
SOFTWARE TOOL ARTICLE

The Mega2R package: R tools for accessing and processing

genetic data in common formats [version 1; peer review: 3

approved]

Robert V. Baron1, Justin R. Stickel1, Daniel E. Weeks 1,2

1Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
2Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA

First published: 29 Aug 2018, 7:1352
https://doi.org/10.12688/f1000research.15949.1
Latest published: 25 Feb 2019, 7:1352
https://doi.org/10.12688/f1000research.15949.2

v1

Abstract
The standalone C++ Mega2 program has been facilitating data-
reformatting for linkage and association analysis programs since
2000. Support for more analysis programs has been added over time.
Currently, Mega2 converts data from several different genetic data
formats (including PLINK, VCF, BCF, and IMPUTE2) into the specific
data requirements for over 40 commonly-used linkage and
association analysis programs (including Mendel, Merlin, Morgan,
SHAPEIT, ROADTRIPS, MaCH/minimac3). Recently, Mega2 has been
enhanced to use a SQLite database as an intermediate data
representation. Additionally, Mega2 now stores bialleleic genotype
data in a highly compressed form, like that of the GenABEL R package
and the PLINK binary format. Our new Mega2R package now makes it
easy to load Mega2 SQLite databases directly into R as data frames. In
addition, Mega2R is memory efficient, keeping its genotype data in a
compressed format, portions of which are only expanded when
needed. Mega2R has functions that ease the process of applying
gene-based tests by looping over genes, efficiently pulling out
genotypes for variants within the desired boundaries. We have also
created several more functions that illustrate how to use the data
frames: these permit one to run the pedgene package to carry out
gene-based association tests on family data, to run the SKAT package
to carry out gene-based association tests, to output the Mega2R data
as a VCF file and related files (for phenotype and family data), and to
convert the data frames into GenABEL format. The Mega2R package
enhances GenABEL since it supports additional input data formats
(such as PLINK, VCF, and IMPUTE2) not currently supported by
GenABEL. The Mega2 program and the Mega2R R package are both
open source and are freely available, along with extensive
documentation, from https://watson.hgen.pitt.edu/register for Mega2
and https://CRAN.R-project.org/package=Mega2R for Mega2R.

Open Peer Review

Reviewer Status

Invited Reviewers

1 2 3

version 2

(revision)
25 Feb 2019

report report

version 1
29 Aug 2018 report report report

Dajiang J. Lui, Penn State College of

Medicine, Hershey, USA

1.

Alejandro Q. Nato, Jr. , Marshall

University, Huntington, USA

2.

Derek Gordon , Rutgers, The State

University of New Jersey, Piscataway, USA

3.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201803685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://f1000research.com/articles/7-1352/v1
https://f1000research.com/articles/7-1352/v1
https://orcid.org/0000-0001-9410-7228
https://doi.org/10.12688/f1000research.15949.1
https://doi.org/10.12688/f1000research.15949.2
https://watson.hgen.pitt.edu/register/
https://CRAN.R-project.org/package=Mega2R
https://f1000research.com/articles/7-1352/v2
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://f1000research.com/articles/7-1352/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0002-8745-9046
https://orcid.org/0000-0003-2945-1748
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.15949.1&domain=pdf&date_stamp=2018-08-29

Corresponding author: Daniel E. Weeks (weeks@pitt.edu)
Author roles: Baron RV: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Validation, Writing –
Original Draft Preparation, Writing – Review & Editing; Stickel JR: Software, Validation, Writing – Review & Editing; Weeks DE:
Conceptualization, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision,
Validation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by a National Institutes of Health grant [R01 GM076667] to DEW and the University of
Pittsburgh.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2018 Baron RV et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Baron RV, Stickel JR and Weeks DE. The Mega2R package: R tools for accessing and processing genetic data
in common formats [version 1; peer review: 3 approved] F1000Research 2018, 7:1352 https://doi.org/10.12688/f1000research.15949.1
First published: 29 Aug 2018, 7:1352 https://doi.org/10.12688/f1000research.15949.1

Keywords
database, genotypes, genome-wide association studies, linkage,
Mega2, phenotypes, R, SQLite, gene-based association tests

This article is included in the RPackage

gateway.

Page 2 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

mailto:weeks@pitt.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.15949.1
https://doi.org/10.12688/f1000research.15949.1
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/rpackage

Introduction
During an association or linkage analysis project, one may need to analyze the data with several different
programs. Unfortunately, it can often be quite difficult to get one’s data in the proper format required by each
different computer program. Not only must the data be converted to the proper format, but also the loci must be
reordered into the desired order. Writing custom reformatting scripts can be error-prone and very time-consuming.
To address these problems, we created Mega21,2, which can be obtained from the University of Pittsburgh site
or via BitBucket. The early Mega2 could read input data in only a few formats: LINKAGE format3–5 and Mega2
format. The Mega2 format allowed you to specify additional information in a more straightforward way, via a
simple tabular format, than can be done with LINKAGE format. The earliest versions of Mega2 were written in the
C computer language.

Over time, Mega2 was upgraded to the C++ computer language and some of the internals were rewritten. Refor-
matting data for more analysis programs was gradually added to Mega2. The formats for genetic data changed
over time, and Mega2 was enhanced to read input data in PLINK format6, VCF format7, and IMPUTE2 format8–11.
The volume of genome-wide marker data increased significantly, so Mega2 was extended to support the
compression of biallelic genotype data (though still supporting microsatellite and other polymorphic data as non-
compressed legacy data). As the volume of genotype data increased, it became slow and tedious to validate
the genotype data and generate allele frequency data for each separate analysis that Mega2 was used for. Rather,
Mega2 was restructured so that the validation and meta data generation were performed once for a given data set.

Until recently, Mega2 used C language structures to store its intermediate data before analysis. Several alterna-
tive strategies were considered to save these data for subsequent reuse without having to recompute, reanalyze,
and revalidate the data. The first choice was to dump the raw structure data to disk. Reloading the data is fast
but it is much harder to inspect the data for debugging. Also, the internal pointers would have to be relocated
to new storage areas. A better solution, for many reasons, was to create a SQLite table for each C structure and
“insert” the C structure data into the table. Mega2 later uses this database, via a menu-driven interface, to provide
the data needed for any particular analysis. In addition, the data in the database are inherently inspectable and
there are database tools to help to selectively extract data. The data are portable and can be shared on different
platforms. Since interfaces for many languages are provided for SQLite, the data are accessible in many lan-
guages besides C. Of particular interest is R12 because there is a wealth of existing genetic analysis programs
already created, well documented, and available in standard repositories such as The Comprehensive R Archive
Network (CRAN) and Bioconductor. Also, researchers regularly use R to develop new analysis algorithms because
R provides a rich environment for statistical computing with many useful libraries.

We describe here our Mega2R package, which makes it easy to load SQLite Mega2 databases directly into R as
data frames for further analysis and manipulation. In addition, we document several R functions that illustrate
how to use the Mega2R data frames as well as perform useful functions: the Mega2pedgene function to run the
pedgene R package13 to carry out gene-based association tests on family data using selected marker subsets,
the Mega2SKAT function to run the SKAT R package14 to carry out gene-based association tests on family data
using selected marker subsets, the Mega2VCF function to output the Mega2R data as a VCF file and related files
(for phenotype and family data), and the Mega2GenABEL function to convert the data frames into GenABEL R
objects15. Typically, these R functions are designed to process a small collection of markers at a time. Our
versions process all the markers in a transcript for as many genes as desired. Alternatively, the transcripts can be
abstracted to just a table of chromosome/start/end base pair positions. Mega2R eases this process of looping over
genes, efficiently pulling out genotypes for variants within the transcript boundaries. In addition to describing the
functionality of our Mega2R package, we also provide a Use Case illustrating how to apply it in practice.

Methods
Implementation
Mega2R is an R package which loads a Mega2-created SQLite database of genetic information into R as
data frames for further analysis. Parts of Mega2R are written in C++ for speed and efficiency. Mega2R is
memory efficient, keeping its genotype data in a compressed format, portions of which are only expanded
when needed. Mega2R has functions that ease the process of applying gene-based tests by looping over genes,
efficiently pulling out genotypes for variants within the desired boundaries.

Operation
The Mega2R package is available from the CRAN repository, and can be run within the R environment on Windows,
Mac OS X, and Linux computers. The Mega2R CRAN page documents package dependencies. To prepare an input

Page 3 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://watson.hgen.pitt.edu/register/
https://bitbucket.org/dweeks/mega2
https://www.sqlite.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://www.bioconductor.org/
https://CRAN.R-project.org/package=Mega2R
https://CRAN.R-project.org/package=Mega2R

database for Mega2R, the C++ program Mega21,2 is needed; it can be obtained from the University of Pittsburgh
site or via BitBucket.

