
ORIGINAL RESEARCH
published: 26 June 2018

doi: 10.3389/fnins.2018.00429

Frontiers in Neuroscience | www.frontiersin.org 1 June 2018 | Volume 12 | Article 429

Edited by:

Xiaogang Wu,

Institute for Systems Biology,

United States

Reviewed by:

Kyle B. Gustafson,

Naval Surface Warfare Center

Carderock Division (NSWCCD),

United States

Masahiko Takada,

Kyoto University, Japan

*Correspondence:

Tomoki Fukai

tfukai@riken.jp

†These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Neuroscience

Received: 18 January 2018

Accepted: 06 June 2018

Published: 26 June 2018

Citation:

Martín-Vázquez G, Asabuki T,

Isomura Y and Fukai T (2018) Learning

Task-Related Activities From

Independent Local-Field-Potential

Components Across Motor Cortex

Layers. Front. Neurosci. 12:429.

doi: 10.3389/fnins.2018.00429

Learning Task-Related Activities
From Independent
Local-Field-Potential Components
Across Motor Cortex Layers
Gonzalo Martín-Vázquez 1,2†, Toshitake Asabuki 2,3†, Yoshikazu Isomura 4 and

Tomoki Fukai 2,3*

1Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid, Spain, 2 Lab for Neural Coding and Brain Computing,

RIKEN Center for Brain Science, Wako, Japan, 3Department of Complexity Science and Engineering, The University of

Tokyo, Kashiwa, Japan, 4 Brain Science Institute, Tamagawa University, Tokyo, Japan

Motor cortical microcircuits receive inputs from dispersed cortical and subcortical regions

in behaving animals. However, how these inputs contribute to learning and execution of

voluntary sequential motor behaviors remains elusive. Here, we analyzed the independent

components extracted from the local field potential (LFP) activity recorded at multiple

depths of rat motor cortex during reward-motivated movement to study their roles

in motor learning. Because slow gamma (30–50Hz), fast gamma (60–120Hz), and

theta (4–10Hz) oscillations temporally coordinate task-relevant motor cortical activities,

we first explored the behavioral state- and layer-dependent coordination of motor

behavior in these frequency ranges. Consistent with previous findings, oscillations

in the slow and fast gamma bands dominated during distinct movement states,

i.e., preparation and execution states, respectively. However, we identified a novel

independent component that dominantly appeared in deep cortical layers and exhibited

enhanced slow gamma activity during the execution state. Then, we used the four

major independent components to train a recurrent network model for the same lever

movements as the rats performed.We show that the independent components differently

contribute to the formation of various task-related activities, but they also play overlapping

roles in motor learning.

Keywords: reservoir computing, recurrent network model, force learning, independent component analysis,

gamma oscillations, theta oscillation

INTRODUCTION

While task-related neural activities have been studied in different layers of cortical microcircuits
(de Kock and Sakmann, 2009; Isomura et al., 2009; Harris and Mrsic-Flogel, 2013; Masamizu et al.,
2014;Manita et al., 2015; Takeda et al., 2015), direct recordings of presynaptic inputs to local cortical
circuits are still technically challenging in behaving animals. The lack of input information makes it
difficult to address how inputs from different brain regions contribute to the learning of task-related
cortical activities. Here, we ask this question by using the local field potentials (LFPs) recorded from
the motor cortex of the rats performing a voluntary sequential arm movement (Isomura et al.,
2009).
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The major sources of LFP activity are widely thought to
be synaptic inputs to local cortical areas. Synaptic inputs from
different brain regions generally project to different layers of local
cortical circuits. To segregate inputs to the motor cortex, we
conducted independent component analysis (ICA) on the LFP
data recorded at different cortical depths. If neural activities in
different regions targeting the motor cortex are partly correlated
with one another, the components extracted by ICA would
not represent exact inputs from different brain areas. However,
they can be, at least approximately, regarded as independent
inputs converging to the primary motor cortex through multiple
synaptic pathways.

First, we investigated how the independent components (ICs)
are related to oscillations in various frequency bands. Ample
evidence suggests that oscillations at various frequencies and
their cross-frequency couplings play an active role in neural
circuit functions of various brain regions (Colgin et al., 2009;
Canolty and Knight, 2010; Le Van Quyen et al., 2010; van
der Meer et al., 2010; Fujisawa and Buzsáki, 2011; Yamamoto
et al., 2014). In the motor cortices of human (Gaetz et al.,
2010; Yanagisawa et al., 2012) and non-human primates (van
Wijk et al., 2012), behavioral phase-dependent shifts were shown
between beta-band (15–30Hz) and gamma-band (40–80Hz)
activities. In the rat motor cortex, slow gamma oscillation
(30–50Hz) was dominant during lever hold or preparatory
periods, whereas fast gamma oscillation (60–120Hz) was
enhanced during movement execution (Igarashi et al., 2013).
Our analysis based on ICA enables us to study minor oscillatory
components that were previously missed.

Second, we recruited reservoir computing for exploring the
roles of the ICs in motor learning. A dynamical system consisting
of a recurrent neural network and readout units is called reservoir
computing when readout connections, but no other connections
including recurrent connections, are modifiable. In this system,
the recurrent network is referred to as reservoir (Schrauwen
et al., 2007). We trained the network model receiving the
independent inputs to replicate the experimentally observed lever
movements of the rats. The rat motor cortex shows several
functional subtypes of neurons, i.e., hold-related, pre-movement,
movement-related, and post-movement neurons, during the
push-pull-hold movement (Isomura et al., 2009), and their
relative ratio in population is different between the superficial
and deep cortical layers (Igarashi et al., 2013). Results of our
modeling study clarify whether the contributions of different
ICs to the formation of these functional subtypes are similar or
different, giving interesting insight into input- and layer-specific
motor information processing.

