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Alzheimer’s disease (AD) is the most common cause of dementia. Although
genome-wide association study (GWAS) have reported hundreds of single-nucleotide
polymorphisms (SNPs) and genes linked to AD, the mechanisms about how these
SNPs modulate the development of AD remain largely unknown. In this study, we
performed GWAS for three traits in cerebrospinal fluid (CSF) and one clinical trait in
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Our analysis identified
five most significant AD related SNPs (FDR < 0.05) within or proximal to APOE, APOC1,
and TOMM40. One of the SNPs was co-inherited with APOE allele 4, which is the most
important genetic risk factor for AD. Three of the five SNPs were located in promoter
or enhancer regions, and transcription factor (TF) binding affinity calculations showed
dramatic changes (| Log2FC| > 2) of three TFs (PLAG1, RREB1, and ZBTB33) for two
motifs containing SNPs rs2075650 and rs157580. In addition, our GWAS showed that
both rs2075650 and rs157580 were significantly associated with the poliovirus receptor-
related 2 (PVRL2) gene (FDR < 0.25), which is involved in spreading of herpes simplex
virus (HSV). The altered regulation of PVRL2 may increase the susceptibility AD patients
to HSV and other virus infections of the brain. Our work suggests that AD is a type of
immune disorder driven by viral or microbial infections of the brain during aging.

Keywords: Alzheimer’s disease, GWAS, SNP, mechanism, transcription factor, binding affinity, regulation, immune
disorders

INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disorder. It is characterized by
progressive memory loss and cognitive decline, cerebral accumulation of amyloid-β peptide (Aβ) in
senile plaques and hyper-phosphorylated tau in neurofibrillary tangles (NFT) (Price and Sisodia,
1998; Mukaetova-Ladinska et al., 2015). Since AD is a complex and multifactorial disease, large
datasets with multiple data types have been critical to identify its genetic risk factors (Harold et al.,
2009). For several decades, only the allele 4 of Apolipoprotein E (APOE), which is present in
about half of late-onset AD (LOAD) patients, has been convincingly demonstrated to affect risk
for LOAD (Bertram et al., 2010).
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Studies have shown that the levels of amyloid-β 1-42 peptide
(Aβ42), total tau (T-tau), and tau phosphorylated at threonine
181 (p-tau) in cerebrospinal fluid (CSF) samples can be used
as AD diagnostic biomarkers (Shaw et al., 2009; Hampel et al.,
2010). AD patients show lower levels of CSF Aβ42 (Noguchi et al.,
2005), which is negatively correlated with Aβ plaque counts in
brain samples (Ikonomovic et al., 2008). The CSF levels of T-tau
and p-tau are increased in AD patients (Price and Morris, 1999).
Increased CSF T-tau levels are also found in stroke (Hesse et al.,
2001) and traumatic brain injury (Ost et al., 2006). However,
elevated CSF p-tau levels appear to be specific to AD (Buerger
et al., 2006). The 13-item version of the Alzheimer’s Disease
Assessment Scale-Cognitive subscale (ADAS13) was developed
to measure memory and cognition for patients with mild to
moderate AD (Podhorna et al., 2016). It’s one of the most
frequently applied tests in experimental studies and clinical trials
for new drugs and other interventions. A normal ADAS13 score

for a person who does not have AD is 5 (Graham et al., 2004),
while 31.2 is the average score for those who have been diagnosed
with AD or mild cognitive impairment (The Alzheimer’s Disease
Neuroimaging Initiative et al., 2015).