Environments
Before we discuss the Mega2R package, we must describe one important convention of how the database infor-
mation is stored and how it is accessed later. The Mega2R R package function, read.Mega2DB, reads the tables
needed by Mega2R from a Mega2 SQLite database into a collection of data frames. It returns an R environment
containing these data frames. (If you are unfamiliar with environments, you can think of them as data frames.
For example, ’ENV’$locus_table will access the locus_table variable from the environment, ’ENV’; this is sim-
ilar to fetching an “observation” from a data frame. The difference is when you change data in an ordinary
data frame passed to a function, the change does not affect the original data frame; only the function’s local data
is changed and all changes are forgotten when the function exits. If you change the data in a data frame of an
environment passed to a function, the change is permanent.)

All Mega2R functions that do not return an environment need to have an environment supplied as an argument;
the environment is used to store the data frames that contain the SQLite database. There are two ways to pass
the environment to a Mega2R function. If you assigned the result of read.Mega2DB to the variable ’seqsimr’,
then you could supply the value ’seqsimr’ as the named argument, ’envir’:

 showMega2ENV(envir = seqsimr)

The second choice is a bit of a “hack” but it is very convenient. Every Mega2R function (that does not return an
environment) has a named argument, ’envir’, defined to take on the default value ’ENV’, as in

 showMega2ENV = function(envir = ENV) { ... }

The code above, assigns the local variable, ’envir’ the default value ’ENV’. Thus, if ’envir’ is not provided in the
function call, R will use the default assignment and look up the value of ’ENV’. This “hack” does not handle the
case where ‘ENV‘ is defined in an outer frame, not the global environment. In this situation, we search backwards
from the calling frame to find the first ‘ENV‘ and use it.

The Mega2 SQLite database
In the current Mega2 design, there are SQLite tables for loci data, marker data, allele data, map data, phenotype
data, and genotype data as well as pedigree and person data. For completeness, Supplementary File 1 shows all the
tables and their fields. Here, we will make a few general observations about the tables. The first issue was mentioned
earlier: How should we handle pointers. Where necessary, we added a field to a table, which we call a “link” field,
viz. locus_link. This field is a unique integer. When the data are read back in by Mega2 via C++, these links are
looked up to find a pointer to use. Consider the locus_table and the allele_table. They both have a locus_link. The
link in the locus_table is hashed and a pointer to the corresponding entry in the locus_table is stored. When the
allele_table is read, the locus_link is looked up, then a pointer is inserted into a new field in the “in memory”
locus_table (using the look up pointer) to point to the memory location of the allele_table entry, i.e. the
locus_table in memory will point to the allele_table. These “links” are also very useful in R for performing
merges of related tables. For example, in the above case, a merge can produce a table with rows containing both
locus and allele data. Similar links are used to associate family data with person data, as well as to associate
person data with phenotype data and genotype data.

Most tables are composed of integer, numeric and string data (see Supplementary File 1). The phenotype table is
an exception. The normal trick of adding an extra column (e.g., the phenotype id) per row to indicate which phe-
notype’s data is contained in the row becomes more complicated because affection status traits and quantitative
traits have different data types and number of values. Instead, the phenotype data for each person is stored as
one long raw vector composed of multiple values with 8 bytes of data per value either representing an affection
status value or a quantitative value. Similarly, the genotype data are stored as a raw vector with a pair of bytes
representing a genotype for non bialleleic markers and a raw compressed bit vector with two bits per genotype for
bialleleic markers. Note that the internal compressed genotype vector used by Mega2 is one long vector, while the
genotype data written to the database is split into separate vectors for each chromosome. The end of each vector
may have 0, 1, 2, or 3 unused bit pairs representing no markers. When reading back in from the database, the Mega2
C++ program reassembles the vectors without these gaps. The R version is not as sophisticated: it reassembles
all the chromosome vectors and includes these gaps. It then takes care when referencing the nth marker, to add

Page 4 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://watson.hgen.pitt.edu/register/
https://watson.hgen.pitt.edu/register/
https://bitbucket.org/dweeks/mega2

in the gaps of all the chromosomes that come before the nth marker’s chromosome. Note that reassembling
the data with no “virtual markers” would require a lot of bit manipulations in R which would not be terribly
efficient; while keeping track of the virtual markers introduced by the gaps is not particularly hard.

The Mega2R package base functions
After using Mega2 to compress and store one’s genetic data in a Mega2 SQLite database, then one can use the
Mega2R read.Mega2DB function to read the database into R data frames within the specified R environment.

library(Mega2R)
ENV = read.Mega2DB("seqsimr.db", verbose = TRUE)

If the verbose flag is true, summary statistics will be printed as the data frames are created. After running
the read.Mega2DB function, the ENV environment will contain a set of data frames ending in “_table”, viz.
person_table, locus_table. These contain raw data copied directly from the Mega2 SQLite database (although
some of the original fields that are only needed for Mega2 are not copied).

The read.Mega2DB function also creates other data frames containing derived information. The function mkfam
is called by read.Mega2DB to create the fam data frame, the equivalent of a PLINK .fam sample information file.
It merges the rows from the pedigree_table, person_table, and phenotype_table to make a fam data frame. The
pedigree_table has a pedigree_link, person_table has a pedigree_link and person_link, and phenotype_table
has a person_link field. These link fields are used by the R ’merge’ function to assemble the data. Later, you may
want to prune the fam data frame to restrict the samples processed. For, example you might want to eliminate
samples with unknown case/control status. After you prune the fam information, the function, setfam, will
set the fam data frame while also appropriately pruning the phenotype_table and unified_genotype_table to contain
only those persons left in the fam data frame.

The unified_genotype_table collects all the raw byte vectors from the genotype_table stored in the input SQLite
database by chromosome for each person and concatenates them into a new vector for each person. The con-
catenation can introduce up to three “virtual markers” (as mentioned above) at the end of each chromosome if
the number of markers contained is not an exact multiple of 4 (genotypes per byte). The marker_table con-
tains the offset of the marker genotype data assuming all the markers across all the chromosomes are contiguous.
There is an analogous offset column needed for the unified_genotype_table accounting for the “virtual
markers” in the gaps; this offset column is computed and added to the marker_table. The markers data frame is a
subset of the marker_table data containing only the name, chromosome, position, original marker_table offset and
marker offset into the unified_genotype_table vector.

Mega2R marker range functions
We might have genotype data for thousands of samples and millions of markers in a study, but we are unlikely
to have the memory to support the associated genotype matrix in R. The Mega2 genotype data is compressed in
the SQLite database and remains compressed in its data frame. Most of the time, we do not need to decom-
press all of it at once. We typically want to examine the markers on a specific chromosome or in the region
of some genes of interest. We only decompress the set of markers we need. The key idea is we want to find the
set of markers that lie within some base pair range and process just those markers and then we repeat this for the
“next” range. We provide two ways to specify these ranges, via the setRanges and setAnnotations functions.
In addition, we want to iterate through multiple ranges as would appear in a set of selected gene transcripts and
process the markers. To do this, we process each range of markers by invoking a callback function on the
range, markers and related data, via one of the applyFnToRanges, applyFnToGenes, or applyFnToMarkers
functions.

The setRanges and applyFnToRanges functions
One of Mega2R’s strengths is its ability, via the applyFnToRanges and applyFnToGenes functions, to loop over a
list of ranges or genes, for each one selecting markers that lie within the region/gene of interest. To do this, one
has to have well-defined gene boundaries. By default, Mega2R provides an internal list of the chromosome
and base pair ranges for the transcripts defined in the refGene table from the UCSC Genome Browser reference
assembly GRCH37. The list was modified to eliminate multiple records of the same gene with the exact same
transcript start and transcript end. The list contains 29,062 records. But there are several reasons that the default
ranges may not be to your liking. The setRanges function lets you use custom ranges; it has two arguments: a
range data frame that specifies at least the chromosome, the start position, end position (and optionally a name)

Page 5 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://grch37.ensembl.org/index.html

of each range, and an index vector of three integers that indicates which columns in the range data frame contain
the chromosome, start position and end position. If the range data frame also contains a name column, the index
vector should have a final fourth integer that indicates the column containing the name.

The applyFnToRanges function (and also the applyFnToGenes function, described below) take an initial argu-
ment that is a callback function that is called repeatedly for each transcript that has markers present. They also
take a final argument that is an R environment. The applyFnToRanges function, with no additional arguments, will
iterate through each row of the default Mega2R ranges, determine the markers contained between the start and
end and then invoke a callback function. Alternatively, applyFnToRanges may be given a range argument and a
selector argument which will cause it to use the ranges supplied rather than the default. These two arguments are
the same format as the corresponding arguments provided to setRanges.

The applyFnToRanges function requires a callback function of three arguments: the first is a data frame
of the markers in the range, the second is a single row from the data frame that defines the range (minimally it
has a name, ID, start position, end position, and chromosome), and the third argument is the R environment that
contains all the Mega2R data frames. The callback function can apply whatever analysis is required and it can
access the other data frames available in the R environment and even store intermediate results back into the R
environment. Typically, the callback function will call either getgenotypes or getgenotypesraw to get a matrix
of genotypes values for the markers in the range.

