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Section 3 – Modelling of structural problems in aerospace airframes 

Abstract: Isogrid structures are a configuration of stiffeners of different sections, which make up a 

lattice placed on thin plates, with the aim of increasing the buckling factor of the overall structure. 

Because of the major benefits of isogrid structures when applied to increase the buckling factor and to 

decrease the mass of the structures the isogrid is placed on, its use has intensified until it has become 

a complete design technique for building cylindrical vessels under high compressive forces. 

Unfortunately, the detailed geometry of isogrid structures cannot be easily modelled or computed 

using FEM software, due to the high number of elements required to reliably mesh such a structure 

and the large amount of time taken to compute the results. This paper attempts to mitigate this 

problem by considering an analytical approach of sectioning the cylindrical vessel into component 

modules. These modules, consisting of a thin plate with isogrid stiffeners attached to it, are 

approximated as an overall thin plate with modified properties. The analytical algorithm is then 

implemented in a computed algebra system, which will quickly compute approximate values for the 

buckling factor and mass of the structure. 

Key Words: isogrid, numerical applications, stiffener, buckling, total mass, cylindrical vessels 

1. INTRODUCTION 

This paper shall present an analytical solution to the problem of axisymmetric static and 

buckling analysis of an isogrid stiffened cylinder under axial load, followed by an 

implementation of the solution in a computer algebra system called Maxima. 

The analytic solution is obtained by modifying the classical static and buckling 

equations of an axially symmetric loaded cylinder. 

The result will be a generalised method of computing the elastic properties of a thin 

plate which approximates the type of stiffened plate of the cylinder. 

The final formulas will then be implemented in Maxima, in order to make the 

computation faster and cleaner. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201798732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nastase.mihaela@incas.ro


Stefan HOTHAZIE, Camelia MUNTEANU, Mihaela NASTASE, Radu BIBIRE 90 
 

INCAS BULLETIN, Volume 10, Issue 3/ 2018 

2. STATE OF THE ART 

Isogrid stiffened thin structures are common in the aerospace industry. They are primarily 

used for increasing the buckling factor because of the advantage of also reducing the mass of 

the structure. The thickness of the cylindrical vessel will be reduced because a significant 

part of the forces and moments will be taken on by the stiffeners which have a higher 

bending stiffness than the thin plate itself. This is due to the thin radial geometry of the 

stiffeners, because, in axial bending, the stress is varying linearly in the radial direction. 

Therefore, the mass of the entire structure is predominantly distributed along the radial 

direction of the cylinder. Thanks to this design, higher buckling factors can be obtained. 

This type of reinforced structure, having a reduced mass, was adopted by the aerospace 

industry in the construction of high-speed aeroplanes, rockets and even in the construction of 

satellites. 

In recent times, a large number of analytical or semi-analytical methods were published 

that calculate the behaviour of these isogrid structures [4], [5], [6]. NASA’s analytical 

method has to be mentioned, from the manual ‘NASA Isogrid Design Handbook’ [3], where 

an approximation to the isogrid reinforced thin plate with a thin plate with modified 

properties is used. 

Unlike the approach used in this paper, the NASA approach uses a modified neutral 

axis, the Young modulus and the plate thickness. The method used in our paper doesn’t need 

to use a modified neutral axis and the properties are computed in a different manner. The 

paper borrows from the literature the technique of dividing the structure into modules and 

the hypothesis on which the analytical method is based. 

3. PROBLEM DESCRIPTION 

The problem uses the method described in the paper: ‘BUCKLING ANALYSIS OF GRID 

STIFFENED COMPOSITE STRUCTURES’ by Samuel Kidane [2], of breaking down the 

structure into identical modules. 

These elementary modules are a reduction of the design of the stiffeners attached to the 

vessel. This technique greatly simplifies the calculations. Fig. 1 represents an example 

module with two stiffeners on the diagonals. 

The problem calculates the stress on the structure and the buckling factor. For this we 

will need the stiffness matrix of the module. 

 
 

Fig. 1. Stiffened module Fig. 2. FEM model for module 
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4. CALCULATING THE STIFFNESS MATRIX 

We start by defining the expressions for the strains and forces on the thin plate. This is a 

modified reiteration of the formulas for calculation the buckling factor for medium sized 

cylinders for the book: ‘Buckling of Bars, Plates and Shells’ de Robert Millard Jones [1]. 