Most genetic association studies analyze at a single
marker level or focus on detecting risk factors for AD,
but ignore the mechanisms and functions associated with
what they find. In our study, we conducted quantitative
trait locus (QTL) analysis of Aβ42, T-tau/Aβ42 ratio,
p-tau/Aβ42 ratio and ADAS13 as quantitative traits on
SNPs to identify significantly AD-associated SNPs. We
then performed expression quantitative trait loci (eQTL)
analysis for these AD-associated SNPs to locate the related
genes. After that, we computed the linkage disequilibrium
(LD) pattern, allele distributions and transcription factor
motifs binding affinity for SNPs in regulatory regions
(promoter regions or enhancer regions) to study how

FIGURE 1 | The flow chart of the analysis conducted in this study.
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they modulate the target genes (Figure 1). Overall, our
analysis may contribute to understand the mechanism and
etiology of AD.

MATERIALS AND METHODS

Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu). ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), and by private pharmaceutical companies and non-profit
organizations, as a public-private partnership. The principal
investigator of ADNI is Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), biological
markers, and clinical and neuropsychological assessment can be
combined together to measure the progression of AD.

The first phase of ADNI (ADNI-1) launched in 2004 included
400 subjects diagnosed with late mild cognitive impairment
(LMCI), 200 subjects with AD, and 200 elderly cognitively normal
(CN) subjects. ADNI was extended in 2009 during the ADNI-GO
phase, which assessed the existing ADNI-1 cohort along with 200
new participants with early mild cognitive impairment (EMCI).
In 2011, assessing participants from ADNI-1/ADNI-GO phases,

ADNI-2 began with new subject groups: 150 CN, 100 EMCI, 150
LMCI and 150 AD.

We were granted permission to obtain data from the
ADNI cohort (www.adni-info.org) for performing the analysis
described in this paper.

Subjects
We analyzed the CSF Aβ42, T-tau and p-tau levels, ADAS13
scores, quality-controlled SNP data and gene expression data for
812 ADNI subjects, including 281 CN, 235 EMCI, 249 LMCI and
47 AD cases.

Genotyping Data
The SNP data of ADNI-1, ADNI-GO, and ADNI-2 cohorts were
collected from either the Illumina 2.5-M array or the Illumina
OmniQuad array (Saykin et al., 2010). The SNPs shown in both
arrays were used for the following analysis.

Quality control (QC) analysis was conducted by using R
package snpStats (Clayton, 2012) in R software (R Core Team,
2013). In the QC, we excluded any SNPs that did not meet any
of the following criteria: (1) SNPs on chromosome 1-22; (2) call
rate per SNP > 95%; (3) minor allele frequency (MAF) > 5%;
(4) Hardy-Weinberg equilibrium (HWE) test of p-value > 10−6

(absolute value of z-score < 4.753424). After QC analysis, 575353
SNPs remained for the subsequent analysis.

FIGURE 2 | The Manhattan plots of the observed –log10 (p-value) for the results of QTL analysis for (A) T-tau/Aβ42 ratio, (B) p-tau/Aβ42 ratio, (C) Aβ42 concentration,
and (D) ADAS13 scores. SNPs with FDR < 0.05 were labeled on each plot. Redline stood for p-value = 10−7.
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CSF Biomarkers and ADAS13
The CSF levels of Aβ42, T-tau and p-tau were determined
using the fully automated Roche Elecsys immunoassay platform
(Seibyl et al., 2017). The ADAS13 was conducted by a certified
ADAS13 rater. ADAS13 scores were automatically calculated on
the electronic case report form based on item level data entered.

Gene Expression
Gene expression profiles of peripheral blood samples from
ADNI participants were performed at Bristol-Myers Squibb
(BMS) laboratories. The Affymetrix Human Genome U219 Array
(www.affymetrix.com) was used for expression profiling, which
contains 530467 probes for 49293 transcripts. Raw expression
values obtained directly from CEL files were pre-processed using
the RMA (Robust Multi-chip Average) normalization method
(Vawter et al., 2004).

We also used the dataset GSE28146 (Blalock et al., 2011)
in Gene Expression Omnibus [GEO (Barrett et al., 2012)].
The gene expression data was collected from laser-captured
hippocampus tissue gray matter from formalin fixed, paraffin
embedded specimens by Affymetrix Human Genome U133 Plus
2.0 Array. The dataset includes eight controls and seven cases of
severe AD.