MATERIALS AND METHODS

Experimental Procedure and Recording
All experiments were performed in accordance with animal
protocols approved by the Experimental Animal Committee
of the RIKEN Institute. All data analyzed in this study were
reutilized from the 12 rats analyzed previously (Isomura et al.,
2013). Briefly, head-fixed adult Long-Evans rats (n = 12;
male 150–250 g; SLC) learnt to hold a lever for at least 1 s

and then pull the lever to obtain a drop (0.01ml) of 0.1%
saccharin water for >60% of a full lever shift. After the
training, a one-shank 16-channel silicon probe, which had two
sets of tetrode-like electrodes (at the tip and 800µm above
it) for multineuronal activity and eight electrodes for LFP
separated linearly by 150µm (LFP8 + TetrodeSD; NeuroNexus
Technologies), was inserted up to 1,200 or 1,600µm into the
forelimb area of the motor cortex (Sampling rate, 20 kHz; final
gain, 2000; original band-pass filter, 0.5Hz to 10 kHz). Spike
events were isolated from the multineuronal activity with the
semiautomatic spike-sorting software, EToS (Takekawa et al.,
2012), and the spike clusters were manually manipulated to
refine single-neuron clusters with the clustering software Klusters
and NeuroScope (Hazan et al., 2006). Regular-spiking (RS) or
fast-spiking (FS) neurons were classified according to the spike
width (Barthó et al., 2004; Sirota et al., 2008; Saiki et al.,
2014).

Analysis of LFPs and Spike Phase-Locking
The LFP consists of a mixed signal contributed mainly by the
electric fields produced by the transmembrane currents elicited
by the different synaptic inputs onto postsynaptic neurons
(Elul, 1971; Buzsáki et al., 1983, 2012; Nunez and Srinivasan,
2006). To separate the different sources that contribute to
the LFP we employed an ICA, a subclass of blind source
separation techniques (Comon, 1994; Bell and Sejnowski, 1995;
Hyvärinen et al., 2001, 2004). ICA is able to find statistically
independent sources from a linear mixture, or as independent
as possible (Hyvärinen and Oja, 2000). When applied to LFPs
recorded by an array of electrodes distributed in the brain it
can separate stable patterns of activity that are segregated in
space (Hutchinson et al., 2010; Fernández-Ruiz and Herreras,
2013; Herreras et al., 2015). Applying ICA to linear profiles
of LFPs spanning certain structure of the brain results in the
extraction of different sources of activity with characteristic
spatial distribution that can be attributed to known anatomical
pathways; as it has been demonstrated in the hippocampus
(Korovaichuk et al., 2010; Makarov et al., 2010; Fernández-Ruiz
et al., 2012a,b, 2013; Martín-Vázquez et al., 2013, 2016; Benito
et al., 2014, 2016; Schomburg et al., 2014). The use of ICA in
LFP analysis has also been useful in other structures as the Lateral
Septum (Martín-Vázquez et al., 2016), Lateral Geniculate Nucleus
(Makarova et al., 2014) and Cerebral Cortex (Whitmore and Lin,
2016).

As the LFP is produced mainly by synaptic currents we
assume that the sources are stable in space as it correspond
to the transmembrane currents fixed in different dendritic
domains determined by anatomy (Nunez and Srinivasan,
2006; Buzsáki et al., 2012). Thus we are assuming spatial
independence for the signal’s sources without any temporal
constrains (i.e., spatial ICA; Stone, 2004), that allow us to
perform temporal and coherence analysis between the extracted
components (Bell and Sejnowski, 1995; Hyvärinen et al., 2004;
Choi et al., 2005; Schomburg et al., 2014). In the case of
spatially identical sources or spatially different sources that are
perfectly coherent no separation of sources can be obtained
with ICA (Makarova et al., 2011; Martín-Vázquez et al.,
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2016). But even in situations of highly correlated activity, as
in the case of coupled oscillations in feedback/feedforward
circuits in CA1 (Schomburg et al., 2014) and CA3 (Martín-
Vázquez et al., 2016), ICA can separate different sources
successfully.

The ICA model assumes that the original sources are
mutually independent components that are stationary in space,
mix linearly and instantaneously and have non-Gaussian
distributions (Brown et al., 2001; Hyvärinen et al., 2004). Spatial
stationarity of the sources of LFP is assured by the fixed
synaptic input domains, as explained above. The mixture of
the sources must be linear and instantaneous, as it can be
assumed for the superposition of the electric fields elicited by
the ionic transmembrane currents in the extracellular space in
a quasistationary approximation (Plonsey and Heppner, 1967;
Nunez and Srinivasan, 2006). Finally, the sources should have
activation strengths with non-Gaussian distribution, which is the
case for brain dynamics (Hyvärinen et al., 2010; Hyvärinen, 2012;
Teramae et al., 2012; Buzsáki and Mizuseki, 2014; Omura et al.,
2015).

Different ICA algorithms that are theoretically equivalent
(Hyvärinen and Oja, 2000; Choi et al., 2005) and give similar
results in LFP analysis (Makarov et al., 2010) have been
developed. In the present study we employed “runica,” as
implemented in the EEGLAB toolbox (Delorme and Makeig,
2004), a widely used method based on the logistic infomax ICA
algorithm (Bell and Sejnowski, 1995) with the natural gradient
(Amari, 1998). This algorithm have been extensively used in
LFP analysis (Korovaichuk et al., 2010; Makarov et al., 2010;
Makarova et al., 2011; Fernández-Ruiz et al., 2012a). When
ICA is applied to LFPs recorded by contiguous electrodes,

let be LFP (t) =
{

LFPk(t)
}8

k=1
(where the rows represents

the k-electrodes and the columns each time instant t of the
recording) we obtainedN independent components (ICs), where
N is the number of electrodes. Each IC is described by its
spatial weight or distribution, Vn (referred also as voltage
loading as explained below), that reflects the contribution of
the IC to the LFP at each electrode; and its time course,
sn (t), that reflects the temporal dynamics for each IC. The
weighted sum of the N-components gives the original LFP, i.e.,
LFP (t) =

∑N
n=1 Vnsn(t) (Makarov et al., 2010). Specifically

for “runica,” applying ICA to the LFPs results in an unmixing
matrix W such that WLFP (t) = s(t), where the rows represent
the time course of each IC, and the inverse of W (the so
called mixing matrix) describes the spatial weights, such that
W−1 = V , where the columns represent the spatial weights
of each IC (pseudoinverse of W need to be used when the
dimensionality is reduced previously; Delorme and Makeig,
2004).

Before applying ICA, the signal was preprocessed in various
steps. We performed a principal component analysis (PCA)
to reduce the dimensionality of the signal keeping 99.0% of
the original LFP variance. This preprocessing diminishes the
presence of noisy weak components and stabilizes and accelerates
the convergence of ICA algorithm (Makarov et al., 2010;
Makarova et al., 2011). Centering and whitening the signal is
also common preprocessing step that reduce the computational

complexity of the analysis without loss of statistical consistency
(Hyvärinen and Oja, 2000; Chen and Bickel, 2005).