𝜖𝑥̅̅̅ = 𝑢𝑥 +
1

2
𝑤𝑥
2 

𝜖𝑦̅̅ ̅ = 𝑣𝑦 +
𝑤

𝑟
+
1

2
𝑤𝑦
2 

𝛾𝑥𝑦̅̅ ̅̅ = 𝑣𝑥 + 𝑢𝑦 + 𝑤𝑥𝑤𝑦 

𝑘𝑥 = −𝑤𝑥𝑥 
𝑘𝑦 = −𝑤𝑦𝑦 
𝑘𝑥𝑦 = −2𝑤𝑥𝑦 

𝜖𝑥 = 𝜖𝑥̅̅̅ + 𝑧𝑘𝑥 
𝜖𝑦 = 𝜖𝑦̅̅ ̅ + 𝑧𝑘𝑦 
𝛾𝑥𝑦 = 𝛾𝑥𝑦̅̅ ̅̅ + 𝑧𝑘𝑥𝑦 

(1) 

The strains marked with an upper bar are the strains of a flat plate. These have been 

written in nonlinear form because they are necessary for the following calculations. The next 

three expressions are for the curvature of the plate, which represent the deviation for the flat 

plate deformation. 

The last three expressions are the final forms of the strains. Since we are studying thin 

curved plates, the strains vary linearly along the thickness of the plate, represented in Fig. 3 

by the 𝑧 axis. 

The x axis is along the axial direction of the cylinder, the y axis in the circumferential 

direction and the z axis in the radial direction. 

 
Fig. 3. Plate and stiffener 

Since we are interested only in symmetric axial deformations, all the 𝑦 derivatives will 

cancel out and the circumferential elongation 𝑣  will be zero. Therefore, expressions (1) 

simplify to: 

𝜖𝑥̅̅̅ = 𝑢𝑥 +
1

2
𝑤𝑥
2 

𝜖𝑦̅̅ ̅ =
𝑤

𝑟
 

𝛾𝑥𝑦̅̅ ̅̅ = 0 

𝑘𝑥 = −𝑤𝑥𝑥 
𝑘𝑦 = 0 
𝑘𝑥𝑦 = 0 

𝜖𝑥 = 𝑢𝑥 +
1

2
𝑤𝑥
2 − 𝑧𝑤𝑥𝑥  

𝜖𝑦 =
𝑤

𝑟
 

𝛾𝑥𝑦 = 0 

(2) 

The formulas for the distributed forces and moments are: 
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𝑁𝑥 = ∫𝜎𝑥
ℎ

𝑑𝑧 = 𝐴11𝜖𝑥̅̅̅ + 𝐴12𝜖𝑦̅̅ ̅ 

𝑁𝑦 = ∫𝜎𝑦
ℎ

𝑑𝑧 = 𝐴21𝜖𝑥̅̅̅ + 𝐴22𝜖𝑦̅̅ ̅ 

𝑁𝑥𝑦 = ∫𝜏𝑥𝑦
ℎ

𝑑𝑧 = 𝐴33𝛾𝑥𝑦̅̅ ̅̅  

𝑀𝑥 = ∫𝜎𝑥
ℎ

𝑧 𝑑𝑧 = 𝐴44𝑘𝑥 

𝑀𝑦 = ∫𝜎𝑦
ℎ

𝑧 𝑑𝑧 = 0 

𝑀𝑥𝑦 = ∫𝜏𝑥𝑦
ℎ

𝑧 𝑑𝑧 = 0 

(3) 

The formulas for distributed forces and moments will be linear functions of strains and 

curvatures: 

(

 
 
 
 

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦)

 
 
 
 

(

 
 
 

𝐴11 𝐴12 0 0 0 0
𝐴21 𝐴22 0 0 0 0
0 0 𝐴33 0 0 0
0 0 0 𝐴44 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

 
 
 
=

(

 
 
 
 

𝜖𝑥̅̅̅
𝜖𝑦̅̅ ̅

𝛾𝑥𝑦̅̅ ̅̅

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦)

 
 
 
 

 (4) 

The matrix 𝐴𝑖𝑗  is the stiffness matrix of the module. The majority of the terms are 

negligible because they represent the coupling values of the stiffeners, which are 

insignificant.  