The setAnnotations and applyFnToGenes functions
Mega2R can also load a list of genes and their transcripts from the Bioconductor data annotations: “org.Hs.eg.
db”and “TxDb.Hsapiens.UCSC.hg19.knownGene”. The former translates a gene name or alias to the entrez
ID of the gene. The latter gives start position, end position, and chromosome for each transcript known for every
gene. You might want to use the transcript data from another build that is available in Bioconductor or follow
their instructions to make your own mapping. The Mega2R function, setAnnotations, lets you use alternate tables.
Mega2R will load the selected tables when you access the applyFnToGenes function.

The applyFnToGenes function specifies a list of genes (via the genes_arg argument) from which to extract the
transcripts and the corresponding ranges (If the special gene name, “*”, is passed as the only gene argument, the
ranges for all transcripts will be chosen). Alternatively, applyFnToGenes supports other ways to indicate tran-
script ranges: on sub-ranges of chromosomes (via the ranges_arg argument), on the entire chromosome (via
the chrs_arg argument), or on an arbitrary list of markers (via the markers_args argument). The callback function
of three arguments (markers, range, environment) and a list of ranges is passed to applyFnToRanges and processed
as described above.

The applyFnToMarkers function
The applyFnToMarkers function is the simplest function that uses the aforementioned callback function. It takes
one argument that contains selected rows of the markers data frame. It then invokes the callback function with
the marker argument data frame, a NULL range, and the R environment (The range is NULL because there is
no range information; this implies that the callback function for applyFnToMarkers must check for a range value
of NULL).

The getgenotypes and getgenotypesraw functions
The functions getgenotypes and getgenotypesraw return a matrix of nucleotide pairs or a matrix of encoded
integers with a column for each marker and containing a row per sample. Both functions take two arguments:
rows of the markers data frame and an environment. The first argument is usually computed by one of the
applyFnToRanges, applyFnToGenes, or applyFnToMarkers functions. The markers data frame has two offsets
that are used internally by the decompression code; it also has a name, chromosome number and position that
can be used to identify a marker to the user. The two getgenotypes functions are dispatches that call Rcpp code.
The R code collects genotype and allele data from the R environment’s data frames and passes these data
arguments to the Rcpp code; it also calls the proper function for the level of compression: 2 bits or 2 bytes per
marker. For each marker specified, getgenotypes returns for each sample a string of the corresponding pair of
nucleotides, while getgenotypesraw retruns for each sample a single integer with the integer for the first allele
shifted 16 bits and or’ed to the integer for the second allele.

The Mega2pedgene function
We now give a brief overview of several processing functions that Mega2R makes available and that illustrate how to
build new functions using Mega2R. A much more detailed example may be found in the “Use Case” section.

Page 6 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

The ’pedgene’ R package performs gene-level association tests with disease status for pedigree data13. Mega2R
enhances ’pedgene’ via the Mega2pedgene function, which automates and eases computation of the ’pedgene’
statistics for all the genes in the genome. The Mega2pedgene function does this by invoking applyFnToRanges
on the specified ranges or calls applyFnToGenes on gene names. Before running the Mega2pedgene func-
tion, we first call init_pedgene rather than read.Mega2DB; the former uses the function dbmega2_import
to load the Mega2 database. Then it generates a modified fam data frame, a kind of family file where the case/
control values of 0/1/2 are translated to NA/0/1, as required by pedgene. The pedgene package requires recoding
of the genotypes 1/1, 1/2 (and 2/1), and 2/2 (with raw encodings: 65537, 65538 (and 131073), 131074) to 0, 1,
and 2 respectively; plus the alleles must be flipped as needed so that 1 is the major allele. The callback function,
DOpedgene, transforms the raw genotype matrix and then it calls the pedgene function with several different marker
weights (e.g., unweighted, Madsen-Browning weights, and β density weights). It returns the p-value of the
kernel and burden association statistics for each weight. The results are appended to a data frame in the
environment, pedgene_results.

The Mega2SKAT function
If one has a sample of unrelated individuals, the Mega2SKAT function eases the process of applying the region-
based association tests that are implemented in the SKAT package14,16,17. The SKAT package uses kernel
regression approaches to compute association statistics such as the Sequence Kernel Association Test (SKAT)
and its optimized version (SKAT-O), both for quantitative and dichotomous traits. The Mega2SKAT function
is rather similar to Mega2pedgene (above). The init_SKAT function behaves very much like init_pedgene;
in addition, it computes a phenotype data frame. The Mega2SKAT function has the signature:

 Mega2SKAT = function (f, ty, gs = 1:100, genes = NULL, skat = SKAT::SKAT,
 envir = ENV, ...)

The parameters f and ty specify the formula and phenotype type that are used to invoke SKAT_Null_model. The
skat argument indicates the particular SKAT package function to call and the ... arguments are place holders for
any additional arguments that the chosen skat function needs.

The Mega2VCF function
The VCF data format was originally defined by the 1000 Genomes Project18 for data storage19. The current
version of data format is available from GitHub20. The Mega2VCF function serves several purposes. It allows
VCF format files to be generated for analysis by programs that require VCF input. It shows how to extract data
provided in the Mega2R data frames for subsequent analysis by other R packages. Finally, it provides a regression
for Mega2R by producing the same files from an SQLite database via R code that Mega2 can produce from the
identical database via C++ code. The VCF file and related files created both ways should be the same except for
time stamps.

Before running the Mega2VCF function, you should first call the read.Mega2DB function to load a Mega2
database. A .vcf VCF file is the main output of Mega2VCF; it is created from the genotype matrix, supple-
mented by columns from the fam table and allele_table table. Besides the .vcf file, Mega2VCF generates
several additional complementary files. Below, we indicate the file suffix, the internal function that generates
the file, and the file contents are presented in Table 1.

The code in each function illustrates how to assemble the corresponding data from the Mega2R data frames.
The mkphenotype function is a bit subtle. The database contains a raw vector of 8 bytes times the number of

Table 1. Mega2VCF output file suffix, function to generate the file, and contents of the file.

file suffix function contents

.vcf Mega2VCF
mkVCFhdr

contains the multi column VCF file with header; each row contains genotypes for all the
samples for that marker

.fam mkVCFfam contains the 6 columns of the .fam file

.freq mkVCFfreq contains the allele frequency information

.map mkVCFmap contains the supplied maps with their genetic or physical distances

.phe mkphenotype contains the phenotype information: quantitative and affection status

.pen mkVCFpen contains the penetrance information

Page 7 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://CRAN.R-project.org/package=pedgene
http://samtools.github.io/hts-specs/

phenotypes (per person). The 8 bytes encode either one double precision float number or two integers depend-
ing on the encoding of the trait phenotype in the locus_table (quantitative or affection status). The readBin
function is used to convert the raw bytes in each 8 byte vector to the correct form.

Another interesting aspect of the code design is how we compute genotype data for a large numbers of markers
without needing large amounts of memory. We build the .vcf file a chunk at a time, where a chunk contains a
relatively small number of markers (currently 1,000). We generate the genotype matrix for a chunk then append
the results for the chunk (of markers) to the .vcf file. Then we get a new chunk and repeat. This looping strategy
might prove useful for other situations where the results can be written incrementally, a block of markers at a time.

The Mega2GenABEL function
The GenABEL15 package is available in the archive section of CRAN (https://CRAN.R-project.org/
package=GenABEL). The GenABEL package provides many functions for genome-wide association analysis
and it accepts data in several formats. But Mega2 accepts input in still more formats, notably VCF, PLINK,
IMPUTE2 and even Linkage format. Thus Mega2GenABEL can be a bridge to easily convert data for GenABEL
analysis.

Before running the Mega2GenABEL function, you must call the read.Mega2DB function to load your database
and you should save the returned environment into ’ENV.’ The function, Mega2GenABEL, returns a gwaa.
data-class object for the selected markers. It operates by re-writing the Mega2R data frames into one of the
input formats that GenABEL supports; currently, this is PLINK .tped format. This requires a .tped file, a .fam
file, and a .phe file; they are stored in a temporary directory. The .tped file looks very much like a VCF .vcf file
with entries in each marker’s row for the samples’ genotype data. (But, in comparison to the .vcf file, there are
fewer fields of metadata in a .tped file and the genotype data specify real allele labels rather than VCF’s REF/ALT
field references.) Mega2GenABEL calls the GenABEL “glue” functions, convert.snp.tped, to process the a .tped
file and .fam file into a generic GenABEL “raw” format file, then it converts that raw format file and a phenotype
file into a GenABEL gwaa.data-class object via the function, load.gwaa.data, and then it deletes the temporary files.

The function Mega2ENVGenABEL produces the same object as Mega2GenABEL. It does not write out any
temporary files, but rather converts the Mega2R genotype and related data in memory to a GenABEL gwaa.data-
class object. It is mainly written in Rcpp and runs 10 to 20 times faster than the Mega2GenABEL function.

Use case
We now show some examples of how to use Mega2R. First, we illustrate the base functionality of the Mega2R
package (e.g., iterating over gene ranges and getting genotypes from the database). Then we demonstrate one of
the extended functions, Mega2pedgene. The other extended functions, Mega2SKAT, Mega2VCF and Mega-
2GenABEL are illustrated in the Mega2R package vignette. Further, details of all the Mega2R functions are
available in the Mega2R manual Finally, the package source can be obtained from CRAN or it can be obtained via
git from Bitbucket.