Regulatory Information for SNP Location
The regulatory region information (promoter, enhancer and
TF binding regions) of the identified AD-associated SNPs was
obtained from Genome Browser (Kent et al., 2002) and HaploReg
(Ward and Kellis, 2012). We used TF binding motifs data in
Motif browser (Kheradpour and Kellis, 2014) and R package
MotifDb (Shannon, 2014) with motifs in JASPAR (Khan et al.,
2018), SwissRegulon (Pachkov et al., 2012) and other databases,
for the computation of binding affinity.

Analysis
To determine the SNPs associated with Aβ42 level, T-tau/Aβ42
ratio, p-tau/Aβ42 ratio in CSF and ADAS13 score, we performed
QTL analysis using the R package MatrixEQTL (Shabalin, 2012).
In this analysis, age, gender (1 for male and 2 for female) and
diagnosis (1 for CN, 2 for EMCI, 3 for LMCI and 4 for AD)
at baseline were considered as covariates. Manhattan plots of
QTL results were generated using the R package qqman (Turner,
2014). Following analysis was restricted to the associated SNPs
on the chromosome 19 (for APOE on chromosome 19) with
the false discovery rate (FDR) < 0.05. eQTL analysis was also
conducted using the R package MatrixEQTL for the filtered SNPs,
with the same covariates as QTL. The cis-eQTL results (local,
distance < 1 Mb) with FDR < 0.25 were considered as significant.
The LD pattern was plotted using the R package LDheatmap
(Shin et al., 2006).

TF motifs binding affinity were calculated using the R package
PWMEnrich for the SNPs in the regulatory regions. We used
the regions located +/− 20 base pair (bp) of the SNPs as the
DNA strings to perform the computation of binding affinity. To
determine the changes in binding affinity, we calculated the log2
fold change (Log2FC) of binding affinity for major alleles against

the binding affinity for minor alleles. TF motifs with binding
affinity of both sequences with major allele and minor allele less
than 1 (unlikely to bind on the sequences) were excluded for the
following analysis. Remaining TF motifs and related SNPs with
absolute value of Log2FC greater than 2 (|Log2FC| > 2) were
used for the functional and mechanism analysis.

Gene differential expression between CN group and AD group
was conducted by the R package limma (Ji et al., 2014; Ritchie
et al., 2015). We checked the PVRL2 gene expression for both
ADNI and dataset GSE28146 from GEO.

RESULTS

Our results of QTL analysis for Aβ42, T-tau/Aβ42 ratio,
p-tau/Aβ42 ratio and ADAS13 (Supplementary Tables S1–S4)
were illustrated in the Manhattan plots (Figure 2), showing that
almost all SNPs significantly associated with AD (p-value < 10−7)
are located at the chromosome 19 which contains APOE gene.
Table 1 shows the SNPs with FDR < 0.05 from the QTL
analysis of Aβ42, T-tau/Aβ42 ratio, p-tau/Aβ42 ratio and ADAS13,
respectively. A total of five SNPs were identified according to
the threshold FDR < 0.05, and they were also reported by
previous studies (Li et al., 2017). Detected SNPs rs2075650,
rs157580 and rs157582 are located within gene TOMM40. SNP
rs769449 locates within gene APOE and rs4420638 is proximal
to the downstream of gene APOC1. SNP rs4420638 is the most
significant AD-associated SNP in our QTL analysis for Aβ42

TABLE 1 | Results of QTL analysis.