The knowledge of the temporal dynamics and spatial
distribution of the ICs allow us to characterized them by its
relative contribution to the LFP, which takes into account the
temporal variance and the extension of the spatial weight along
the recording sites (Makarova et al., 2011)

Wn =
‖Vn‖

2 var (sn)
∑

m ‖Vm‖
2 var(sm)

. (1)

To study the temporal and frequency relationship between ICs we
reconstructed for each IC a virtual LFP by multiplying the spatial
distribution (Vn) by the time course [sn(t)], allowing us to study
the ICs independently (i.e., as if each IC were active alone). This
virtual LFP also allowed us to elude the ambiguity problem of
spatial weights and time courses obtained with ICA, which are
given in arbitrary units (Hyvärinen and Oja, 2000; Korovaichuk
et al., 2010; Makarov et al., 2010). For the subsequent analyses
we used the reconstructed LFP of the electrode with maximum
amplitude in absolute value for each IC (n= 1, 2, 3, 4):

ICn (t) = Vmax
n sn (t) , (2)

where Vmax
n correspond to the electrode k for which

maxk ǫ [1,8]

∣

∣

∣
Vk
n

∣

∣

∣
.

To compare and classify the components between rats we use the
spatial weights, that ultimately corresponds to transmembrane
current distributions and hence it must be stable. We used the
distancemeasure of the spatial distribution definedMakarov et al.
(2010)

d (Vn,Vm) = 1−
|〈Vn,Vm〉|

‖Vn‖ ‖Vm‖
, (3)

〈Vn,Vm〉 =

∫

�

VnVm + κ∇Vn∇Vm+κ2∇2Vn∇
2Vmdx, (4)

‖Vn‖ =
√

〈Vn,Vn〉, (5)

between a pair (n,m) of ICs, where d ∈ [0, 1] due to the Cauchy-
Schwarz inequality. In our case we set the dimensional constant
in κ = 150µm2, to magnify the spatial derivatives differences due
to large inter-electrode distance. To find different groups between
the set of voltage loadings, we used hierarchical clustering using
the Ward’s method (minimum variance algorithm) with an
Euclidean metric for the distance.

The specific spatial weights of each component (Vn) are
equal to the instant depth profiles of the proportional voltage
among sites of recording, i.e., the spatial loading of voltage
(Makarov et al., 2010). As the multi electrode was inserted into
the motor cortex spanning all layers from surface, the knowledge
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of the position of each recording site allow us to discriminate
independent activity with cell layer accuracy (Schomburg et al.,
2014). However it is important to stress that the ability of ICA to
decompose the LFP into independent sources of activity depends
on each particular region of the brain and the characteristics
of the LFP produced there (Fernández-Ruiz et al., 2013; Benito
et al., 2014; Martín-Vázquez et al., 2016). Only those synaptic
inputs with enough synchrony, postsynaptic transmembrane
current magnitude and spatial clustering produce measurable
LFPs, optimal for ICA decomposition. Highly stratified axon
terminals and parallel anatomical arrangement of the principal
cells in the CA1 region of hippocampus have been demonstrated
to be well-suited for ICA (Benito et al., 2014; Schomburg et al.,
2014). But it also proved useful in other structures as the CA3
region (Martín-Vázquez et al., 2013; Benito et al., 2016) and
Dentate Gyrus of the hippocampus (Fernández-Ruiz et al., 2013;
Benito et al., 2014) or even in glomerular structures (Makarova
et al., 2014). The parallel anatomical arrangement of the principal
cells in the motor cortex (although overlapped) and the spatial
clustered relative input strength of the different synaptic input
domains (Hooks et al., 2013), supported by the existence of layer
dependent LFP oscillations (Igarashi et al., 2013), makes the
motor cortex an appropriate structure for the use of ICA.

Spectrum Analysis
To analyze the spectral characteristics of the LFPs with high
resolution we used the complex wavelet transform (CWT) using
complex Morlet wavelets (Torrence and Compo, 1998). In the
case of longer periods of time the power spectra of LFP were
calculated with Welch’s power spectral density method using a
4096-point Fast Fourier Transform (FFT).

We performed Current Source Density (CSD) analysis to
localize the current sources and sinks, and approached the second
derivative of the LFP with one-dimensional finite differences
along the depth of the cortex (Nicholson and Freeman, 1975;
Mitzdorf, 1985):

CSD = −σ∇2uk (t) ≃ −σ
uk−1 (t) − 2uk(t)+ uk+1(t)

h2
, (6)

where uk is the voltage in the k-th electrode, σ is the extracellular
space conductivity (we set σ = 1) and h the inter-electrode
distance. Since the time course of each IC is the same for
all channels, we calculated the CSD-loading using the voltage
loading In = −σ∇2Vn (Makarova et al., 2011). This analysis
allowed us to identify volume conducted components that had
a linear spatial distribution among the recording sites and a zero
CSD-loading, as it can be expected from the second derivative of
a straight line (Nunez and Srinivasan, 2006). An almost straight
voltage profile induced by a remote source has also been observed
experimentally in the hippocampus (Korovaichuk et al., 2010)
and lateral septum (Martín-Vázquez et al., 2016) of rodents and
glomerular structures in monkeys (Makarova et al., 2014) as well
as computationally in a model of the dentate gyrus (Fernández-
Ruiz et al., 2013).

For analyzing movement of the lever we defined two phases:
for the hold period we used the interval from 1,000 to 500ms

before the pull onset and for the pull period the interval from
200ms before pull onset to 300ms after it (Igarashi et al., 2013).
Because the dynamics of the LFP and spikes in the forelimb area
of the motor cortex remains the same upon lever pulling with
reward and without reward (Isomura et al., 2013), we pooled
the reward and no reward successful lever pulls to increase the
number of trials.

To analyze the phase-amplitude cross-frequency coupling
between theta and gamma oscillations we used the modulation
index (MI) previously described by Tort et al. (2008). We used
the Hilbert Transform to obtain the theta phase (4–10Hz) of the
raw LFP and the gamma amplitude envelope of each IC for slow
gamma (20–50Hz) and fast gamma (60–120Hz) oscillations. For
extracting the theta phase we used the raw LFP in a similar
manner as Schomburg et al. (2014) and Fernández-Ruiz et al.
(2017), as it showed useful for analyzing ICs obtained from
the LFP, in hippocampus and entorhinal cortex. LFP signals
were filtered using a linear finite impulse response filter (eegfilt
function implemented in EEGLAB; Delorme and Makeig, 2004).
We binned the theta phase in 18 intervals and calculated the
mean of the gamma amplitude envelope over each phase bin. To
normalize the amplitude, each bin value was divided by the sum
over the bins, obtaining an amplitude distribution-like function
(Tort et al., 2010). We evaluated this theta-gamma coupling
computing the phase-amplitudeMI that measures the divergence
of the obtained amplitude distribution from a zero coupling
uniform distribution (Tort et al., 2010). To evaluate the statistical
significance of the MI values we performed a surrogate analysis
(n= 200 surrogates) shuffling randomly the phase and amplitude
series from different trials chosen randomly (Hurtado et al., 2004;
Tort et al., 2010). Assuming that the surrogates values show
a normal distribution, we established a significance threshold
considering p < 0.01 as significant.