The role of the stiffeners in the analytical method is to modify the properties of the thin 

plate. All other effects are ignored. 

The computation of the distributed forces and moments integral will be divided into two 

steps: one for the stiffeners and one for the thin plate. 

𝑁𝑥 = ∫ 𝜎𝑥  𝑑𝑧

ℎ𝑝
2

−
ℎ𝑝
2

+∫ 𝜎𝑥  𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑁𝑦 = ∫ 𝜎𝑦 𝑑𝑧

ℎ𝑝
2

−
ℎ𝑝
2

+∫ 𝜎𝑦 𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑁𝑥𝑦 = ∫ 𝜏𝑥𝑦 𝑑𝑧

ℎ𝑝
2

−
ℎ𝑝
2

+∫ 𝜏𝑥𝑦 𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑀𝑥 = ∫ 𝜎𝑥𝑧 𝑑𝑧

ℎ𝑝
2

−
ℎ𝑝
2

+∫ 𝜎𝑥𝑧 𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑀𝑦 = ∫ 𝜎𝑦𝑧 𝑑𝑧

ℎ𝑝
2

−
ℎ𝑝
2

+∫ 𝜎𝑦𝑧 𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑀𝑥𝑦 = ∫ 𝜏𝑥𝑦𝑧 𝑑𝑧

ℎ𝑝
2

−
ℎ𝑝
2

+∫ 𝜏𝑥𝑦𝑧 𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

(5) 

In Fig. 3 the heights of the plate and stiffeners were represented as ℎ𝑝  and ℎ𝑟 . The 

expresions for the stress components are: 

𝜎𝑥 =
𝐸

1 − 𝜈2
(𝜖𝑥 + 𝜈𝜖𝑦) 

𝜎𝑦 =
𝐸

1 − 𝜈2
(𝜖𝑦 + 𝜈𝜖𝑥) 

𝜏𝑥𝑦 =
𝐸

2(1 + 𝜈)
𝛾𝑥𝑦 

(6) 

In Fig. 4 is shown a plate with a stiffener at an angle along with the coordinate system of 

the plate, 𝑋𝑜𝑌. 
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Fig. 4. Plate and rotated stiffener Fig. 5. Rotated strains 

The effect of the stiffeners is to increase the bending resistance of the underlying plate. 

To find the expressions in the global coordinate system, the strains along the stiffener have 

to be rotated by the angle 𝜙, illustrated in Fig. 5. We will write this relationship as a matrix 

equation, as follows, where 𝑐 = cos (𝜙) iar 𝑠 = sin(𝜙): 

(

𝜖𝑥
𝜖𝑦
𝛾𝑥𝑦
) = (

𝑐2 𝑠2 𝑠𝑐
𝑠2 𝑐2 −𝑠𝑐
−2𝑠𝑐 2𝑠𝑐 𝑐2 − 𝑠2

)(

𝜖𝑥′
𝜖𝑦′
𝛾𝑥′𝑦′

) (7) 

The deformation is along the stiffener; therefore, the only nonzero strain is 𝜖𝑥′: 

𝜖𝑥′ = 𝑐
2 𝜖𝑥 + 𝑠

2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦 (8) 

Idem, we have for stress in the module system of coordinates: 

(

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
) = (

𝑐2 𝑠2 𝑠𝑐
𝑠2 𝑐2 −𝑠𝑐
−2𝑠𝑐 2𝑠𝑐 𝑐2 − 𝑠2

)(
𝜎𝑥′
0
0
) (9) 

(

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
) = (

𝑐2 𝜎𝑥′
𝑠2 𝜎𝑥′
−2𝑠𝑐 𝜎𝑥′

) (10) 

As the only nonzero stress expression is 𝜎𝑥′ = 𝐸𝜖𝑥′ = 𝐸(c
2 𝜖𝑥 + 𝑠

2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦), we have: 

(

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
) = 𝐸(

𝑐2 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)

𝑠2 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)

