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We previously reported that SSBXoc, a highly conserved single-stranded DNA-binding
protein from Xanthomonas spp., was secreted through the type III secretion system
(T3SS) and functioned as a harpin-like protein to elicit the hypersensitive response (HR)
in the non-host plant, tobacco. In this study, we cloned SsbXoc gene from X. oryzae
pv. oryzicola (Xoc), the causal agent of bacterial leaf streak in rice, and transferred it
into Nicotiana benthamiana via Agrobacterium-mediated transformation. The expression
of SsbXoc in transgenic N. benthamiana enhanced growth of both seedling and adult
plants. When inoculated with the harpin Hpa1 or the pathogen Pseudomonas syringae
pv. tomato DC3000 (Pst DC3000), the accumulation of reactive oxygen species (ROS)
was increased more in SsbXoc transgenic lines than that in wild-type (WT) plants.
The expression of pathogenesis-related protein genes (PR1a and SGT1), HR marker
genes (HIN1 and HSR203J) and the mitogen-activated protein kinase pathway gene,
MPK3, was significantly higher in transgenic lines than in WT after inoculation with
Pst DC3000. In addition, SsbXoc transgenic lines showed the enhanced resistance
to the pathogenic bacteria P. s. tabaci and the improved tolerance to salt stress,
accompanied by the elevated transcription levels of the defense- and stress-related
genes. Taken together, these results indicate that overexpression of the SsbXoc gene in
N. benthamiana significantly enhanced plant growth and increased tolerance to disease
and salt stress via modulating the expression of the related genes, thus providing an
alternative approach for development of plants with improved tolerance against biotic
and abiotic stresses.

Keywords: transgenic N. benthamiana, SsbXoc, plant growth, hypersensitive response, pathogen resistance,
stress tolerance
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INTRODUCTION

Plants are exposed to diverse stress conditions throughout their
life cycle, including biotic and abiotic stresses. To cope with
biotic stress, plants employ innate immune systems to overcome
the microbial invasion (Jones and Dangl, 2006; Thomma et al.,
2011). The first line of defense is induced by pathogen-associated
molecular patterns (PAMPs), which includes a diverse group of
molecules such as flagellin (Felix et al., 1999), EF-Tu (Kunze
et al., 2004), chitin and harpins (He et al., 1993; Zou et al., 2006).
Harpins are glycine-rich, heat-stable and protease-sensitive
proteins that are secreted through the type III secretion system
(T3SS) (Wei et al., 1992). Previous researches have demonstrated
that plants are highly sensitive to harpin elicitors. The harpins
stimulate the hypersensitive cell death, the oxidative burst and the
expression of defense-related genes (He et al., 1993; Andi et al.,
2001; Ichinose et al., 2001), and activate the mitogen-activated
protein kinase (MAPK)-dependent signaling pathway (Desikan
et al., 1999, 2001; Lee et al., 2001), which finally induce the
defence response in plants.

Previous studies have shown that treatment with harpins
induces plant growth (e.g., stimulates the elongation of roots)
and enhances resistance to aphids in Arabidopsis (Dong et al.,
2004; Lü et al., 2011, 2013). Up to now, multiple harpins have
been expressed in plants, including Arabidopsis, rice, wheat,
tobacco, cotton, and soybean, and the transgenic plants exhibited
enhanced plant growth and improved resistance to pathogens
(Jang et al., 2006; Shao et al., 2008; Miao et al., 2010; Choi
et al., 2012; Wang D. et al., 2014; Du et al., 2018). For
example, the transformation of cotton with hpa1 enhanced
the defense response against Verticillium dahliae (Miao and
Wang, 2013; Zhang et al., 2016). Furthermore, the heterologous
expression of a functional fragment of the harpin protein
Hpa1Xoo induced phloem-based defense against the English grain
aphid in wheat (Fu et al., 2014). In addition, the expression
of harpins also improves tolerance to abiotic stress. Previous
studies demonstrate that HrpN increased drought tolerance by
activating abscisic acid (ABA) signaling in Arabidopsis, and
the harpin-encoding gene, hrf1, increased tolerance to drought
stress in rice (Dong et al., 2005; Zhang et al., 2011). Recent
studies indicate that overexpression of the harpin-encoding gene,
popW, enhances plant growth and resistance to R. solanacearum,
and also increases drought tolerance in transgenic tobacco
(Wang C. et al., 2014; Wang et al., 2016; Liu et al., 2016).
Increasing evidence shows that the multiple effects of harpins
can be attributed to cross-talk of distinct signaling pathways
to regulate development and defense in plants (Chen et al.,
2008).