To detect the neurons that were significantly phase-locked to
the LFP we performed a Rayleigh test (p < 0.05) for circular
distribution (Sirota et al., 2008; Berens, 2009) and evaluated the
magnitude of the coupling with the ICs using the Phase Locking
Value (PLV):

PLV =
1

N

∣

∣

∣

∣

∣

N
∑

k = 1

eiθk

∣

∣

∣

∣

∣

, (7)

where θ is the phase of the ICs and N the number of spikes.
All the analyses were performed in MATLAB (MathWorks) and
all data are expressed as mean ± SEM. The t-test has been
widely used for evaluating statistical significance in standard
analysis (Benito et al., 2014; Schomburg et al., 2014) and was also
employed here.

Neural Network Model
Our reservoir network consists of NG neurons and the activity of
each neuron xi obeys the following equation:

τ
dxi

dt
= −xi + gG

NG
∑

j = 1

JGGij rj + J
Gz
i z +

NI
∑

µ = 1

JGIiµ Iµ, (8)
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ri = [tanh (xi)]+, (9)

where []+ is a threshold linear function. The activity of readout
unit z(t) was calculated as the weighted sum of the activities
of reservoir neurons: z (t) = wTr(t), where w is a modifiable
readout weight vector. In the present simulation, NG = 300 and
τ = 50 [ms]. Each neuron in the reservoir received an input to
which one of the IC1, IC2, IC3, and IC4 was randomly assigned.
In some simulations, different ICs projected to approximately the
same numbers of neurons without overlaps. In other simulations,
all neurons received the same IC and the contributions of each
IC to motor learning were separately evaluated. The inputs were
normalized between −1 and +1 and were low-pass-filtered at
10Hz because the evolution of the present rate model is not
sensitive to high-frequency components of inputs. Neuron pairs
were randomly connected with the connection probability p =

0.1, and the weights of non-modifiable recurrent connections
JGG were determined by a normal distribution with mean 0 and
variance 1

(PNG)
. The overall factor of recurrent inputs was set

as gG =1.5 such that the pre-training network showed chaotic
activity (Sussillo and Abbott, 2009). All neurons in the reservoir
projected to readout unit z(t) and were projected back to by the
readout unit. The feedback connections had fixed weights JGz ,
which were taken randomly from a uniform distribution between
−1 and+1. Synaptic weights to the readout were modifiable and
trained by FORCE learning algorithm as in Sussillo and Abbott
(2009).

Simulations and Data Analysis
Training data for arm trajectory and LFP data were obtained
in Isomura et al. (2009). In the behavioral task, rats spent the
majority of task period for lever-hold and generated movements
only during a small portion of the task period. To enable efficient
learning of movements, we only used data segments containing
lever pull in each trial, namely, from 1 s before to 500ms after
lever pull onset. The data set used for learning was obtained from
18 trials. After learning, activity of each neuron in the reservoir
was averaged over the 18 trials and normalized between its
minimum and maximum values. Then, activity was categorized
into five distinct functional subtypes as in Isomura et al. (2009).
Briefly, Movement-related activity was a phasic activation during
movements, whereas Hold-related and Movement-off neurons
exhibited a phasic decrease of activity during movements. The
latter two types of functional activity were not distinguished
in this study. Pre-movement was a phasic activation starting
earlier than 500ms before movement onset and rapidly dropping
by more than the half of its peak activation after movement
onset. Post-movement was a phasic activation starting from
movement onset and dropping within 350ms from the onset.
Activity profiles that were not categorized into any of these
functional subtypes were categorized as “others.” Phasic activity
was defined as activity of each neuron that increased or decreased
beyond µ ± 3σ for more than 60ms, where µ and σ stand
for the average and standard deviation of its activity during
1,000–250ms beforemovement onset, respectively. In Figure 5C,

neurons were sorted according to the serial order of activation
time, which was calculated as

t̂i =
T

π
arg







∑T
t
′
=1

ri

(

2t
′
− 1000

)

exp
(

i 2π
′

T

)

∑T
t
′
=1

ri
(

2t
′
− 1000

)






[ms] , (10)

where r(t) is the normalized average response of each cell,
T = 750ms and the activation time was adjusted such that it falls
within the range [−1,000,+500] ms.

RESULTS

Independent Components of LFPs in the
Motor Cortex
We recorded LFP signals at eight different depths of the motor
cortex (layer 2/3 to layer 6) in rats performing an alternate-
reward forelimbmovement task. To identify independent sources
of activity contributing to the LFP, we applied ICA to the raw
LFP from the whole recording and obtained spatial voltage
distribution (referred to as spatial loading) and time course of
each independent component (IC). The results obtained were
qualitatively the same when applying ICA only to the movement
periods, so we show the results for the whole recording analysis
because it can be extracted more information of the independent
activity. In 10 of the 12 analyzed animals we found four major
ICs (i.e., IC1, IC2, IC3 and IC4), with different and recognizable
time dynamic and layer stratification along the motor cortex. In
the other two rats we could not obtain a clear IC3 and IC4, so we
excluded these rats from the rest of the analysis. The ICs obtained
ultimately represent independent activity of the LFP that show
different layer dependences along the depth of the motor cortex.
Overall, our results are consistent with those previously reported
in Igarashi et al. (2013) for the same set of rats without using ICA.
As shown below, however, ICA decomposition of LFPs enabled
us to accurately clarify the layer-dependence of the independent
activity in the LFP of the motor cortex.