The R code in the examples below was executed during the creation of this document using the knitr R package
(version 1.20)21–23.

Simulated data
We used the SeqSIMLA224 program, which is available from SourceForge, to simulate an example dataset.
To do this, we started with the first example under the “Prevalence” tab within the “Simulate by Disease status”
tab on the tutorial page. This simulation creates 1,380 samples of 500,000 markers on a subrange of chromo-
some 1. To illustrate the Mega2 and Mega2R operations that follow, we subsampled the data down to 1,380
people and 1,000 polymorphic markers.

Installation
R. We will assume that you have started an R session in which you type the commands in this Use Case (We used
R version 3.5.0).

You should first install the package Mega2R.

install.packages("Mega2R")

Page 8 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://CRAN.R-project.org/package=GenABEL
https://CRAN.R-project.org/package=GenABEL
https://cran.r-project.org/web/packages/Mega2R/vignettes/mega2rtutorial.html
https://cran.r-project.org/web/packages/Mega2R/Mega2R.pdf
https://CRAN.R-project.org/package=Mega2R
https://bitbucket.org/dweeks/Mega2R
https://github.com/yihui/knitr
https://sourceforge.net/projects/seqsimla/
http://seqsimla.sourceforge.net/prevalence.html

Bioconductor. Below we will use ’pedgene’ carry out gene-based association tests, where ’genes’ are defined accord-
ing to a database containing the boundaries of the gene transcripts. This requires two Bioconductor Annotations data-
bases to be installed. The first line below loads the Bioconductor biocLite loader and the next two lines install two
annotation databases. One annotation database provides the gene transcript locations and the other maps gene
names to Entrez gene IDs. (As described in the section about pedgene below, you may choose a different transcript
database from Bioconductor or construct one of your own.) Please type in R:

source("https://bioconductor.org/biocLite.R")
biocLite("TxDb.Hsapiens.UCSC.hg19.knownGene")
biocLite("org.Hs.eg.db")

The above steps are run once.

Use case data. First, you will need to load the Mega2R package. Type:

library(Mega2R)

The files you will need for this Use Case are provided in the Mega2R package. You need to extract these files
to the current directory via this command:

dump_mega2rtutorial_data(".")

You should see the following files:

list.files(where_mega2rtutorial_data("."))

[1] "MEGA2.BATCH.seqsimr" "MEGA2.BATCH.srdta" "MEGA2.BATCH.vcf"
[4] "Mega2r.map" "Mega2r.map.gz" "Mega2r.ped"
[7] "Mega2r.ped.gz" "seqsimr.db" "seqsimr.db.gz"
[10] "srdta.db" "srdta.db.gz"

Note: The use of the “mega2” executable in our examples expects the Mega2.BATCH.<name> files to be
in the working directory and the latter files expect their data files to be in the working directory. When you are
done with these exercises, the “clean” command will remove these files and other temporary files:

clean_mega2rtutorial_data(".")

Using Mega2R to access and process genetic data
Creating a Mega2 database. We have provided files in this package that contain the data from the simulation. These
files are in PLINK ped format data:

• Mega2r.ped

• Mega2r.map

If you do not wish to install Mega2 right now, you can skip this database creation step and instead later use the
seqsimr.db database that was placed in your directory by the dump_mega2rtutorial_data(“.”) command. You can
obtain the Mega2 program from the University of Pittsburgh site. Then, you will invoke Mega2 on your data. To
make matters simple, we will use a pre-constructed Mega2 batch file to automate the processing by Mega2.
To run Mega2 to process and create the ’SQLite’ database ’seqsimr.db’, we issue this command at the Unix
prompt from within the directory containing the Use Case example files:

 mega2 MEGA2.BATCH.seqsimr

Note: The vignette associated with the Mega2R package illustrates what the results of this Mega2 run would look
like.

If you do not provide the command-line argument giving the name of a BATCH file, Mega2 will proceed to ask
a series of interactive questions to collect the information needed to produce a database. In addition, it will

Page 9 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://watson.hgen.pitt.edu/register/

create a Mega2.BATCH file, similar to the one we suggested you use. You can look at the “Quick Start” section
of the Mega2 documentation to better understand the interactive process.

The MEGA2.BATCH.seqsimr file begins with a rather long comment section indicating the keyword values
that may be set and their default values. Towards the end of the file, we set the inputs to Mega2r.ped and Mega2r.
map, indicate the input is PLINK ped format with parameters, and indicate that Mega2 should produce a
database called seqsimr.db, etc. (The initial comment section is not shown and unimportant lines are elided.)

Input_Database_Mode=1

Input_Format_Type=4

Input_Pedigree_File=Mega2r.ped

Input_PLINK_Map_File=Mega2r.map

...

PLINK_Args= --cM --missing-phenotype -9 --trait default

...

Value_Marker_Compression=1

Analysis_Option=Dump

...

DBfile_name=seqsimr.db

...

If you wish to use any of the Mega2R functions described here on your own data, you will have to first run
“mega2” to convert your data into an ’SQLite’ database.

Reading and examining a Mega2 database. The Mega2R package facilitates reading genetic data from a
Mega2-created SQLite database.

Reading a Mega2 database After you have created the SQLite database “seqsimr.db”, start up R, load the
Mega2R package, then use the function read.Mega2DB to read a Mega2 database.

library(Mega2R)
ENV = read.Mega2DB("seqsimr.db", verbose = FALSE)

The first argument should be the path to the database. If ’verbose’ is TRUE, for each data frame created in ’ENV’,
read.Mega2DB emits two lines: one with the number of rows and number of columns of the data frame and the
other with the column names of the data frame. Finally, an ’environment’, which contains the data frames, is
returned.

Verbose Flag When verbose is set in the initial read.Mega2DB, the value will be remembered. It may be used by
any subsequent function. If verbose is TRUE, Mega2R functions will print diagnostic information.

Use of an Environment The environment returned is used to store the data frames that contain the ’SQLite’
database. The code above stores the environment in global variable ’ENV’. If the named argument, ’envir’, is
not provided in any subsequent Mega2R function call, R will look up the value of ’ENV’ starting at the calling
frame and chaining up the call stack to the global environment.

Back to more examples. The ’ls(ENV)’ function will show you all the variables in the ’ENV’ environment. (You
probably have used it without arguments to show you the variables in the global environment .GlobalEnv.) Type:

ls(ENV)

[1] "affectclass_table" "allele_table"
[3] "charstar_table" "chr2int"
[5] "DBcompress" "DBMega2Version"
[7] "dosage" "dosageRaw"

Page 10 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://watson.hgen.pitt.edu/docs/mega2_html/mega2.html

[9] "entrezGene" "fam"
[11] "int_table" "locus_allele_table"
[13] "locus_table" "LocusCnt"
[15] "map_table" "mapnames_table"
[17] "MARKER_SCHEME" "marker_table"
[19] "markers" "Mega2R"
[21] "pedigree_brkloop_table" "pedigree_table"
[23] "person_brkloop_table" "person_table"
[25] "PhenoCnt" "phenotype_table"
[27] "positionVsName" "refIndices"
[29] "refRanges" "traitaff_table"
[31] "txdb" "unified_genotype_table"
[33] "verbose"

A more informative overview of the database can be had with:

showMega2ENV()

locus count: 1001; phenotype count: 1; compression: 2 bits
marker count: 1000; sample count: 1380
##
genetic and physical maps:
map name map number
1 Map 0
2 BP 1
##
Phenotypes:
Index Name Type
1 1 default affection
##
##
basic tables:
rows cols
affectclass_table 1 9
allele_table 2002 5
charstar_table 5 3
int_table 35 3
locus_table 1001 5
map_table 2000 6
mapnames_table 2 6
marker_table 1000 8
pedigree_brkloop_table 20 8
pedigree_table 20 8
person_brkloop_table 1380 11
person_table 1380 11
phenotype_table 1380 4
traitaff_table 1 4
##
derived tables:
rows cols
fam 1380 8
markers 1000 5
unified_genotype_table 1380 2

Use standard R operations to examine the created data frames Try typing:

str(ENV$locus_table)

'data.frame': 1001 obs. of 5 variables:
$ pId : int 1 2 3 4 5 6 7 8 9 10 ...

Page 11 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

$ LocusName : chr "default" "snp1" "snp2" "snp3" ...
$ Type : int 2 4 4 4 4 4 4 4 4 4 ...
$ AlleleCnt : int 2 2 2 2 2 2 2 2 2 2 ...
$ locus_link: int 0 1 2 3 4 5 6 7 8 9 ...