SSBs are highly conserved single-stranded DNA-binding
proteins that protect ssDNA from nucleolytic digestion (Fedorov
et al., 2006). We recently demonstrated that the SSB protein from
Xanthomonas oryzae pv. oryzicola (Xoc) was shown to function as
a harpin in tobacco (e.g., elicited an HR). Furthermore, treatment
with SSBXoc improved plant growth and resistance to the fungal
pathogen Alternaria alternate in Nicotiana tabacum cv. Xanthi
(Li et al., 2013). In this study, the gene encoding Ssb in X. oryzae
pv. oryzicola was transformed into N. benthamiana. Our research

displays that SsbXoc transgenic plants exhibit enhanced plant
growth, improved pathogen resistance, and increased tolerance
to salt stress. To our knowledge, up to now there are no prior
reports showing that the overexpression of harpins can enhance
salt tolerance.

MATERIALS AND METHODS

Generation of SsbXoc Transgenic
N. benthamiana Plants
Full-length SsbXoc gene (552 bp) was amplified by PCR using
the specific primers (Table 1). The amplified product was
cloned into pMD18-T Simple Vector (TaKaRa, Dalian, China)
and then subcloned into the binary vector pCAMBIA2300
at XbaI and BamHI sites, which were placed downstream
of the constitutive cauliflower mosaic virus 35S promoter
(CaMV35S) and upstream of the polyadenylation signal of
the nopaline synthase terminator (NOS) (Figure 1A). The
recombinant clone, pCAMBIA2300-SsbXoc, was then transferred
into Agrobacterium tumefaciens EHA105 for transformation of
N. benthamiana. The SsbXoc transgenic plants were determined
by PCR amplification with the specific primers of SsbXoc till T2
generation.

Plants and Growth Conditions
Seeds of WT and SsbXoc transgenic lines OE-1 and OE-9 (T2
generations) were surface-sterilized with 75% ethanol and 10%
sodium hypochlorite for 0.5 and 5 min, respectively. They
were then separately transferred to Murashige and Skoog (MS)
medium without or with 100 mg L−1 kanamycin and cultivated
in a light-controlled incubator at 25◦C. Fifteen days later, the
seedlings were transplanted to pots and grown in a greenhouse
with a 16-h light/8-h dark photoperiod with 50% relative
humidity at 25◦C.

Plant Growth Analysis
The root lengths of transgenic lines (T2 generations) and WT
plants grown in MS medium were measured after 15 days.
Three independent experiments were performed and at least 20
seedlings were analyzed in each experiment. The phenotypes of
plants were determined after the seedlings were transplanted to
pots and cultivated for 4 weeks.

Bacterial Strains and Growth Conditions
Bacterial strains used in this study were Pst DC3000 and P. s.
tabaci. Both of them were grown at 28◦C on King’s medium
B (KMB) with or without rifampicin, respectively. They were
resuspended and diluted to the appropriate concentration with
10 mM MgCl2 for subsequent research.

Determination of ROS Levels
Fully developed leaves of 2-month-old WT and T2 SsbXoc
transgenic plants were separately injected with 100 µl Hpa1
protein (10 µg ml−1)and Pst DC3000 (OD600 = 0.01) using 1-mL
needleless syringes. After 6 h, treated leaves were collected and
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TABLE 1 | Primers designed and used for PCR.