The four ICs exhibited certain relationships across rats
recognizable by visual inspection of the voltage loadings,
suggesting that the components were stable (Figure 1A). To
confirm the identity of the ICs and the correctness of their
classification more rigorously, we measured the distance between
the voltage loadings of the ICs between all the rats, evaluating the
pair-wise dissimilarity. We then constructed a dendrogram based
on the dissimilarity information. The dendrogram in Figure 1B

shows the hierarchical binary cluster tree of the distances,
which demonstrates that the four ICs were successfully grouped
between different rats in four different branches with some
dispersion due to small variability in experimental conditions
(i.e., different depth of the electrode, artifacts, and noises).

The spatial loading of each IC ultimately represents the
strength of its activity in the different layers of the motor
cortex, so an exhaustive study is required in order to
describe the layer-dependence. As we cannot assign the possible
inhibitory/excitatory nature of the LFP activity ascribed to
each IC without performing local injection of neurotransmitter
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FIGURE 1 | There were four main ICs of the LFP in the motor cortex. (A) Normalized voltage loadings of the four main ICs. Colored lines represent the mean value and

gray lines represent the voltage loadings of different rats (n = 10). (B) Cluster analysis of the voltage loadings from 10 rats (a-j) established four different groups

corresponding to the four different ICs. n = 10. (C) Mean Normalized voltage loadings (Left) and CSD loadings (Right) of the ICs from all the animals and the previously

obtained scheme of the approximate layer-depth correspondence for the primary motor cortex (Isomura et al., 2009; Hooks et al., 2013). n = 10. (D) The variance of

the ICs showed the differential contribution to the LFP. n = 9. (*/***p < 0.05/0.01/0.001; t-test). (E) Representative power spectra of the raw LFP in the motor cortex

of an animal as was established previously by Igarashi et al. (2013). Each colored line represents an electrode with different depth. (F) Mean power spectra of the ICs.

Numbers 1–4 indicate various relevant features of the profiles (see section Results). n = 9.
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receptors blockers (Martín-Vázquez et al., 2013) we focused
only in the shape of the curve of the spatial loading without
considering the polarity (Makarov et al., 2010). As it can be
expected, ICs had a differential contribution to the LFP along the
depth axis of the cortex (Figure 1C). IC1 presented a maximum
in the voltage loading at ∼700µm around layer 2/3 and did
not reverse along the depth axis. IC2 showed a maximum
in the voltage loading at ∼1450µm corresponding to layers
5B and 6, and reversed the potential around ∼1,000µm. In
the motor cortex, layer 5 is classified into 5A and 5B (Ueta
et al., 2014). Previously, we measured the physiological depth of
juxtacellularly recorded neuron, and determined the layer (5A or
5B) where it was visualized histologically. We found the border
between the two layers at about 1,100 to 1,200µm from the
cortical surface (Isomura et al., 2009). IC3 showed a maximum
in the voltage loading above IC1, still within layer 2/3, and
reversed at the same depth as IC2 did. IC4 showed a linear spatial
loading, suggesting that it possibly reflects a volume conducted
component that came from other regions of the brain.

We also obtained the spatial loading of current source density
(CSD) for each IC to localize the currents that underlie the
spatial voltage loading (Figure 1C). IC4 presented a linear CSD
loading around zero that supports a volume conduction origin.
Small deviations along the depth axis possibly arose from
contamination with artifacts or noise, though it can alternatively
represent a local source of small magnitude. The other three
components showed clear reversals spanning different depth
of the cortex. Relative contributions of the different ICs to
the variance of LFP during the whole recording session were
significantly different (Figure 1D). In fact, IC1, IC2, and IC3
represent signals that were arranged in a descendant order of
the variance. Somewhat unexpectedly, IC4 was the dominant
component of the LFP, implying that the volume conducted
component accounted for most of the variance of the LFP
recorded in the motor cortex, as it has been reported previously
using the same methodology, i.e., applying ICA to LFP of the
cortex (Whitmore and Lin, 2016).

Rigorously, ICs are comprised of time courses that vary in the
amplitude in the different sites (Makarov et al., 2010), so in order
to select representative signals for the subsequent analysis, we
used the reconstructed LFP of the electrode with the maximum
amplitude for each IC (see section Materials and Methods and
Figure 2B, below). In Figure 1E, we show the power spectra
obtained from the representative raw LFPs from an animal (as
was established previously by Igarashi et al., 2013) and those
obtained from the means of the individual ICs (Figure 1F). In
the LFP power spectra, the profiles were very similar between the
electrodes, while the ICs power spectra showed heterogeneous
profiles, presumably because of the different synaptic origins. The
theta peak of the raw LFP (around 5–8Hz; 1 in Figure 1F) was
ascribed mostly to the IC4 whereas the gamma peak (around 20–
100Hz; 2 in Figure 1F) appeared in all the components, being the
power of IC3 notably lower. IC1 also showed a small and broad
hump in lower frequencies (around 3–20Hz; 3 in Figure 1F)
including the theta band, while IC4 had a small peak around
10–20Hz (4 in Figure 1F).

Temporal Relationships of ICs With Motor
Behavior
We were interested in exploring the dynamics of the different
ICs during reward-motivated movement task. To this end, we
averaged the LFP and the ICs over trials after aligning the
signals to the pull movement onset (time 0 in Figures 2A,B).
The averaged LFP signal showed a complex pattern starting
before the pull movement onset and decaying hundreds of
milliseconds after the onset (Figure 2A). The averaged IC
signals showed similar patterns for IC1, IC2 and IC4, starting
or ending about a hundred to several hundred milliseconds
before or after, respectively, the pull onset (Figure 2B). In
contrast to these components, the IC3 showed the peak
of maximum amplitude about 100ms after the pull onset,
which approximately coincides with the time of reward
delivery.

We then analyzed information about the frequencies involved
in the dynamics of each IC by averaging the wavelet power spectra
of the LFP as before (Figure 2C). As shown previously (Igarashi
et al., 2013), the slow and fast gamma oscillations appeared
during distinct movement states: the slow gamma band (20–
50Hz) was generally dominant during holding period; the fast
gamma oscillation (60–120Hz) started to appear about 100ms
before the onset of lever pull and lasted during movement
execution. Similar tendency was also seen in the average wavelet
power spectra of the ICs (Figure 2D).