SNP Gene p-value FDR

T-tau/Aβ42

rs4420638 APOC1∗ 7.43E-29 4.28E-23

rs769449 APOE 3.95E-26 1.14E-20

rs157582 TOMM40 2.69E-21 5.16E-16

rs2075650 TOMM40 2.03E-18 2.92E-13

rs157580 TOMM40 4.61E-08 0.0053

p-tau/Aβ42

rs4420638 APOC1∗ 3.09E-27 1.78E-21

rs769449 APOE 5.54E-24 1.59E-18

rs157582 TOMM40 2.6E-20 4.99E-15

rs2075650 TOMM40 4.63E-17 6.66E-12

rs157580 TOMM40 1.16E-07 0.013402

Aβ42

rs4420638 APOC1∗ 9.51E-21 5.47E-15

rs769449 APOE 1.11E-18 3.18E-13

rs157582 TOMM40 1.72E-15 3.29E-10

rs2075650 TOMM40 8.34E-15 1.2E-09

ADAS13

rs769449 APOE 1.88E-14 1.08E-08

rs4420638 APOC1∗ 3.03E-11 8.73E-06

rs2075650 TOMM40 8.89E-09 0.001706

Only QTL results with FDR < 0.05 are shown. If the SNP is located within a gene,
the gene is listed, otherwise the nearest gene is listed. ∗Nearest gene proximal to
the SNP. Without this symbol means the SNP is located within the corresponding
gene.
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(FDR = 5.47E-15), T-tau/Aβ42 ratio (FDR = 4.28E-23), and
p-tau/Aβ42 ratio (FDR = 1.78E-21; Figure 2 and Table 1). It
is also the second most significant AD-associated SNP in our
QTL analysis for ADAS13 (FDR = 8.73E-06). These imply that
rs4420638 is the most relevant SNP to AD in ADNI according
to our QTL analysis. The significant SNPs identified based on
the T-tau/Aβ42 ratio and p-tau/Aβ42 ratio are identical due to
the number and the order of SNPs (Figure 2 and Table 1).
SNPs rs4420638, rs769449, and rs2075650 were identified to be
significant for all of the four traits and ranked in the top three
(Figure 2 and Table 1).

We then performed eQTL analysis for the five identified SNPs
(Supplementary Table S5). Table 2 shows the cis-eQTL results
with FDR < 0.25. In order to include more SNPs and genes for
the following mechanistic analysis, we set FDR < 0.25 as the
threshold instead of the more classic cutoff FDR < 0.05 for our

eQTL results. For we want to find the mechanism of AD, here
we just focused on the cis-eQTL results and did not consider
the trans-eQTL results. SNPs rs769449, rs2075650 and rs157580
were associated with PVRL2 gene (FDR = 0.19035, 0.0367,
and 0.08866, respectively), while rs4420638 was associated with
SYMPK gene (FDR = 0.22, Table 2). For three SNPs showed
significant association with PVRL2 gene, we studied its function
in the following. In addition to PVRL2 gene, rs2075650 was also
associated with HIF3A gene (FDR = 0.19035, Table 2). There
were no genes significantly associated with rs157582 according
to our cis-eQTL results.

We calculated allele distributions and minor allele frequencies
(MAF) of the five identified SNPs for the four diagnosis groups
(Table 3) to study their different features among different
groups. Except for rs157580, MAFs were increased along with
the progression of AD. For rs4420638, rs769449, rs2075650,

TABLE 2 | Results of eQTL analysis for the five SNPs closely related to AD.

SNP Probe ID Gene Statistic p-value FDR Beta

rs4420638 11749529_a_at SYMPK 2.88592 0.00402 0.22 0.05316

rs769449 11719528_at PVRL2 2.97703 0.00301 0.19035 0.23487

rs2075650 11719528_at PVRL2 3.79544 0.00016 0.0367 0.28469

11722674_x_at HIF3A −3.122 0.00187 0.19035 −0.0358

rs157580 11718065_a_at PVRL2 −3.4756 0.00054 0.08866 −0.2368

Only eQTL results with FDR < 0.25 are listed.

TABLE 3 | Alleles distribution of the five AD-associated SNPs in four diagnostic groups.