Iterating through Gene Transcripts
Mega2R provides two ways to compute a function on the genotypes (or markers) in each of the transcripts.
These are further illustrated via examples in section about ’pedgene’ below.

setRanges The default ranges contains 29,062 records taken from the UCSC Genome Browser reference
assembly GRCH37. We show a bit of the data frame below. Each row contains 5 values: a transcript id, the
gene id and three position values: chromosome, start base pair and end base pair.

 dim(ENV$refRanges)

[1] 29062 5

 head(ENV$refRanges, 3)

XX SYMBOL TXCHROM TXSTART TXEND
1 NM_005286 NPBWR2 chr20 62737182 62738184
2 NR_026775 LINC00240 chr6 26924771 26991753
3 NM_007188 ABCB8 chr7 150725509 150744869

You may load your own range set instead of the default. You create a data frame that lists, for each range, the
chromosome, the start position, and the end position. And you create an integer index vector that indicates
which column contains which data. These two become the arguments to the setRanges function as shown in the
example below. When the index vector contains only three entries, a range name is generated by concatenating
the position information and adding it to the range data frame.

 ranges = matrix(c(1, 2240000, 2245000,
 1, 2245000, 2250000,
 1, 3760000, 3761000),
 ncol = 3, nrow = 3, byrow = TRUE)

 setRanges(ranges, 1:3)

 dim(ENV$refRanges)

[1] 3 4

 head(ENV$refRanges)

X1 X2 X3 ChrStartEnd
1 1 2240000 2245000 chr1:2240000-2245000
2 1 2245000 2250000 chr1:2245000-2250000
3 1 3760000 3761000 chr1:3760000-3761000

If you provide an index vector with four entries, the fourth one indicates the column containing the names
of the ranges.

 ranges = matrix(c(1, 2240000, 2245000,
 1, 2245000, 2250000,
 1, 3760000, 3761000,
 1, 3761000, 3762000),
 ncol = 3, nrow = 4, byrow = TRUE)
 ranges = data.frame(ranges)
 ranges$name = LETTERS[1:4]
 names(ranges) = c("chr", "start", "end", "name")

Page 12 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

 setRanges(ranges, 1:4)
 dim(ENV$refRanges)

[1] 4 4

 head(ENV$refRanges)

chr start end name
1 1 2240000 2245000 A
2 1 2245000 2250000 B
3 1 3760000 3761000 C
4 1 3761000 3762000 D

applyFnToRanges The function, applyFnToRanges, goes through each range and finds the markers that fall within
the bounds. The first argument of the applyFnToRanges function is a callback function with three arguments:
the markers in range, the selected range entry and the environment. The callback is invoked repeatedly for each
transcript range that contains any markers. If there are no markers contained and the ’verbose’ flag is set, a warn-
ing will be printed. The callback function builds a genotype matrix for the samples and each marker in the range.
If necessary, the environment (’envir’) can be used to store information between successive invocations.

For the examples that follow, we use “show” as the callback function, which simply prints, for each range, the
range itself, the first three lines of the markers within the range, and the first three lines of the genotype matrix, in
that order. It also prints a little banner before each argument. Finally, it does not print the environment argument
value; it does not change.

 show = function(m, r, e) {
 print("** Ranges **")
 print(r)
 print("** Markers **")
 print(head(m,3))
 print("** Genotypes **")
 print(head(getgenotypes(m),3))
 }

A simple example is shown below using the ranges value that were most recently set. We see that the range
named “A” contains markers in our example data set.

 ENV$verbose = FALSE
 applyFnToRanges(show)

[1] "** Ranges **"
chr start end name
1 1 2240000 2245000 A
[1] "** Markers **"
locus_link locus_link_fill MarkerName chromosome position
57 57 57 snp22730 1 2243896
58 58 58 snp22731 1 2243897
59 59 59 snp22733 1 2243899
[1] "** Genotypes **"
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] "12" "12" "11" "12" "12" "22" "11" "11"
[2,] "12" "11" "11" "12" "12" "12" "11" "11"
[3,] "11" "12" "11" "11" "11" "11" "11" "11"

applyFnToRanges can also be provided explicit ranges by using the ’ranges_arg’ argument:

applyFnToRanges(show,
 ranges_arg =
 matrix(c(1, 4000000, 5000000, "range4m",
 1, 5000000, 6000000, "range5m",

Page 13 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

 1, 6000000, 7000000, "range6m",
 1, 7000000, 8000000, "range7m",
 1, 8000000, 9000000, "range8m",
 1, 9000000,10000000, "range9m"),
 ncol = 4, nrow = 6, byrow = TRUE),
 indices_arg = 1:4)

setAnnotations If you are iterating/selecting via genes, the default transcript database is "TxDb.Hsapiens.
UCSC.hg19.knownGene" from Bioconductor; it is stored in the environment as shown below:

 ENV$txdb
 ENV$entrezGene

[1] "TxDb.Hsapiens.UCSC.hg19.knownGene"
[1] "org.Hs.eg.db"

Of course, you can change this database. Suppose we want to use build “hg18”, we would run:

 setAnnotations("TxDb.Hsapiens.UCSC.hg18.knownGene", "org.Hs.eg.db")

 ENV$txdb
 ENV$entrezGene

[1] "TxDb.Hsapiens.UCSC.hg18.knownGene"
[1] "org.Hs.eg.db"

applyFnToGenes The function applyFnToGenes can apply the ’show’ function to the transcripts of a
particular gene via the genes_arg argument. For example, here we apply the ’show’ function to transcripts of the
CEP104 gene:

 # Switch back to using build hg19
 setAnnotations("TxDb.Hsapiens.UCSC.hg19.knownGene", "org.Hs.eg.db")
 applyFnToGenes(show, genes_arg = c("CEP104"))

##
’select()’ returned 1:1 mapping between keys and columns
’select()’ returned 1:many mapping between keys and columns

[1] "** Ranges **"
ENTREZID ALIAS SYMBOL TXID TXNAME TXCHROM TXSTRAND TXSTART TXEND
1 9731 CEP104 CEP104 4281 uc001aky.2 1 - 3728645 3773797
[1] "** Markers **"
locus_link locus_link_fill MarkerName chromosome position
65 65 65 snp24037 1 3762181
66 66 66 snp24039 1 3762183
67 67 67 snp24041 1 3762185
[1] "** Genotypes **"
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] "12" "12" "11" "11" "12" "11" "11" "12"
[2,] "22" "11" "12" "22" "11" "22" "22" "11"
[3,] "11" "11" "11" "11" "11" "11" "11" "11"

The applyFnToGenes function has several other optional arguments that can request complete chromosomes,
(multiple) ranges of base pairs on chromosomes, or collections of markers. All these arguments define ranges
that are passed to applyFnToRanges for evaluation. Note: If the genes_arg argument is set to the special "gene"
string "*", then all transcripts in the Bioconductor database, will be processed.

 applyFnToGenes(show, ranges_arg =
 matrix(c(1, 5000000, 10000000,
 1, 10000000, 15000000),
 ncol = 3, nrow = 2, byrow = TRUE))

Page 14 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

[1] "** Ranges **"
ENTREZID ALIAS SYMBOL TXID TXNAME TXCHROM TXSTRAND TXSTART
1 - - chr1:5e+06-1e+07 0 - 1 - 5e+06
TXEND
1 1e+07
[1] "** Markers **"
locus_link locus_link_fill MarkerName chromosome position
73 73 73 snp30480 1 8264348
74 74 74 snp30484 1 8264352
75 75 75 snp30487 1 8264355
[1] "** Genotypes **"
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] "11" "11" "11" "11" "11" "11" "11" "11"
[2,] "11" "11" "11" "11" "11" "11" "11" "11"
[3,] "11" "11" "11" "11" "11" "11" "11" "11"
[1] "** Ranges **"
ENTREZID ALIAS SYMBOL TXID TXNAME TXCHROM TXSTRAND TXSTART
2 - - chr1:1e+07-1.5e+07 0 - 1 - 1e+07
TXEND
2 1.5e+07
[1] "** Markers **"
locus_link locus_link_fill MarkerName chromosome position
81 81 81 snp34070 1 12812974
82 82 82 snp34071 1 12812975
83 83 83 snp34074 1 12812978
[1] "** Genotypes **"
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] "11" "11" "11" "12" "22" "22" "22" "11"
[2,] "11" "11" "11" "11" "12" "12" "12" "11"
[3,] "11" "11" "11" "11" "22" "22" "22" "11"

 # apply function "show" to all genotypes at the 'snp1' marker
 # NOTE: Since we are using an arbitrary collection of markers, the
 # range is not available.
 applyFnToGenes(show, markers_arg = "snp1")

[1] "** Ranges **"
NULL
[1] "** Markers **"
locus_link locus_link_fill MarkerName chromosome position
1 1 1 snp1 1 2
[1] "** Genotypes **"
[,1]
[1,] "11"
[2,] "11"
[3,] "12"

 # apply function "show" to all genotypes on chromosomes 24 and 26
 # remember our example database is only chr 1
 applyFnToGenes(show, chrs_arg=c(24, 26))

Getting the Genotypes
Encoded Genotypes The heart of the above two functions is the calculation of the genotype matrix of the
samples. We will build the matrix for the first 10 markers. Remember our database has 1,380 samples so we
will just show the head of the matrix.

 genotype = getgenotypes(ENV$markers[1:10,])
 dim(genotype)

[1] 1380 10

 head(genotype, 3)

Page 15 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "11" "11" "11" "11" "11" "11" "11" "11" "12" "12"
[2,] "11" "11" "11" "11" "11" "11" "11" "11" "22" "11"
[3,] "12" "11" "11" "11" "11" "11" "11" "11" "22" "11"

Raw Genotypes The function getgenotypesraw will be called with the same 10 markers as above. Recall
it returns an integer encoding for each genotype. The integer’s high 16 bits are the index for allele 1 and the low
16 bits are the index for allele 2.

two ints in upper/lower half integer representing allele
 raw = getgenotypesraw(ENV$markers[1:10,])
 dim(raw)

[1] 1380 10

 head(raw, 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 65537 65537 65537 65537 65537 65537 65537 65537 65538 65538
[2,] 65537 65537 65537 65537 65537 65537 65537 65537 131074 65537
[3,] 65538 65537 65537 65537 65537 65537 65537 65537 131074 65537

raw.allele.representation = c("0x10001", "0x10002", "0x20001", "0x20002")
print(as.numeric(raw.allele.representation))

[1] 65537 65538 131073 131074

Using Mega2R to carry out automated gene-based association tests using ’pedgene’
Mega2R provides functions that permit one to run the ’pedgene’ function by Schaid et al.13 to carry
out gene-based association tests on family data looping over selected transcripts.

