|-n$. Since $f(N(v)) \geq k$ for $v \in V(G)$, we observe that each vertex $v \in M$ has at least k neighbors in P. Furthermore, $|N(v) \cap M| \leq|N(v) \cap P|-k$ for each vertex $v \in P$. Therefore Theorem 1 leads to

$$
\begin{aligned}
k(n-|P|) & =k|M| \leq|[M, P]|=\sum_{v \in P}|N(v) \cap M| \\
& \leq \sum_{v \in P}(|N(v) \cap P|-k)=2|E(G[P])|-k|P| \\
& \leq \frac{r-1}{r}|P|^{2}-k|P| .
\end{aligned}
$$

We deduce that

$$
|P|^{2} \geq \frac{k r n}{r-1}
$$

and thus

$$
\gamma_{k s}^{t}(G)=2|P|-n \geq 2 \sqrt{\frac{k r n}{r-1}}-n
$$

as desired

Theorem 4 is a generalization of a result by Wang [15], who has presented the lower bound of Theorem 4 for bipartite graphs. The special case $k=1$ of this bound by Wang [15] can be found in the paper [5] of Henning. Note that the proof Theorem 4 is shorter and more transparent than these in [5] and [15]. Wang has given examples which show that Theorem 4 is sharp for $r=2$. Next we present examples which show that Theorem 4 is also sharp for $r \geq 3$.

Example 2. Let $r \geq 3$ and $k \geq 1$ be integers, and let $T_{r, k}$ be the complete r-partite graph with the partite sets $X_{1}, X_{2}, \ldots, X_{r}$ such that $\left|X_{1}\right|=\left|X_{2}\right|=\cdots=\left|X_{r}\right|=k$. In addition, let $Y_{1}, Y_{2}, \ldots, Y_{r}$ be further vertex sets such that $\left|Y_{1}\right|=\left|Y_{2}\right|=\cdots=\left|Y_{r}\right|=k(r-2)$. Now define Q as the union of $T_{r, k}$ with the vertex sets $Y_{1}, Y_{2}, \ldots, Y_{r}$ such that $Q\left[X_{i} \cup Y_{i}\right]$ is the complete bipartite graph with the partite sets X_{i} and Y_{i} for $1 \leq i \leq r$. We define $f: V(Q) \rightarrow\{-1,1\}$ by $f(v)=1$ for $v \in V\left(T_{r, k}\right)$ and $f(v)=-1$ for $v \in \bigcup_{i=1}^{r} Y_{i}$. Since $f\left(N_{Q}(v)\right)=k$ for each $v \in V(Q)$, the function f is a signed total k-domination function of Q with weight $3 k r-k r^{2}$ and therefore $\gamma_{s k}^{t}(Q) \leq 3 k r-k r^{2}$. Since $n(Q)=k r(r-1)$, Theorem 4 implies that

$$
\begin{aligned}
\gamma_{s k}^{t}(Q) & \geq 2 \sqrt{\frac{k r n(Q)}{r-1}}-n(Q) \\
& =2 \sqrt{\frac{k r k r(r-1)}{r-1}}-k r(r-1) \\
& =2 k r-k r^{2}+k r=3 k r-k r^{2}
\end{aligned}
$$

and thus $\gamma_{s k}^{t}(Q)=3 k r-k r^{2}$.

As a generalization of a result by Shan and Cheng [10], Samadi and Mojdeh [9] and indepently Volkmann [13] proved the following theorem.

Theorem 5. Let $r \geq 2$ and $k \geq 1$ be integers, and let G be a graph of order n with clique number $\omega(G) \leq r$. If $c=\lceil(\delta(G)+k) / 2\rceil$, then

$$
\gamma_{s k}(G) \geq \frac{r}{r-1}\left(-(c-k)+\sqrt{(c-k)^{2}+4 \frac{r-1}{r} c n}\right)-n .
$$

Example 2 shows that Theorem 5 is also sharp.

References

[1] M. Atapour, S.M. Sheikholeslami, R. Hajypory, and L. Volkmann, The signed k-domination number of directed graphs, Cent. Eur. J. Math. 8 (2010), no. 6, 1048-1057.
[2] W. Chen and E. Song, Lower bounds on several versions of signed domination number, Discrete Math. 308 (2008), no. 10, 1837-1846.
[3] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, and P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics, and Applications Vol. 1, Wiley, New York, 1995, 311-322.
[4] T.W. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[5] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004), no. 1-3, 109-125.
[6] M.A. Henning and P.J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. 158 (1996), no. 1-3, 87-98.
[7] S.M. Hosseini Moghaddam, D.A. Mojdeh, B. Samadi, and L. Volkmann, New bounds on the signed total domination number of graphs, Discuss. Math. Graph Theory 36 (2016), no. 2, 467-477.
[8] H. Liang, On the signed (total) k-domination number of a graph, J. Combin. Math. Combin. Comput. 89 (2014), 87-99.
[9] D.A. Mojdeh and B. Samadi, New and improved results on the signed (total) k domination number of graphs, Discrete Math. Algorithms Appl. 9 (2017), no. 2, Article ID: 1750024.
[10] E. Shan and T.C.E. Cheng, Remarks on the minus (signed) total domination in graphs, Discrete Math. 308 (2008), no. 15, 3373-3380.
[11] S.M. Sheikholeslami and L. Volkmann, Signed total k-domination numbers of directed graphs, An. Şt. Univ. Ovidius Constanţa 18 (2010), no. 2, 241-252.
[12] P. Turán, On an extremal problem in graph theory, Math. Fiz. Lapok 48 (1941), 436-452 (in Hungarian).
[13] L. Volkmann, Lower bounds on the signed total k-domination number of graphs, Aequat. Math. 90 (2016), no. 2, 271-279.
[14] _ Lower bounds on the signed k-domination number of graphs, Ars Combin. 135 (2017), 357-367.
[15] C. Wang, The signed k-domination numbers in graphs, Ars Combin. 106 (2012), 205-211.
[16] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001), no. 2, 225-229.
[17] Z. Zhang, B. Xu, Y. Li, and L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999), no. 1-3, 295-298.