−2𝑠𝑐 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)

) (11) 

To find the stiffener contribution to the distributed force 𝑁𝑥, the balance of forces shall 

be written as follows: 

𝑁𝑥 =
𝐹𝑥
𝑎
=
1

𝑎
∫ 𝜎𝑥  𝑑𝐴 

𝑁𝑥 =
1

𝑎
∫ 𝜎𝑥

𝑡𝑟
𝑐𝑜𝑠 (𝜙)

𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

(12) 
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The force 𝐹𝑥 represents the total force on the area of the stiffener. 𝑁𝑥 is the distributed 

force on the side 𝑎 of the module. The area element 𝑑𝐴 is equal to the thickness of the 

stiffener 𝑡𝑟  divided by cos(𝜙) and multiplied by 𝑑𝑧 . We divided by cos (𝜙)  because we 

integrate over the projected transversal area of the stiffener on the 𝑥 axis. Similarly, the other 

expressions (13) for all the distributed forces and moments are found: 

𝑁𝑥 =
𝐸

𝑎

𝑡𝑟
𝑐𝑜𝑠(𝜙)

∫ 𝑐2 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑁𝑦 =
𝐸

𝑏

𝑡𝑟
𝑠𝑖𝑛(𝜙)

∫ 𝑠2 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑁𝑥𝑦 =
𝐸

𝑎

𝑡𝑟
𝑐𝑜𝑠(𝜙)

∫ −2𝑠𝑐 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑀𝑥 =
𝐸

𝑎

𝑡𝑟
𝑐𝑜𝑠(𝜙)

∫ 𝑐2 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)𝑧𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑀𝑦 =
𝐸

𝑏

𝑡𝑟
𝑠𝑖𝑛(𝜙)

∫ 𝑠2 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)𝑧𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

𝑀𝑥𝑦 =
𝐸

𝑎

𝑡𝑟
𝑐𝑜𝑠 (𝜙)

∫ −2𝑠𝑐 (𝑐2 𝜖𝑥 + 𝑠
2 𝜖𝑦 − 𝑠𝑐 𝛾𝑥𝑦)𝑧𝑑𝑧

ℎ𝑝
2
+ℎ𝑟

ℎ𝑝
2

 

(13) 

The calculations are the same for the thin plate. The final stiffness matrix is obtained 

through summing up all the stiffness matrix of the stiffeners and the plate. Having these final 

relations, we can extract the terms for the final stiffness matrix as follows: 

- The stiffness matrix terms are calculated for the curved plate. 

- We choose a stiffener and calculate the formulas from above. 

- We extract the stiffness matrix for the component. 

- Repeat last two steps for all stiffeners. 

- Final stiffness matrix is obtained by summing all component stiffness matrices. 

5. COMPUTING THE STRESS IN THE AXIAL SIMETRIC CASE 

The calculation is simple. Having the stiffness matrix, we can write the relationship between 

the distributed forces and moments and strains and curvatures (14): 

(

 
 
 
 

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦)

 
 
 
 

=

(

 
 
 

𝐴11 𝐴12 0 0 0 0
𝐴21 𝐴22 0 0 0 0
0 0 𝐴33 0 0 0
0 0 0 𝐴44 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

 
 
 

(

 
 
 
 

𝜖𝑥̅̅̅
𝜖𝑦̅̅ ̅

𝛾𝑥𝑦̅̅ ̅̅

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦)

 
 
 
 

 (14) 

The unknowns are strains and curvatures. The knowns are 𝐹𝑥, the axial force and 𝑅, the 

cylinder radius. As 𝑁𝑥 is 𝐹𝑥 divided by the circumference of the cylinder, and the rest of the 

forces and moments are zero, we have: 
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(

 
 
 
 

𝜖𝑥̅̅̅
𝜖𝑦̅̅ ̅

𝛾𝑥𝑦̅̅ ̅̅

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦)

 
 
 
 

=

(

 
 
 

𝐴11 𝐴12 0 0 0 0
𝐴21 𝐴22 0 0 0 0
0 0 𝐴33 0 0 0
0 0 0 𝐴44 0 0
0 0 0 0 0 0
0 0 0 0 0 0)

 
 
 

−1

(

 
 
 
 

𝐹𝑥
2𝜋𝑅
0
0
0
0
0 )

 
 
 
 

 (15) 

If the stiffness matrix is separated into its component matrices, calculated in chapter 4, 

the stresses on each component of the module can be computed. The strains, which were 

previously computed (15), are the same for all components. For this, the stress can be 

computed using the usual formulas. 