Loading a Mega2 database with init_pedgene
Rather than read the Mega2 SQLite database with the read.Mega2DB function as described previously, here we
use a specialized init_pedgene function to read the Mega2 database. This latter function calls a utility function
also used by read.Mega2DB. Then it creates, edits, and rewrites the family (.fam) data, storing it in a ’pedgene’-
compatible data frame, fam. (fam merges data from the pedigree_table, person_table and phenotype_table.)
(When fam is updated, filtering is automatically done to the persons in the phenotype_table and the
unified_genotype_table to remove any persons removed from fam.) Finally, init_pedgene calculates some values
that will be used repeatedly and stores them in the environment that is returned.

ENV = init_pedgene("seqsimr.db")

Gene Ranges reminder
Mega2R has an internal default list of the chromosome and base pair ranges for a number of gene transcripts.
These transcripts come from the UCSC Genome Browser reference assembly GRCH37. The list was fur-
ther modified to eliminate multiple records of the same gene with the exact same transcript start and transcript
end. These data contain about 29,000 records. You may use the setRanges function to load your own
range set instead of the default, as described above.

Gene transcripts reminder
By default, the init_pedgene function sets the transcript database to “TxDb.Hsapiens.UCSC.hg19.knownGene”
and the Entrez gene name mapping database to “org.Hs.eg.db”. If you wish to use different databases to select
transcripts by gene name, you must use the setAnnotations function to load them from Bioconductor, as discussed
above.

Running pedgene on ranges
By default, the function Mega2pedgene examines the first 100 transcripts and prints the results. (Internally, it
calls the function applyFnToRanges.) For the seqsimr.db database, the first 100 transcripts contain only one

Page 16 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

transcript with several markers. To make this Use Case run faster, we noticed that the identified transcript appeared
at transcript 54; so we will restrict Mega2pedgene to a small range of transcripts around 54, viz. 53 through 55.

Note: ’verbose’ needs to be TRUE, for the diagnostics to be printed.

ENV$verbose=TRUE
Mega2pedgene(gs=53:55)

tryFn() No markers in range: NM_014705, DOCK4, 7, 111366163, 111846462
tryFn() No markers in range: NM_003759, SLC4A4, 4, 72204769, 72437804

CEP104 snp24037 520 646 214
CEP104 snp24039 940 386 54
CEP104 snp24041 1377 3 0
CEP104 snp24048 860 460 60
CEP104 snp24494 789 501 90
CEP104 snp24499 891 442 47
CEP104 snp24506 891 442 47
CEP104 snp24507 789 501 90
chr gene nvariants start end sKernel_BT pKernel_BT sBurden_BT
1 1 CEP104 8 3728644 3773797 31.96998 0.6297541 -0.6496837
pBurden_BT sKernel_MB pKernel_MB sBurden_MB pBurden_MB sKernel_UW
1 0.5158965 1184.995 0.5138866 -1.209563 0.2264468 222.8737
pKernel_UW sBurden_UW pBurden_UW
1 0.4111136 -1.169488 0.242207

You will see some reports of “No markers in range”, because the database only contains markers on a sub
range of chromosome 1 whereas the transcripts span the entire genome. Then you will see a listing of a gene
name, a marker name, and count of the 1/1, 1/2, and 2/2 genotypes (where ’1’ is the major allele), e.g.,.

 CEP104 snp24037 520 646 214
 ...

The markers, the range used, and the environment are passed to the callback function DOpedgene. DOpedgene
converts the raw genotype representation returned by getgenotypesraw to the values 0, 1 and 2. Then it runs
’pedgene’. The results are automatically stored in a data frame with columns: chromosome, gene, number of
markers and base pair range followed by ’pedgene’ data: kernel and burden, value and p-values, four values
for each of three weightings of the markers. These data are saved in the data frame, ’pedgene_results’, in the
environment. They are also printed when ’verbose’ is TRUE.

Note: The results are always appended to the ’pedgene_results’ data frame. You should truncate it when necessary.

You could run Mega2pedgene on all the transcript entries, but it takes a rather long time. You would type:

Mega2pedgene(gs=1:nrow(ENV$refRanges), envir = ENV)

If you run the above test, you will see that genes DISP1 and KIF26B have at least one p-value less than 0.01 and
AK5 and STL7 at least one less than 0.03.

Running pedgene on selected genes
You may try searching for transcripts of specific genes. Here, the default transcript database is “TxDb.Hsa-
piens.UCSC.hg19.knownGene” from Bioconductor. Of course you can change it, if you install a new
database from Bioconductor, as shown earlier.

We leave the command below as an exercise, as it runs a bit slowly. It needs to find all the transcripts for each
gene, then to find all the markers between each pair of transcript start/end ranges, then to compute the
genotype matrix for these markers, and finally to call the callback function with the appropriate arguments.

applyFnToGenes(DOpedgene, genes_arg = c('DISP1', 'KIF26B', 'AK5', 'ST7L'), envir = ENV)

Page 17 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

But let us run this function for a few genes:

turn off output & reset pedgene_results data frame
ENV$verbose = FALSE
ENV$pedgene_results = ENV$pedgene_results[0,]

applyFnToGenes(DOpedgene, genes_arg = c('DISP1', 'AK5'), envir = ENV)

’select()’ returned 1:1 mapping between keys and columns
’select()’ returned 1:many mapping between keys and columns

print(ENV$pedgene_results)

chr gene nvariants start end sKernel_BT pKernel_BT
1 1 AK5 4 77747662 78025654 2593.945 0.228311038
2 1 DISP1 4 222988431 223179337 4559.340 0.004224181
sBurden_BT pBurden_BT sKernel_MB pKernel_MB sBurden_MB pBurden_MB
1 -1.400928 0.1612355 1899.249 0.062069786 -2.263002 0.023635537
2 1.446520 0.1480315 5410.868 0.000253584 2.916462 0.003540261
sKernel_UW pKernel_UW sBurden_UW pBurden_UW
1 175.4195 0.05101300 -2.290307 0.02200350
2 277.5080 0.04407319 2.094983 0.03617254

Summary
As with all software projects, Mega2R is a work in progress, and so there are a number of possible improvements
that could be made in the future. These include:

• �defer constructing the unified_genotype_table until the set of chromosomes that are needed can be
computed and then only read the required chromosome genotype vectors.

• �analogously to Mega2SKAT, add support for the R famSKATRC package25,26. famSKAT_RC is another
package for family or unrelated gene-based association analysis for a mix of rare variants and common vari-
ants.

• �analogously to Mega2GenABEL, add support for the CoreArray data storage system (e.g., Genomic
Data Structure (GDS) format27). This will support conversion to GDS format in both the SNPRelate and
the SeqArray data representations28.

• �apply more aggressive compression of the database. For one, the genotype raw vector can be further
compressed by gzip or a similar compression protocol. Additionally, since C does not have a way to repre-
sent missing data, we use -99.99 to represent it which is stored in the database as a floating point number
(8 bytes). But the database (via NULL) and R (via NA) can efficiently represent a missing values, so we
will will convert C missing (-99.99) to SQLite (NULL).

Data availability
All data underlying the results are available as part of the article and no additional source data are required.

Software availability
Software name: Mega2R

Software available from: https://CRAN.R-project.org/package=Mega2R

BitBucket repository: https://bitbucket.org/dweeks/mega2r/

Documentation page: https://watson.hgen.pitt.edu/register/docs/mega2R.html

Operating system(s): Platform independent

Programming language: R, C++

Page 18 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://CRAN.R-project.org/package=Mega2R
https://bitbucket.org/dweeks/mega2r/
https://watson.hgen.pitt.edu/register/docs/mega2R.html

Other requirements; R, SQLite library

Archived source code (v1.0.4) at the time of publication: https://doi.org/10.5281/zenodo.134358729

License: GNU GPL 2

Grant information
This work was supported by a National Institutes of Health grant [R01 GM076667] to DEW and the University of
Pittsburgh.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Supplementary material
Supplementary File 1: The Mega2R package: R tools for accessing and processing genetic data in common
formats. PDF contains detailed descriptions of the data frames that Mega2R makes available.