However, the averaging of ICs revealed remarkable differences
in time evolution between them. In Figure 2E, we measured
the maximum powers of the averaged wavelet power spectra
separately for slow gamma ([20, 50] Hz) and fast gamma (80Hz).
A sharp enhancement of fast gamma oscillation was commonly
seen in IC1, IC2 and IC3 when aligned with pull movement, only
differing in themaximumpower (max powers 0.55± 0.04, 0.44±
0.02, and 0.28± 0.03 mV2, respectively). Slow gamma oscillation
also showed noticeable changes around the pull onset. IC1 slow
gamma was predominant during the lever hold (max power 1.02
± 0.10 mV2) and started to decrease about 250ms before the
pull onset, and this suppression of slow gamma continued during
movement execution. IC3 and IC4 showed a similar behavior,
though their slow gamma powers during the lever hold were
much lower (max powers 0.42 ± 0.05 and 0.79 ± 0.03 mV2;
p < 0.001 and p = 0.021, respectively; t-test), and so were the
decrease ratios. All these results are consistent with the previous
results.

In a striking contrast, IC2 slow gamma showed a sharp
increase ∼100ms after the pull onset (max power 0.85 ± 0.03
mV2). The increase in the slow gamma power was previously not
detected (Igarashi et al., 2013), and it was concluded that all slow
gamma components undergo suppression during movement.
However, the present results of ICA reveal that this is not entirely
true. As seen by visual inspection of the wavelet power spectra
in Figure 2D, the peak frequency of IC2 slow gamma (31.9
± 0.6Hz) was significantly lower than the peak slow-gamma
frequencies of the other ICs (36.3± 1.2Hz for IC1, 36.5± 1.5Hz
for IC3 and 34.5± 1.4Hz for IC4; p= 0.002, p= 0.004, p= 0.048,
respectively; t-test).
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FIGURE 2 | The ICs exhibited different dynamics during the performing of a reward motivated motor task. (A) Scheme of the head restrained rats performing the

reward motivated forelimb movement task and a representative average of the lever position from an animal indicating hold and pull periods (Top) and mean of the

lever pull onset-triggered average of the raw LFP (averaged from 1,200 to 2,000 trials in each rat) (Bottom). n = 10. (B) Same as (A) but for the reconstructed LFP for

each IC. The red arrows indicate the electrode with the maximum amplitude in absolute values for each IC that was used below (See section Materials and Methods).

n = 10. Amplitude calibration in (A,B): raw LFP, 1mV; ICs, 0.5mV. n = 10 rats. (C) Pull onset-triggered average of the Wavelet power spectrum of the raw LFP at

different depths from a representative animal. (D) Same as (C) but for the ICs from the same animal. Inset: scheme of the voltage loading of each IC. (E) Time

evolution of the slow gamma (20–50Hz) and fast gamma (80Hz) powers of the ICs around the lever pull onset. The traces correspond to the power of the wavelet

power spectrum for a given frequency (between 20 and 50Hz) where the IC exhibited a maximum in the power. The values of the frequencies at which each IC had a

maximum differed between ICs (see section Results). The black triangle shows the sharp slow gamma power increase of the IC2 after the pull onset. Fast gamma

powers were measured at 80Hz for each IC. n = 10 rats. In all the panels the time 0 and the dashed red line mark the lever pull onset.
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Couplings of ICs to Slow and Fast Gamma
Oscillations
We further explored how the different ICs are coupled to slow
and fast gamma oscillations. To this end, we checked the cross-
frequency couplings between the gamma oscillations of the ICs
and the LFP theta oscillation (Schomburg et al., 2014; Fernández-
Ruiz et al., 2017), which is synchronized across the different
layers of the motor cortex and hence provides reference time
points. The theta, slow gamma and fast gamma oscillations of

LFP change its absolute power during the realization of the task
(Igarashi et al., 2013). For this reason and for avoiding possible
spurious modulation, we used the Modulation Index analysis
(MI; see section Materials and Methods) that is sensitive only
to the phase of the theta signal and the relative variation in the
power of the gamma oscillations along the theta phase (Tort

et al., 2010). For this purpose, we constructed phase-amplitude
distribution plots for slow gamma (20–50Hz) and fast gamma
(60–120Hz) during holding and pulling, and computed the

phase-amplitude modulation index. Figure 3A shows that slow

gamma oscillation of IC4 preceded the oscillations of the other
ICs (p < 0.01Watson-Williams test measured for the theta phase
with maximum probability), while IC1 preceded IC2 and IC3
(p < 0.01; Watson-Williams test). Furthermore, the MI of the
slow gamma oscillation of IC1 was significantly higher than the
rest of ICs during both holding and pulling, while IC3 showed

a higher value than IC2 (Figure 3B). Interestingly, IC1 and IC3
reduced significantly the MI during pulling when compared to
holding (p= 0.03 and p= 0.005, respectively; t-test).

There were nomajor phase differences in the phase-amplitude
distribution of the ICs fast gamma oscillation; the four ICs

FIGURE 3 | Cross-frequency coupling between theta LFP and gamma oscillations of the different ICs. (A) LFP theta phase-slow gamma amplitude distribution of the

ICs during lever hold (Top) and pull (Bottom). (B) Modulation index of the LFP theta phase-slow gamma amplitude distribution of the ICs during lever hold and pull. (C)

Same as (A) but for fast gamma. (D) Same as (B) but for fast gamma. The LFP used for extracting the theta phase were the one of the electrode with the highest

mean power along the whole. All the analyses were performed in 1,200–2,000 trials for each rat. n = 10 rats. (*/**/***p < 0.05/0.01/0.001; t-test).
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showed the peak of maximum amplitude around 360◦ (p > 0.05;
Watson-Williams test; Figure 3C). Values of the MIs were also
similar for the fast gamma oscillations. Though IC3 exhibited
significantly higher values than IC2 and IC4, the difference was
not significant between IC3 and IC1 (Figure 3D). None of the
ICs varied the MIs values in the holding-to-pulling transition
(p > 0.05; t-test).

Spikes of 80 neurons were sorted from the superficial and deep
layers of the motor cortex and the neurons were classified into
regular-spiking neurons (RS; n = 19 and 46 for superficial and
deep layers, respectively) and fast-spiking neurons (FS; n= 7 and
8 for superficial and deep layers, respectively) according to the
width of the spikes (Isomura et al., 2009). Among the RS neurons
of the superficial layers, 16, 13, 12, and 10 neurons in the slow
gamma band and 15, 8, 13, and 9 neurons in the fast gamma band
were phase locked for IC1, IC2, IC3, and IC4, respectively. For
both gamma bands IC1 was dominant. Among the RS neurons of
the deep layers, 24, 20, 17, and 30 neurons in the slow gamma
band and 21, 33, 22, and 34 neurons in the fast gamma band
showed phase locking for IC1, IC2, IC3, and IC4, respectively. In
this case IC4 was dominant. All the FS neurons exhibited phase
locking in both gamma bands for the four ICs (n= 5 in superficial
layers and n = 8 in deep layers), except that only 4 FS neurons
of the superficial layers showed phase locking for IC3 in the fast
gamma band.