CN (281) EMCI (235) LMCI (249) AD (47)

rs4420638 (A/G)

AA 180 (64.06%) 139 (59.15%) 115 (46.18%) 15 (31.91%)

AG 91 (32.38%) 75 (31.91%) 104 (41.77%) 23 (48.94%)

GG 10 (3.56%) 21 (8.94%) 30 (12.05%) 9 (19.15%)

MAF 19.75% 24.89% 32.93% 43.62%

rs769449 (G/A)

GG 228 (81.14%) 164 (69.79%) 145 (58.23%) 20 (42.55%)

GA 49 (17.44%) 63 (26.81%) 87 (34.94%) 22 (46.81%)

AA 4 (1.42%) 8 (3.40%) 17 (6.83%) 5 (10.64%)

MAF 10.14% 16.81% 24.30% 34.04%

rs2075650 (A/G)

AA 204 (72.60%) 154 (65.53%) 140 (56.23%) 21 (44.68%)

AG 71 (25.27%) 70 (29.79%) 95 (38.15%) 22 (46.81%)

GG 6 (2.13%) 11 (4.68%) 14 (5.62%) 4 (8.51%)

MAF 14.77% 19.57% 24.70% 31.91%

rs157582 (C/T)

CC 158 (56.23%) 123 (52.34%) 110 (44.18%) 17 (36.17%)

CT 109 (38.79%) 90 (38.30%) 110 (44.18%) 23 (48.94%)

TT 14 (4.98%) 22 (9.36%) 29 (11.64%) 7 (14.89%)

MAF 24.38% 28.51% 33.73% 39.36%

rs157580 (A/G)

AA 104 (37.01%) 105 (44.68%) 115 (46.18%) 19 (40.43%)

AG 136 (48.40%) 100 (42.55%) 109 (43.78%) 24 (51.06%)

GG 41 (14.59%) 30 (12.77%) 25 (10.04%) 4 (8.51%)

MAF 38.79% 34.04% 31.93% 34.04%

(∗/∗) The first allele is major allele while the second one is minor allele.
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FIGURE 3 | The LD pattern for the five significantly associated SNPs.

and rs157582, the percentage of subjects carrying two minor
alleles was greater in the AD group than that in the other three
diagnosis groups. These genetic features of AD group highlight
the contribution of the genotype to the development of AD.

Among these five identified SNPs, rs2075650 shows strong
LD with rs769449 (D′ = 0.91, r2 = 0.69; Figure 3) and rs157582
(D′ = 1.00, r2 = 0.61; Figure 3). The strong LD between rs2075650
and rs157582 may be due to that both of them locate within gene
TOMM40 closely. Moreover, rs4420638 shows strong LD with
rs769449 (D′ = 0.97, r2 = 0.56; Figure 3). Besides the LD pattern
for these five SNPs, we checked that SNP rs4420638 was in strong
LD with rs429358 (D′ = 0.94, r2 = 0.65; by HaploReg), which
contributes to define the allele types of APOE gene. We explored
the relationship between rs4420638 alleles and the APOE allele 4
copy numbers (Figure 4). Our results showed that minor allele
G of rs4420638 was highly correlated with APOE allele 4 copy

numbers. Most subjects carrying one or two G alleles have one
or two copies of APOE allele 4 among all the four diagnosis
groups, respectively. This situation was much more obvious for
AD group. All AD patients with two G alleles had two copies of
APOE allele 4. All but one (95.65%) AD subjects carrying one
allele G had just one APOE allele 4.

Further analysis shows that rs769449, rs2075650, and rs157580
are located in promoter and enhancer regions for multiple
types of brain tissues and these SNPs are also located in
TF binding regions (annotations from Genome Browser and
HaploReg). We calculated the corresponding TF motifs binding
affinity for these three SNPs (Supplementary Table S6). SNP
rs2075650 and rs157580 significantly altered the binding affinity
(|Log2FC| > 2) of four TF motifs (Figure 5). SNP rs2075650
altered the binding affinity of TFs PLAG1 (Log2FC = −7.17919)
and RREB1 (Log2FC = −2.517812 for motif MA0073.1 and
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FIGURE 4 | The relationship between APOE allele 4 copy numbers and rs4420638 alleles in four diagnostic groups.