Click here to access the data.

References

1.	 Mukhopadhyay N, Almasy L, Schroeder M, et al.: Mega2: data-
handling for facilitating genetic linkage and association
analyses. Bioinformatics. 2005; 21(10): 2556–7.
PubMed Abstract | Publisher Full Text

2.	 Baron RV, Kollar C, Mukhopadhyay N, et al.: Mega2: validated data-
reformatting for linkage and association analyses. Source Code
Biol Med. 2014; 9(1): 26.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Lathrop GM, Lalouel JM: Easy calculations of lod scores and
genetic risks on small computers. Am J Hum Genet. 1984; 36(2):
460–5.
PubMed Abstract | Free Full Text

4.	 Lathrop GM, Lalouel JM, White RL: Construction of human linkage
maps: likelihood calculations for multilocus linkage analysis.
Genet Epidemiol. 1986; 3(1): 39–52.
PubMed Abstract | Publisher Full Text

5.	 Lathrop GM, Lalouel JM: Efficient computations in multilocus
linkage analysis. Am J Hum Genet. 1988; 42(3): 498–505.
PubMed Abstract | Free Full Text

6.	 Purcell S, Neale B, Todd-Brown K, et al.: PLINK: a tool set for
whole-genome association and population-based linkage
analyses. Am J Hum Genet. 2007; 81(3): 559–75.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Danecek P, Auton A, Abecasis G, et al.: The variant call format and
VCFtools. Bioinformatics. 2011; 27(15): 2156–8.
PubMed Abstract | Publisher Full Text | Free Full Text

8.	 Howie BN, Donnelly P, Marchini J: A flexible and accurate
genotype imputation method for the next generation of genome-
wide association studies. PLoS Genet. 2009; 5(6): e1000529.
PubMed Abstract | Publisher Full Text | Free Full Text

9.	 Howie B, Marchini J, Stephens M: Genotype imputation with
thousands of genomes. G3 (Bethesda). 2011; 1(6): 457–70.
PubMed Abstract | Publisher Full Text | Free Full Text

10.	 Howie B, Fuchsberger C, Stephens M, et al.: Fast and accurate
genotype imputation in genome-wide association studies
through pre-phasing. Nat Genet. 2012; 44(8): 955–9.
PubMed Abstract | Publisher Full Text | Free Full Text

11.	 Marchini J, Howie B: Genotype imputation for genome-wide

association studies. Nat Rev Genet. 2010; 11(7): 499–511.
PubMed Abstract | Publisher Full Text

12.	 R Core Team: R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
2017.
Reference Source

13.	 Schaid DJ, McDonnell SK, Sinnwell JP, et al.: Multiple genetic
variant association testing by collapsing and kernel methods
with pedigree or population structured data. Genet Epidemiol.
2013; 37(5): 409–418.
PubMed Abstract | Publisher Full Text | Free Full Text

14.	 Lee S, Emond MJ, Bamshad MJ, et al.: Optimal unified approach
for rare-variant association testing with application to small-
sample case-control whole-exome sequencing studies. Am J Hum
Genet. 2012; 91(2): 224–237.
PubMed Abstract | Publisher Full Text | Free Full Text

15.	 Aulchenko YS, Ripke S, Isaacs A, et al.: GenABEL: an R library for
genome-wide association analysis. Bioinformatics. 2007; 23(10):
1294–6.
PubMed Abstract | Publisher Full Text

16.	 Wu MC, Lee S, Cai T, et al.: Rare-variant association testing for
sequencing data with the sequence kernel association test. Am J
Hum Genet. 2011; 89(1): 82–93.
PubMed Abstract | Publisher Full Text | Free Full Text

17.	 Lee S, Wu MC, Lin X: Optimal tests for rare variant effects in
sequencing association studies. Biostatistics. 2012; 13(4): 762–775.
PubMed Abstract | Publisher Full Text | Free Full Text

18.	 1000 Genomes.
Reference Source

19.	 VCF Format (early spec).
Reference Source

20.	 VCF Format.
Reference Source

21.	 Xie Y: knitr: A General-Purpose Package for Dynamic Report
Generation in R. [R package version 1.17]. 2017.
Reference Source

22.	 Xie Y: knitr: A Comprehensive Tool for Reproducible Research in
R. In Implementing Reproducible Computational Research. Edited by

Page 19 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://doi.org/10.5281/zenodo.1343587
https://f1000researchdata.s3.amazonaws.com/supplementary/15949/19784440-6eec-4e74-9094-4d17c3621ef4_Mega2R_Supplementary_Material.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15746282
http://dx.doi.org/10.1093/bioinformatics/bti364
http://www.ncbi.nlm.nih.gov/pubmed/25687422
http://dx.doi.org/10.1186/s13029-014-0026-y
http://www.ncbi.nlm.nih.gov/pmc/articles/4269913
http://www.ncbi.nlm.nih.gov/pubmed/6585139
http://www.ncbi.nlm.nih.gov/pmc/articles/1684427
http://www.ncbi.nlm.nih.gov/pubmed/3957003
http://dx.doi.org/10.1002/gepi.1370030105
http://www.ncbi.nlm.nih.gov/pubmed/3162348
http://www.ncbi.nlm.nih.gov/pmc/articles/1715153
http://www.ncbi.nlm.nih.gov/pubmed/17701901
http://dx.doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pmc/articles/1950838
http://www.ncbi.nlm.nih.gov/pubmed/21653522
http://dx.doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/pmc/articles/3137218
http://www.ncbi.nlm.nih.gov/pubmed/19543373
http://dx.doi.org/10.1371/journal.pgen.1000529
http://www.ncbi.nlm.nih.gov/pmc/articles/2689936
http://www.ncbi.nlm.nih.gov/pubmed/22384356
http://dx.doi.org/10.1534/g3.111.001198
http://www.ncbi.nlm.nih.gov/pmc/articles/3276165
http://www.ncbi.nlm.nih.gov/pubmed/22820512
http://dx.doi.org/10.1038/ng.2354
http://www.ncbi.nlm.nih.gov/pmc/articles/3696580
http://www.ncbi.nlm.nih.gov/pubmed/20517342
http://dx.doi.org/10.1038/nrg2796
https://www.r-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/23650101
http://dx.doi.org/10.1002/gepi.21727
http://www.ncbi.nlm.nih.gov/pmc/articles/3706099
http://www.ncbi.nlm.nih.gov/pubmed/22863193
http://dx.doi.org/10.1016/j.ajhg.2012.06.007
http://www.ncbi.nlm.nih.gov/pmc/articles/3415556
http://www.ncbi.nlm.nih.gov/pubmed/17384015
http://dx.doi.org/10.1093/bioinformatics/btm108
http://www.ncbi.nlm.nih.gov/pubmed/21737059
http://dx.doi.org/10.1016/j.ajhg.2011.05.029
http://www.ncbi.nlm.nih.gov/pmc/articles/3135811
http://www.ncbi.nlm.nih.gov/pubmed/22699862
http://dx.doi.org/10.1093/biostatistics/kxs014
http://www.ncbi.nlm.nih.gov/pmc/articles/3440237
http://www.internationalgenome.org/home
http://www.internationalgenome.org/wiki/Analysis/Variant Call Format/vcf-variant-call-format-version-40/
http://samtools.github.io/hts-specs/
https://yihui.name/knitr/

Stodden V, Leisch F, Peng RD, Chapman and Hall/CRC. 2014; [ISBN
978-1466561595].
Reference Source

23.	 Xie Y: Dynamic Documents with R and knitr. Boca Raton, Florida:
Chapman and Hall/CRC, 2nd edition, 2015; [ISBN 978-1498716963].
Reference Source

24.	 Chung RH, Tsai WY, Hsieh CH, et al.: SeqSIMLA2: simulating
correlated quantitative traits accounting for shared
environmental effects in user-specified pedigree structure. Genet
Epidemiol. 2015; 39(1): 20–4.
PubMed Abstract | Publisher Full Text

25.	 Saad M, Wijsman EM: Combining family- and population-based
imputation data for association analysis of rare and common
variants in large pedigrees. Genet Epidemiol. 2014; 38(7): 579–90.
PubMed Abstract | Publisher Full Text | Free Full Text

26.	 Kunji KB, Saad M: famSKATRC: Family Sequence Kernel
Association Test for Rare and Common Variants. R package
version 1.1.0. 2017.
Reference Source

27.	 Zheng X, Levine D, Shen J, et al.: A high-performance computing
toolset for relatedness and principal component analysis of SNP
data. Bioinformatics. 2012; 28(24): 3326–8.
PubMed Abstract | Publisher Full Text | Free Full Text

28.	 Zheng X, Gogarten SM, Lawrence M, et al.: SeqArray-a storage-
efficient high-performance data format for WGS variant calls.
Bioinformatics. 2017; 33(15): 2251–2257.
PubMed Abstract | Publisher Full Text | Free Full Text