6. COMPUTING THE BUCKLING FACTOR 

We shall first write the equilibrium equations in general form: 

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0 

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
= 0 

𝜕2𝑀𝑥
𝜕𝑥2

+ 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 𝑁𝑥𝑤𝑥𝑥 + 𝑁𝑦𝑤𝑦𝑦 + 2𝑁𝑥𝑦𝑤𝑥𝑦 −

𝑁𝑦

𝑅
= 𝑝 

(16) 

The pressure 𝑝  reprezents the pressure distributed along the circumference of the 

cylinder. 

Cancelling all the derivatives in 𝑦 and the elongation 𝑣 from (16), we have: 

𝑁𝑥 = 𝐴11 (𝑢𝑥 +
1

2
𝑤𝑥
2) + 𝐴12 (

𝑤

𝑅
) 

𝑁𝑦 = 𝐴21 (𝑢𝑥 +
1

2
𝑤𝑥
2) + 𝐴22 (

𝑤

𝑅
) 

𝑁𝑥𝑦 = 0 
𝑀𝑥 = 𝐴44(−𝑤𝑥𝑥) 
𝑀𝑦 = 0 
𝑀𝑥𝑦 = 0  

(17) 

And the system of differential equations (16) becomes: 

𝜕𝑁𝑥
𝜕𝑥

= 0 

𝜕2𝑀𝑥
𝜕𝑥2

+𝑁𝑥𝑤𝑥𝑥 −
𝑁𝑦

𝑅
= 𝑝 

(18) 

From the first equation in (18), we have that 𝑁𝑥 = 𝑁 constant. If we decompose the 

second equation we have: 

𝐴44
𝑑4𝑤

𝑑𝑥4
− 𝑁

𝑑2𝑤

𝑑𝑥2
+
𝑁𝑦

𝑅
+ 𝑝 = 0 (19) 
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We equate 𝑁𝑦 as a function of 𝑤/𝑅 from the expressions for 𝑁𝑥 și 𝑁𝑦 in (17), so that a 

fourth order differential equation can be obtained. 

𝑁𝑦 =
1

𝐴11
(𝐴21𝑁 + (𝐴11𝐴22 − 𝐴12𝐴21)

𝑤

𝑅
) (20) 

Therefore, the final differential equation is: 

𝐴44
𝑑4𝑤

𝑑𝑥4
−𝑁

𝑑2𝑤

𝑑𝑥2
+
𝐴11𝐴22 − 𝐴12𝐴21

𝐴11

𝑤

𝑅2
+
𝐴21
𝐴11

𝑁 + 𝑝 = 0 (21) 

Due to the fact that solving this equation (21) is extremely long, we will only present a 

brief summary: 

- The characteristic polynomial that has four solutions is written. 

- The generalised solution is written with four arbitrary constants. 

- The following boundary conditions are applied: at each end 𝑤 = 0 and 𝑤𝑥𝑥 = 0.  

- A 4x4 linear system is obtained. 

- The determinant is set equal to zero and a relation between all four constants is 

obtained. 

- That relation contains the variable 𝑁: 

𝑁 = 2√(
𝐴11𝐴22 − 𝐴12𝐴21

𝐴11
)
𝐴44
𝑅2

 (22) 

It is known that 𝑁 is the distributed force on the circumference of the cylinder: 

𝑁 =
𝐹𝑥
2𝜋𝑅

 (23) 

Through a simple substitution in (22), we arrive at the final formula for the first 

buckling force of a cylinder under axial symmetrical load: 

𝑃𝑐𝑟 = 4𝜋√(
𝐴11𝐴22 − 𝐴12𝐴21

𝐴11
)𝐴44 (24) 