FIGURE 5 | The transcription factor binding affinity for AD related SNPs in regulatory regions. Only binding affinity of TF motifs that are largely altered (|Log2FC| > 2)
by the SNP genotypes are listed. PWM, position weight matrix. Log2FC, Log2 fold change for the binding affinity of sequence with major allele against the binding
affinity of sequence with minor allele.

Log2FC = −3.701917 for motif RREB1.SwissRegulon) while
rs157580 only altered the binding affinity of TF ZBTB33
(Log2FC = −7.642652). All of the four TF motifs had higher
binding affinity scores to the sequences containing the minor

allele of the related SNPs, indicating that the regulatory function
of these TFs may be enhanced for the subjects carrying minor
allele of rs2075650 and rs157580. Through altering the regulatory
function of these TFs, these SNPs can affect their target genes.
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TABLE 4 | PVRL2 gene differential expression for AD group against CN group in ADNI and GSE28146.

Data Probe ID Log2FC AveExpr t p-value adj.p.val B

ADNI 11718065_a_at 0.3711096 4.0623 1.817783 0.07008629 0.5363667 −4.129824

GSE28146 225418_at 0.304203702 4.007755 2.09615834 0.04408898 0.1763559 −3.76633

AveExpr, average log2-expression; t, t-statistic; adj.p.val, adjusted p-value; B, log-odds that the gene is differentially expressed.

FIGURE 6 | The suggested AD mechanism according to our analysis.

DISCUSSION

APOE has three different alleles (allele 2, 3, and 4) that are defined
by two SNPs: rs429358 (T/C, T as major allele) and rs7412 (C/T, C
as major allele). APOE allele 2 [(T;T) for (rs429358 and rs7412)]
is relatively rare and considered to be protective against AD.
The most common allele is the APOE allele 3 (T;C) which is
believed to have no effect on AD (Farrer, 1997). APOE allele
4 (C;C) increases the risk for developing AD (Liu et al., 2013).

Due to the diploid nature of the human genome, a normal
person can have zero, one, or two copies of APOE allele 4.
Carrying one copy of APOE allele 4 can increase the risk of
AD by 2 to 3 times, while carrying two such copies have a
25-fold increased risk for developing AD compared to people
with two APOE allele 3 (Michaelson, 2014). SNP rs4420638
is the most significant AD-associated SNP identified in our
study (Figure 2 and Table 1). Its minor allele G occurs almost
simultaneously with APOE allele 4, especially in AD patients
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(Figure 4). More importantly, increased MAF for this SNP was
observed in the AD patients (Table 3). These results suggest that
rs4420638 (allele G) is co-inherited with APOE allele 4, which is
supported by the previous studies (Li et al., 2008).

Pleomorphic adenoma gene 1 (PLAG1), encoding a zinc
finger protein with 2 putative nuclear localization signals, has
been shown to be consistently rearranged in pleomorphic
adenomas of the salivary glands. As a transcription factor, its
activation leads to the up-regulation of target genes (Van Dyck
et al., 2007). Ras-Responsive Element-Binding Protein 1 is a
zinc finger transcription factor encoded by RREB1 gene. It
binds to RAS-responsive elements (RREs) of gene promoters
and potentiates the transcriptional activity of Neurogenic
differentiation 1 gene (NEUROD1) and other genes (Melani
et al., 2008). SNP rs2075650 altered the binding affinity for
some motifs of PLAG1 and RREB1, where minor allele G
increased the binding affinity of these motifs for both TFs
(Figure 5). Moreover, AD patients had the highest MAF for this
SNP among all the four diagnosis groups (Table 3), implying
increased function and regulation of these two TFs and increased
activation of their target genes in the subjects of AD group.
Zinc finger and BTB domain-containing protein 33 (ZBTB33)
encodes a transcriptional regulator with bimodal DNA-binding
specificity. It recruits the N-CoR repressor complex to promote
histone deacetylation and the formation of repressive chromatin
structures in target gene promoters. In addition, it may contribute
to the repression of target genes (Daniel and Reynolds, 1999).
By our analysis, ZBTB33 is more likely to bind to the string
with minor allele G of rs157580 (Figure 5), compared with
the string containing major allele A. The MAF of rs157580
in AD group was less than that in the CN group (Table 3),
suggesting that the regulatory function of ZBTB33 in AD patients
is weaker than that in the healthy people. Our eQTL analysis
indicated that both rs2075650 and rs157580 were significantly
associated with the PVRL2 gene (Table 2). PVRL2 appears to
be the common target gene of the transcription factor PLAG1,
RREB1, and ZBTB33. The altered binding affinity of these TFs in
AD patients may potentiate the transcriptional activity of PVRL2.
More importantly, PVRL2 was found to be upregulated in AD
patients compared to CN in ADNI and another dataset (Table 4).