Genes Primer sequences (5′ – 3′) Purpose

Forward Reverse

SsbXoc CGGGATCCATGGCCCGCGGCATCAATAAAGT CCTCTAGATCAGAACGGGATATCGTCGTCGGC Cloning

SsbXoc ATGGCCCGCGGCATCAATAAAGT TCAGAACGGGATATCGTCGTCGGC RT-PCR, Probe

EF1α AGACCACCAAGTACTACTGCAC CCACCAATCTTGTACACATCC RT-PCR

SsbXoc CAGGGTGATGGTGGATACGG ATATCGTCGTCGGCGAAATC qRT-PCR

PR1a GGTGTAGAACCTTTGACCTGGG AAATCGCCACTTCCCTCAGC qRT-PCR

PR2 TAGAGAATACCTACCCGCCC GAGTGGAAGGTTATGTCGTGC qRT-PCR

PR4 GTGACGAACACAAGAACAGGAA CCACTCCATTTGTGTCCAAT qRT-PCR

SGT1 CCTTCTATGAGCAGACATCCCA GCGTCCAGTATGACAACCCA qRT-PCR

HIN1 TGCGTCCAGTATTCAAAGGTCA GCTTCACTTCCATCTCATAAACCC qRT-PCR

HSR203J TGCGTCCAGTATTCAAAGGTCA GCTTCACTTCCATCTCATAAACCC qRT-PCR

MPK3 CGGCACATGGAACACG GACCGAATAATCTGATGAAGG qRT-PCR

APX TGGAACCCATCAAGGAGCAG ATCAGGTCCTCCAGTGACTTC qRT-PCR

GPX GTTTCCGCTAAGAGATTTGAGTTG CCCTTAGCATCCTTGACAGTG qRT-PCR

CAT1 AACAAGGCTGGGAAATCAACC TGGCTGTGATTTGCTCCTCC qRT-PCR

EXPA1 TTGTTTCTCTGCTTCTGGATGG CTTAATGCAGCAGTGTTTGTACCA qRT-PCR

EIN2 GGCATAATAGATCTGGCATTTTCC TATCTAAGAGCATCGGTGCAGTTG qRT-PCR

EF1α AGACCACCAAGTACTACTGCAC CCACCAATCTTGTACACATCC qRT-PCR

FIGURE 1 | Identification of SsbXoc transgenic N. benthamiana plants. (A) Construction of vector expressing SsbXoc in transgenic N. benthamiana. The CaMV
promoter and nopaline synthase (NOS) polyadenylation signal are shown in black solid rectangles and flanked the SsbXoc coding region. (B) PCR analysis of
transgenic lines using the SsbXoc-specific primers. Lane M, molecular weight marker; lanes 1-22 represent different transgenic lines, and lanes 2 and 21 are lines
OE1 and OE9, respectively. Lane 23 contains the positive control, and the arrow shows the location of the 552-bp SsbXoc PCR product. (C) Southern blot
hybridization of transgenic lines, OE1 and OE9, with dig-labeled SsbXoc. Lanes: M, molecular weight marker; CK, check, pCAMBRIA2300-SsbXoc; WT, wild-type
N. benthamiana; OE1 and OE9, transgenic lines containing SsbXoc gene. (D) Expression measurement of SsbXoc gene in transgenic lines OE1 and OE9 by RT-PCR.
The housekeeping gene, EF1α, was used as an internal control for normalizing the data.

incubated in diaminobenzidine (DAB) for 8 h at 25◦C and then
were immersed in boiling ethanol (95%) for 10 min to remove
the dye (Thomas and Lemmer, 2005). After further incubation in
60% ethanol for 4 h, photographs were taken for visualization of
reactive oxygen species (ROS). To quantify ROS accumulation,
treated samples were collected separately at 0 and 6 hpi for

detection of H2O2 contents as described previously (Bernt and
Bergmeyer, 1974; Cao et al., 2015).

Bacterial Growth Analysis
The fully expanded leaves of 2-month-old WT and T2 SsbXoc
transgenic lines were inoculated with P. s. tabaci (OD = 0.01), and
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the phenotypes were photographed at 36 hpi. In order to quantify
the bacterial growth, the plants were inoculated with 105 CFU/ml
P. s. tabaci as described previously (Klement, 1963; Thilmony
et al., 1995). Briefly, a P. s. tabaci strain was grown overnight
in KMB, washed twice, and resuspended at the appropriate
concentration in 10 mM MgCl2. And bacterial suspensions were
then infiltrated into fully developed leaves using 1-mL needleless
syringes. To determine bacterial growth in plants, 1 cm2 leaf
disks were excised from the inoculated tissue of each treatment
at 0, 1, and 2 dpi. The bacterial populations in the leaves were
determined by plating serial dilutions on KMB.