7. NUMERICAL RESULTS 

The code used to implement this method is: 
1. numer:true$   
2. ratprint:false$   
3.    
4. l1:[]$   
5. l2:[]$   
6. l3:[]$   
7. for i:1 thru 5 step .2 do(   
8.     L:2.534,                    /*cylinder height*/   
9.     R:.575,                     /*cylinder radius*/   
10.     n:.3,                       /*cylinder material Poisson ratio*/   
11.     E:7.1*10^10,                /*cylinder material Young's modulus*/   
12.     tsh:.0015,                  /*cylinder shell thickness*/   
13.     tr:.001*i,                  /*cylinder stiffener thickness*/   
14.     hr:.002,                    /*cylinder stiffener height*/   
15.     A1:E*tsh/(1-n^2),              
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16.     A2:E*tsh^3/12/(1-n^2),             
17.     a:2*%pi*R/36,               /*module base*/   
18.     b:a*2.5,                    /*module height*/   
19.    
20.     F:320000,                   /*axial force*/   
21.     Nx:F/(2*%pi*R),             /*distributed axial force*/   
22.     Nf:0,   
23.     Nxf:0,   
24.     Mx:0,   
25.     Mf:0,   
26.     Mxf:0,   
27.    
28.     Mp:matrix(                  /*plate stiffness matrix*/   
29.         [A1,n*A1,0,0,0,0],   
30.         [n*A1,A1,0,0,0,0],   
31.         [0,0,A1*(1-n)/2,0,0,0],   
32.         [0,0,0,A2,A2*n,0],   
33.         [0,0,0,n*A2,A2,0],   
34.         [0,0,0,0,0,A2*(1-n)/2]   
35.     ),   
36.     ex:ex0+z*kx,   
37.     ey:ey0+z*ky,   
38.     gxy:gxy0+z*kxy,   
39.     s(phi):=E*matrix(           /*stiffner stiffness matrix*/   
40.         [hr/cos(phi)*cos(phi)^2*(sin(phi)^2*ex+cos(phi)^2*ey+sin(phi)*cos(p

hi)*gxy)/a],   
41.         [hr/sin(phi)*sin(phi)^2*(sin(phi)^2*ex+cos(phi)^2*ey+sin(phi)*cos(p

hi)*gxy)/b],   
42.         [hr/cos(phi)*(-

2)*sin(phi)*cos(phi)*(sin(phi)^2*ex+cos(phi)^2*ey+sin(phi)*cos(phi)*gxy)/a]
   

43.     ),   
44.     a1:integrate(s(phi),z,tsh/2,tsh/2+tr),   
45.     a2:integrate(s(phi)*z,z,tsh/2,tsh/2+tr),   
46.     l:[a1[1],a1[2],a1[3],a2[1],a2[2],a2[3]],   
47.     l:flatten(l),   
48.     exp:coefmatrix(l,[ex0,ey0,gxy0,kx,ky,kxy]),   
49.     al:b/a/3,   
50.     Mt:Mp+ev(exp,phi=al)+ev(exp,phi=-al)+ev(exp,phi=atan(b/a))+ev(exp,phi=-

atan(b/a))+2*ev(exp,phi=%pi/2)+2/3*a*ev(exp,phi=0),   
51.    
52.     vt:[Nx,Nf,Nxf,Mx,Mf,Mxf],       /*force vector*/   
53.     e:invert(Mt).transpose(vt),     /*strain vector*/   
54.    
55.     vr:Mr.e,                        /*stiffner forces vector*/             

                     
56.     vp:Mp.e,                        /*plate forces vector*/   
57.     sigma_x:vp[1]/t*1e-6,           /*sigma_x*/   
58.    
59.     Pcr:(2*(Mt[4,4]*(Mt[1,1]*Mt[2,2]-

Mt[1,2]*Mt[2,1])/Mt[1,1])^.5)*2*%pi,   /*buckling force*/   
60.     mass:L/b*(hr*tr*(3^.5/2*(1+(b/a)^2)^.5*a+b+2*(a^2+b^2)^.5)+a*b*tsh)*36*

2800.0,   
61.     push(Pcr/F,l1),   
62.     push(mass,l3),   
63.     push(i,l2),   
64.     display(i)   
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65. )$   
66. wxplot2d([discrete,l2,l1], grid2d,   
67.       [yx_ratio, 1], [axes, solid], [ylabel,"K_b"],[xlabel,"Stiffner height