Poliovirus receptor-related 2 (PVRL2) gene, also known as
nectin cell adhesion molecule 2 (NECTIN2) or herpesvirus entry
mediator B (HVEB), is a human plasma membrane glycoprotein
(Lopez et al., 1998). PVRL2 gene is located in close vicinity
of the APOE locus on the chromosome 19. It is expressed in
multiple types of cell and tissues, including neurons. It belongs
to the plasma membrane components of adherens junctions
(Takai, 2003). More importantly, it mediates the entry of herpes
simplex virus (HSV) (Warner et al., 1998). Dysregulation for
PVRL2 may have impact on the susceptibility of individuals
to HSV infection of brain by affecting virus entry to cells and
intercellular virus spreading (Spear, 2004). There is evidence
showing that HSV infection in AD brains was observed (Itzhaki
and Wozniak, 2008). A recent study reported that Aβ peptide
might be involved in resistance to microbial infection in mouse
and worm models of AD and acted as a defense molecule of
the innate immunity (Kumar et al., 2016), which is compatible

with the viral association with AD etiology and pathology. The
accumulation of Aβ plaque deposits may be a consequence of
the over-production of Aβ peptide during viral infection of the
brain (Porcellini et al., 2010). Additionally, some previous studies
showed that HSV could contribute to the development of Aβ

plaques directly (Piacentini et al., 2011). What’s more, reactivated
HSV1 can directly induce inflammatory damage, which may
lead to an increase on the formation of Aβ and tau pathology
(Wozniak et al., 2007). Last but the least, a new study of late-onset
AD-associated virome found the evidence that links the activity
of specific viral species (includes HSV1) with molecular, genetic,
clinical and neuropathological aspects of AD (Readhead et al.,
2018).

In summary, we identified five SNPs that were highly
associated with AD by QTL analysis for multiple traits. Among
them, the allele G of rs4420638 is co-inherited with the APOE
allele 4. In addition, our eQTL analysis indicated that both
rs2075650 and rs157580 were significantly associated with the
PVRL2 gene. The transcription factors PLAG1, RREB1 and
ZBTB33 had higher binding affinities to the motifs containing
minor allele of the rs2075650 and rs157580, indicating an
enhanced regulatory function of these TFs in the subjects with
such minor alleles. The altered binding affinity of these TFs to
these SNP regions increased the expression of PVRL2 in AD
patients as compared to CN. Increased expression of PVRL2
may also increase the patients’ susceptibility to HSV and other
viral infections of the brain. Overtime, the more frequent
immune activation against infections may result in progressive
neurodegeneration (Figure 6). Our findings suggest that AD is a
type of immune disorder driven by virus or microbial infections
of the brain. For microglia are the brain-resident immune cells
and TREM2 gene plays a crucial role in microglia function
(Keren-Shaul et al., 2017; Kober and Brett, 2017), we will study
how they affect the progression of AD for further research.
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