29.	 Baron RV, Weeks DE: The Mega2R R package, version 1.0.4.
Zenodo. 2018.
http://www.doi.org/10.5281/zenodo.1343587

Page 20 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://www.crcpress.com/Implementing-Reproducible-Research/Stodden-Leisch-Peng/p/book/9781466561595
https://yihui.name/knitr/
http://www.ncbi.nlm.nih.gov/pubmed/25250827
http://dx.doi.org/10.1002/gepi.21850
http://www.ncbi.nlm.nih.gov/pubmed/25132070
http://dx.doi.org/10.1002/gepi.21844
http://www.ncbi.nlm.nih.gov/pmc/articles/4190076
https://cran.r-project.org/web/packages/famSKATRC/index.html
http://www.ncbi.nlm.nih.gov/pubmed/23060615
http://dx.doi.org/10.1093/bioinformatics/bts606
http://www.ncbi.nlm.nih.gov/pmc/articles/3519454
http://www.ncbi.nlm.nih.gov/pubmed/28334390
http://dx.doi.org/10.1093/bioinformatics/btx145
http://www.ncbi.nlm.nih.gov/pmc/articles/5860110
http://www.doi.org/10.5281/zenodo.1343587

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 09 October 2018

https://doi.org/10.5256/f1000research.17420.r37773

© 2018 Gordon D. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Derek Gordon
Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA

For those who perform computational analysis in the fields of statistical genetics, bioinformatics,
or population genetics, it is no exaggeration to say that the lion’s share of one’s time is spent
formatting data so that it can be input into a specific analysis program. Having worked in
statistical genetics for over two decades, this reviewer recalls a time when commonly used linkage
programs such as LINKAGE, GENEHUNTER, S.A.G.E., LIPED, SIMWALK2, and others, each had
different data input formats. For those format conversion programs that existed, they worked for
one or a small number of other programs (e.g., conversion from LINKAGE format to S.A.G.E.
format). Also, the programs were usually lab-specific, in that they were not publically available, or
if they were, there was no “accountability”; that is, there was no error checking for the code, nor
was there a way to send “bug reports” to the programmer.

That all changed when the first version of Mega2 was released. It was the “Rosetta Stone” for
researchers who performed computational analyses. Not only did it allow for one to convert from
one format to another seamlessly, it performed data error checking, created log files with each
run of the program, and critically, it created Unix/Linux shell scripts that greatly simplified analysis
runs.
The importance of data storage and format conversion has only grown over time. Like the adage
states, the only constant in life is change. The genomic data employed for linkage, association, and
other computational analyses has grown in complexity and storage requirements. A list of
genomic data employed in computational studies, from an approximate chronological standpoint,
contains: di-allelic RFLPs, multi-allelic VNTRs, di-allelic SNPs, quantitative copy number variants
(CNVs), next generation sequence, and RNA-seq data. As an example of the complexity of
statistical methods to analyze these data, a PubMed search using the key terms “next generation
sequencing”, “statistical method” and “software” yields over 350 hits.

The practice of program-specific formatting continues. Programs like PLINK, MACH, and METAL
have their own input formats. While some of the input files (like the pedigree files) may be similar,
other files like those that contain chromosome and base-pair position for a given item (e.g., SNP),
may be different.

Page 21 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://doi.org/10.5256/f1000research.17420.r37773
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-2945-1748

Given the number of statistical methods being employed, that they will most likely have different
formats, that error checking is critical, and that data storage for the volumes of data now being
generated must be efficient, it is critical that Mega2R be recognized. Mega2 has enjoyed a long-
standing tradition as the “gold-standard” program for data format conversion. Because Dr. Weeks
has directed the updating and stability of Mega2 in its various versions, and continues to do so
with Mega2R, one can reasonably expect that Mega2R will be widely used, widely cited, and most
especially will make the life of computational geneticists much easier.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: applied biostatistics, statistical genetics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 13 September 2018

https://doi.org/10.5256/f1000research.17420.r37770

© 2018 Nato, Jr. A. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Alejandro Q. Nato, Jr.
Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University,
Huntington, WV, USA

Page 22 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://doi.org/10.5256/f1000research.17420.r37770
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8745-9046

Baron, Stickel, and Weeks present a well-written article describing the newly-developed R package
(Mega2R) as an additional tool to the robust Mega2 data-reformatting software. Mega2R helps
alleviate problems in handling huge genetic data by allowing the user to specify regions of the
genome, genes, or markers that will be included in the analysis. It keeps the genotype data in a
compressed format when reading from the Mega2 SQLite database to efficiently overcome the
memory restrictions of R. It includes several functions that allow a user to carry out additional
association tests, outputs Mega2R data as a VCF file with other related files, converts data frames
into GenABEL-compatible format, and enhances GenABEL by supporting additional input data
formats. Mega2R is indeed a useful R package for genetic analysis.

I enjoyed reading the manuscript since the authors have clearly described what a user can do
through Mega2R.

I have a few minor comments and suggestions below:

Add a schematic diagram of Mega2R showing the different functions and how they interact
with the SQLite database. This will visually help readers understand this article.

1.

For future enhancements, would it be possible to have a Mega2pedgene function that allows
the user to choose between using reference/alternate alleles instead of major/minor
alleles? This may allow Mega2R to facilitate analysis involving datasets from
different populations.

2.

Is the chunk of 1,000 markers at a time in building the VCF file a fixed value? Or will you
allow the user to select a particular number in the future?

3.

Indicate the format of the genotype matrix, e.g., normal format (markers in columns and
individuals in rows), based on your examples.

4.

Will Mega2R be back compatible or will it only be compatible with R 3.5.0 onwards?5.
Typographical error (retruns)6.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Page 23 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 25 Jan 2019
Daniel Weeks, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA

Thank you for your thoughtful comments and suggestions for strengthening our paper.

In Version 2, as suggested, we have added two Figures, in the 'Implementation' section,
which now provide graphically illustrate how Mega2 and Mega2R work together (Figure 1)
and how Mega2R provides an efficient and flexible wrapper for iterating through gene
regions (Figure 2). However, this does not directly address your request for a diagram
showing how the different Mega2R functions interact with the SQLite database. We did not
add such a diagram because the interaction is minimal – at the beginning, we load the
SQLite Mega2 databases directly into R as data frames for further analysis and
manipulation. After this step, the functions use the loaded data frames.

 Regarding your numbered comments, we respond here:

1. Using reference/alternate alleles within Mega2R instead of major/minor alleles is not yet
possible, but this would definitely be a useful future enhancement.

2. Currently Mega2R's chunk size is defined by an internal parameter, so altering the chunk
size could be accomplished by altering the source code. Making this a parameter would
also be a useful future enhancement.

3. The genotype matrix has individuals in rows and markers in columns. This was indicated
in the paragraph that first introduces the getgenotypes and getgenotypesraw functions:
"The functions getgenotypes and getgenotypesraw return a matrix of nucleotide pairs or a
matrix of encoded integers with a column for each marker and containing a row per
sample." As suggested, in this revision we have added a comment to the 'show' function
clarifying this later in the manuscript.

4. Due to constraints encountered when submitted the Mega2R package to CRAN, Mega2R
requires an R version of 3.5.0 or higher. As version 3.5.0 was released some time ago, in
April 2018, hopefully this version requirement is not a burden.

5. The typographical error (retruns) has been corrected.

Competing Interests: None.

Reviewer Report 11 September 2018

https://doi.org/10.5256/f1000research.17420.r37771

Page 24 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://doi.org/10.5256/f1000research.17420.r37771

© 2018 Lui D. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Dajiang J. Lui
Department of Public Health Sciences, Institute of Personalized Medicine, Penn State College of
Medicine, Hershey, PA, USA

Weeks and colleagues described a very useful R package to access multiple data formats and
facilitate its integration with R packages. This package is based upon its predecessor MEGA2,
which is highly cited and used in genetic data analysis.

This tools is long overdue. While numerous statistical genetics methods are being developed, only
a minority of them have really a usable interface. Due to the metadata that modern genetic
datasets needs= to store, many of the files are not stored in a rectangular format. Parsing these
files and making them analyzable in R is often the most time-consuming part to code but is the
key for the development. The package filled in this gap and make easy the development of useful
softwares.

I only have a few minor comments:

1) The software is unique and useful, but the existence of other packages that can read and parse
genetic datasets in R should be acknowledged. For example, VariantAnnotation package in
bioconductor and seqminer in CRAN can both randomly access tabix indexed VCF/BCF files.
2) One of the major strength of the package is to facilitate statistical genetics method
development. So it would be helpful if the authors could give a toy example on how to make use
of applyFnToGenes to handle a user defined statistical tests.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Page 25 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 25 Jan 2019
Daniel Weeks, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA

Thank you for your helpful suggestions for improving our paper.

In Version 2, as suggested, we now cite, in the Introduction, other R and Bioconductor
packages that can read and parse genetic datasets.

As suggested, we have added, to the Use Case section, a toy example illustrating how to use
applyFnToGenes to apply a user-defined statistical test.

Competing Interests: None.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 26 of 26

F1000Research 2018, 7:1352 Last updated: 26 JUL 2021

mailto:research@f1000.com