[mm]"], [title, "Buckling factor"]);   
68. wxplot2d([discrete,l2,l3], grid2d,   
69.       [yx_ratio, 1], [axes, solid], [ylabel,"mass[kg]"],[xlabel,"Stiffner h

eight[mm]"], [title, "Mass[kg]"]);  

The model used for the validation of the numerical results is: 

- Radius = 0.5 m 

- Material = Aluminium 

- E = 70 GPa 

- 𝜈 = 0.33 

- F = 100000 N 

Fig. 6 presents the cylinder with module height to base ratio of 1, and Fig. 7 shows the 

cylinder with module height to base ratio of 2. The entire cylinder is made of the same 

material. The numerical results are given in Table 1. Numerical Results. 

Table 1. Numerical Results 

Figure 
number 

Height-
base 
ratio 

Stiffener 
height [mm] 

Analytical 
buckling 
factor 

Numerical 
buckling 
factor 

Relative 
error [%] 

Fig. 8 1 0 24.2 23.9 1.25 
Fig. 10 1 1 24.5 24.4 0.40 
Fig. 12 1 2 25.4 25.4 0.00 
Fig. 14 1 3 27.0 27.2 0.73 
Fig. 16 1 4 29.2 30.1 2.99 
Fig. 18 1 5 32.2 34.1 5.57 
Fig. 20 1 6 35.9 38.6 6.99 
Fig. 22 1 7 40.1 44.0 8.86 
Fig. 24 1 8 44.8 51.0 12.15 
Fig. 9 2 0 24.2 23.9 1.25 
Fig. 11 2 1 25.5 24.2 5.37 
Fig. 13 2 2 27.6 24.8 11.29 
Fig. 15 2 3 30.4 26.0 16.92 
Fig. 17 2 4 34.0 27.8 22.30 
Fig. 19 2 5 38.3 30.6 25.16 
Fig. 21 2 6 43.0 34.2 25.73 
Fig. 23 2 7 48.3 38.5 25.45 
Fig. 25 2 8 54.1 43.5 24.36 

 

The following figures show the modes of the buckling process. 

  

Fig. 6. Isogrid cylinder b/a=1 Fig. 7. Isogrid cylinder b/a=2 
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Fig. 8. b/a=1; hp=0 Fig. 9. b/a=2; hp=0 

  

Fig. 10. b/a=1; hp=1 Fig. 11. b/a=2; hp=1 

  

Fig. 12. b/a=1; hp=2 Fig. 13. b/a=2; hp=2 

  

Fig. 14. b/a=1; hp=3 Fig. 15. b/a=2; hp=3 



Stefan HOTHAZIE, Camelia MUNTEANU, Mihaela NASTASE, Radu BIBIRE 100 
 

INCAS BULLETIN, Volume 10, Issue 3/ 2018 

  

Fig. 16. b/a=1; hp=4 Fig. 17. b/a=2; hp=4 

  

Fig. 18. b/a=1; hp=5 Fig. 19. b/a=2; hp=5 

  

Fig. 20. b/a=1; hp=6 Fig. 21. b/a=2; hp=6 

  

Fig. 22. b/a=1; hp=7 Fig. 23. b/a=2; hp=7 
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Fig. 24. b/a=1; hp=8 Fig. 25. b/a=2; hp=8 

As can be seen the relative error is quite small for stiffener heights of 8 mm to a shell 

thickness of 3, up to 25%. 

8. CONCLUSIONS 

The numerical error of this analytical method is quite small, considering the fact that it is 

intended just for a preliminary feasibility study of such structures. It should be mentioned 

that the real buckling factor can be far lower in reality than even the FEM buckling factor we 

used to validate our results. This fact just reinforces the fact that this calculation should not 

take a considerable amount of time, just to obtain results that are basically not trustworthy. 

The original contributions of the author are: 

- A methodology for computing the buckling factor for isogrid reinforced cylinders 

under symmetric axial load. 

- A faster way of realising a feasibility study of using isogrid structures. 

- A unified way of computing buckling factor for different types of stiffener 

configurations. 
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