The phase preference of the recorded neurons displayed
interesting dependences on the ICs. Neurons located in deep
layers tended to fire earlier in the fast and slow gamma cycles
than neurons in the superficial layers in IC1, IC2, and IC4, but
conversely in IC3 (Figure 4A). Interestingly, RS neurons in the
deep layers seemed to have two preferred IC1-phases in both
slow and fast gamma bands, suggesting the existence of two
different populations (Figure 4A; arrows). RS neurons showed
particularly strong phase locking to IC1 slow and fast gamma
oscillations, yielding the highest values of PLV (see section
Materials and Methods) in the superficial layers (Figure 4B). FS
neurons exhibited the highest PLV value in the deep layers for
IC2 fast gamma oscillation.

To explore the behavioral phase dependence of phase locked
firing, we analyzed the proportion of neurons phase locked to
the different ICs during holding and pulling (Figure 4C). In
both layers, the pattern of phase locking for each IC differed
between RS and FS neurons. Notably, the number of superficial
layer RS neurons phase locked to the fast gamma was increased
during pulling for all the ICs. In both layers, IC2 slow and fast
gamma oscillations maintained the proportion of phase locked
FS neurons across the periods of holding and pulling. Thus,
our results suggest that couplings between neuronal firing and
gamma oscillations can vary in different ICs are different cell
types.

Roles of ICs in Motor Learning
We examined whether the four ICs obtained from the rat
motor cortex are sufficient for motor learning. We trained a
reservoir computing model of rate-coding neurons without layer
structure to generate experimentally observed arm movements
(Figures 5A,B; section Materials and Methods), and evaluated

the contribution of each IC to organizing functionally different
neural activities. Training a realistic cortical microcircuit model
is beyond the scope of this study. The reservoir received the
ICs (10Hz cut-off) as external inputs (Figure 5C) and FORCE
learning was used for the training (Sussillo and Abbott, 2009).
Because rate-coding neurons are insensitive to input changes
faster than the membrane time constant, the ICs were low-pass
filtered without changing the essential results. A relatedmodeling
study has been performed in the monkey motor cortex by using
movement-preparatory activity as input (Sussillo et al., 2015).
Here, we aimed at generating all functional subtypes of neurons
by using the ICs as input.

The reservoir model was trained simultaneously with all four
ICs or separately with each IC. The post-learning responses
of individual neurons are shown for each case (Figure 5D).
In all the cases, the resultant population activity contained
neural responses which are similar to various task-related
neurons found in experiment. Examples of the Hold-related (or
Movement-off), Movement-related and Pre-movement activities
learned by the network model are in Figure 5E.

Depending on the input conditions, the model exhibited
a different fraction of Movement-related neurons and Hold-
related (or Movement-off) neurons (Figure 6A). The fractions
obtained from the simulations are compared with those observed
in experiment (Figure 6B, superficial plus deep layers). In the
model, contributions of individual ICs exhibited interesting
differences. For IC1 and IC3, the fraction of Hold-related
neurons was small compared to that of Movement-related
neurons, while opposite was true for IC4. In experiment,
movement-related neurons were found dominantly in the
superficial layer (Figure 6B), suggesting that the major drivers of
the superficial layer involve IC1 and IC3. In contrast, the deep
layers contained nearly identical fractions of these functional
subtypes, from which a reliable assessment of the relative
contributions of ICs seems to be difficult.

Overall, our results suggest that the individual ICs differently
contribute to the formation of different functional subtypes
of neurons. However, all of them contribute to two major
subtypes, i.e., Hold-related and Movement-related neurons.
Therefore, the ICs play overlapping roles in learning
sequential motor behavior. While the model replicated the
experimentally observed spectrum of functional subtypes,
it contained a larger fraction of non-task-related neurons
than experimental data, indicating the limitation of the
model.

DISCUSSION

In the present study, we reported and characterized four main
independent components in the LFP of the motor cortex
(Figure 1). During the lever movement task, the ICs exhibited
complex dynamics: IC1, IC2, and IC4 increased the activity
before and during the movement realization, and IC3 started
just at the beginning of the movement (Figure 1B). These
characteristic evolution patterns of the different ICs appear most
strongly in different layers of the motor cortex. The spectrum
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FIGURE 4 | IC gamma phase locked firing of motor cortex neurons. (A) Distribution of the slow gamma (Top) and fast gamma (Bottom) ICs mean phases of the

significantly phase locked RS and FS neurons of the superficial (Blue line) and deep (Green line) layers. p-values of Watson-Williams test in each panel measure the

significance of the difference between the superficial and deep layers neurons for each IC for the two types of neurons. The arrows in the first panel indicate the

existence of two preferred slow gamma phases. (B) ICs Slow gamma (Left) and fast gamma (Right) phase locking values of the RS and FS neurons from the

superficial and deep layers. (*/***p < 0.05/0.01/0.001; t-test). (C) Proportion of slow gamma (Left) and fast gamma (Right) phase locked neurons during lever hold and

pull. In the cases where two ICs have the same proportion and the lines overlap it is indicated by an arrow.

analysis of the ICs also revealed complex dynamics of their
frequency patterns.

The layer dependence of the relative strength of IC1, IC2 and
IC3 (see Figure 1A) exhibits a certain degree of correlations with
the anatomical structure of long-range projections from distinct

brain regions to the primary motor cortex. IC1 is strongest in
layers 2/3 (at the cortical depth of about 700µm) and gradually
becomes weak toward deep layer 5 (layer 5B); IC2 is strongest
in layer 5B and is weaker in layers 5A and 2/3; IC3 is strong in
layers 2/3 and 5A, but not in layer 5B. We may compare these
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FIGURE 5 | Learned activity patterns in the reservoir network model. (A) The model is schematically illustrated. (B) Lever movements in 18 trials provided teaching

signals for learning. Time 0 refers to the onset of lever pull. (C) Typical examples of the independent components of LFP (yellow) and their low-pass-filtered versions

(blue) are shown. (D) The average normalized responses of all neurons in five different conditions: external input to the reservoir involved all ICs or just one IC. The

activities of individual neurons were averaged over repeated trials and sorted according to the onset time of activation (section Materials and Methods). (E) Examples

of the average responses are shown for Hold-related or Movement-off (top), Movement-related (middle) and Pre-movement (bottom) neurons.

results with anatomical data for synaptic inputs to the rodent
primary motor cortex (Hooks et al., 2013). The motor thalamus
projects equally strongly to layers 2/3, 5A, and 5B of the motor
cortex, while the primary somatosensory cortex and sensory
thalamus project strongly to layers 2/3 and 5A, but this projection
rapidly becomes weak toward the border between layers 5B and
6. These patterns of layer dependence are similar to those of the
magnitude changes in IC1 and IC3. Then, the secondary motor

cortex and orbital cortex project weakly to L2/3 and L5A, and
strongly to L5B. This projection pattern resembles the spatial
pattern expressed by IC2.

The power spectra of the LFPs show the behavioral phase- and
cortical layer-dependent evolution patterns of their frequency
components. In particular, we could identify a sharp increase in
slow gamma activity in the deep layers of motor cortex ∼100ms
after the execution of a forelimb movement. This increase was
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FIGURE 6 | Population fraction of each functional subtype. (A) The population ratios of functional subtypes were calculated in the models with different settings of

input. (B) Similar population ratios were obtained from the experimental data reported in Igarashi et al. (2013).

previously uncovered, solely ascribed to IC2 (Figure 2D), and not
seen in other ICs (Figure 2E). This slow activity may represent a
somatosensory feedback input or a top-down input from higher
cortical areas (Saiki et al., 2014). In particular, it has been shown
that inputs from the orbital cortex and secondary motor cortex
to the primary motor cortex are related with the cognitive and
volitional aspects of movements (Saiki et al., 2014). In addition,
neurons in the deeper layers of the primary motor cortex project
to the brainstem and thalamus (Hooks et al., 2013). Together with
these observations, our results support the speculation that IC2
could be engaged in the volitional control of movements.

IC3 also allows some interpretations as it shows a peak activity
after the pull movement (Figure 2B). In the behavioral task, the
time of this peak activity approximately coincides with reward

delivery, but IC3 is unlikely to represent a reward-related signal.
As previously established (Isomura et al., 2013), the motor cortex
is not involved in the coding of reward information (neither in
the activity of regular-spiking and fast-spiking neurons nor in the
LFP; see also Saiki et al., 2014). Consistent with this, we could not
find noticeable differences in the activity of ICs between reward
and no-reward conditions (data not shown). Because layers 2/3
and 5A, in which IC3 shows the strongest change, are projected
to by the motor thalamus (Hooks et al., 2013) and because the
thalamus is thought to monitor motor outputs (Guillery and
Sherman, 2002), a likely hypothesis is that IC3 is related with
some type of sensory or motor feedback of the movement.

The amplitude of each IC peaked at different phases of theta
oscillation, suggesting a hierarchical coordination of the different
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inputs to the motor cortex (Figure 3). The phase locked firing
of motor cortex neurons to slow and fast gamma oscillations
exhibited large differences between ICs in phase preference,
PLV, and behavioral phase dependence (Figure 4), although such
differences were subtle in the fast-gamma band compared to
the slow-gamma band (Figure 3). Results for IC1 suggested the
presence of two different populations of deep-layer RS neurons
showing different preferred phases of spiking in IC1 slow and fast
gamma oscillations (Figure 4A). Such a repulsion of preferred
phases may occur if these neuron groups inhibit each other via
inhibitory interneurons.

The origin of IC4 seems to be volume conduction, implying
that most of the contribution to the LFP of motor cortex comes
from distant areas, which is in accordance with previous results
using ICA in the LFP of the cortex (Whitmore and Lin, 2016).
The main argument for volume conduction arises from the
uniform loading of IC4 (Figures 1A,C) typical of propagated
activity between two regions, due to the extension of the electric
field in space (Fernández-Ruiz et al., 2013; Martín-Vázquez et al.,
2016). The proximity of hippocampus (Paxinos and Watson,
2009) and the marked presence of theta oscillations (Figure 1F)
show that IC4 may have contribution, at least partially, from
hippocampal activity (Sirota et al., 2008), although other regions
could contribute as well (Kajikawa and Schroeder, 2011). Thus,
the relations found between IC4 and motor cortex theta LFP
(Figure 3) and spike activity (Figure 4) should be understood as
a coupling between motor cortex activity and distant activity of
unknown origins.

We conducted the demixing of independent activity of each
IC from a set of layer-dependent LFP signals that would express
different mixtures of the ICs, relegating the sources of these
ICs to speculation. Ultimately, the sources of the ICs are
principally the transmembrane currents elicited by the different
synaptic inputs (Nunez and Srinivasan, 2006), but to assure
that each IC is pathway specific and to identify each of them
with a known anatomical input require additional experiments
(Herreras et al., 2015): local pharmacological injection as well as
local electrical stimulation (Martín-Vázquez et al., 2016) assesses
the excitatory/inhibitory nature of ICs (Martín-Vázquez et al.,
2013), identifies presynaptic neuronal population (Benito et al.,
2014), and analyzes its firing in relationwith ICs (Fernández-Ruiz
et al., 2012a,b).

Training a reservoir model with the ICs successfully replicated
the various functional subtypes of task-related motor cortical
neurons with relative portions similar to those obtained
experimentally, except that the model exhibited a larger portion
of non-task-related neurons (Figure 6). The contributions of
different ICs to the generation of Hold-related and Movement-
related neurons were qualitatively similar, suggesting that they
play overlapping rather than specific roles in motor learning.
In the modeling, we low-pass-filtered the ICs as the model is
insensitive to high frequency signals. This, however, should not
be interpreted as the unimportance of high-frequency oscillations
to motor learning. Gamma oscillations have been implicated
in cross-area communication (Colgin et al., 2009; Canolty and
Knight, 2010; Yamamoto et al., 2014), and a computational study
suggests that dendritic low-pass filtering makes gamma-band
synchronized activity an optimal carrier of analog information
between cortical neurons (Fukai, 2000).

In sum, our results indicate that there are independent
components with differential layer dependence in the LFP of the
primary motor cortex. These independent components show
differential dynamics during self-paced voluntary movements.
Interestingly, we detected a slow gamma increase after a
forelimb movement in the deeper layer of the primary motor
cortex, indicating a possible feedback of volitional nature
of the movement. We also showed that these independent
activities can be used to train a reservoir computing model
to successfully replicate the motor behaviors observed
experimentally, indicating active roles of these activities in
motor learning.
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