RNA Isolation and Gene Expression
Analysis
Total RNA was isolated from leaves of WT and SsbXoc transgenic
plants (T1 and T2 generation) using TRIzol reagent (TaKaRa,
Japan) as recommended by the manufacturer. RT-PCR with gene-
specific primer pairs was performed to evaluate the expression
of SsbXoc in WT and transgenic plants. The expression of SsbXoc
and genes related to the defense response, oxidative stress,
and salt stress was measured using quantitative real-time PCR
(qRT-PCR), and all of the primers used in these experiences were
listed in Table 1. EF1α was used as an internal standard in these
experiments.

Southern Blot Analysis
Genomic DNA was extracted from WT and T1 SsbXoc
transgenic lines using CTAB as described previously (Murray and
Thompson, 1980). The recombinant plasmid pMD18-SsbXoc and
genomic DNA were digested with BamHI and XbaI enzymes, and
fragments were separated by electrophoresis in a 1.3% agarose gel
at 80 V for 12 h. DNA was transferred to nylon membranes and
hybridized with the SsbXoc PCR product, which was labeled with
digoxigenin as recommended by the manufacturer (Dig-Labeling
Kit, Roche). Conditions for hybridization and detection were
followed as described by Aviv et al. (2011). The primers used for
amplifying the SsbXoc probe were listed in Table 1.

Salt Stress Tolerance Assays
To examine germination rates during salt stress, seeds of T2
SsbXoc transgenic lines and WT plants were surface-sterilized
and sown on MS medium supplemented with 100 mM NaCl
cultivated in a light-controlled incubator with a 14-h light/10-h
dark photoperiod at 25◦C. Germination rates were assayed after
5 days. For analysis of chlorophyll content, leaf disks (1 cm
diameter) were excised from fully expanded leaves and floated
separately on solutions containing 0, 200, and 400 mM NaCl
for 4 d in the incubator. Chlorophyll contents were measured as
described by Porra (2002), Kanneganti and Gupta (2008). Leaves
were sampled for the measurements of malondialdehyde (MDA)
and proline using previously described methods (Bates et al.,
1973; Cao et al., 2014) after treatment with salt for 4 days.

Statistical Analysis
All experiments were repeated three times. Data were presented
as the mean ± SD and analyzed using Excel and SPSS.

Tukey’s test (P < 0.05) was used to determine significant
differences.

RESULTS

Generation of SsbXoc Transgenic
N. benthamiana
To quickly determine whether SsbXoc gene was present
in transformed N. benthamiana, potential transgenic plants
(T0 generation) were initially screened by PCR using the SsbXoc-
specific primers. Nine lines were obtained that existed a
prominent 552-bp fragment in the genomic DNA, which was
the predicted size of SsbXoc gene (Figure 1B). Two transgenic
lines designated OE1 and OE9 were randomly selected for further
characterization. Genomic DNA was extracted from OE1 and
OE9 and analyzed by Southern blot hybridization. Both lines
contained a 0.55-kb hybridizing fragment that corresponded
with the predicted size of SsbXoc gene, and this signal was
not detected in WT plants (Figure 1C). Thus, both PCR and
Southern blot analyses indicated that SsbXoc gene had been
incorporated into the genome of OE1 and OE9 transgenic
plants. To determine whether SsbXoc was expressed in the
transgenic lines, the accumulation of SsbXoc mRNA was evaluated
by RT-PCR using EF1α as an internal standard. A 552-bp
product was amplified from the transgenic lines OE1 and
OE9, but not from WT (Figure 1D), indicating that SsbXoc
gene was successfully expressed in transgenic lines. In addition,
to quantify the expression level of SsbXoc gene in transgenic
lines, the qRT-PCR experiment was performed using SsbXoc
specific primers (Table 1). The result showed that the expression
level of SsbXoc in OE9 line was higher than that in OE1 line
(Supplementary Figure S1).

Expression of SsbXoc in Transgenic
N. benthamiana Enhances Plant Growth
To evaluate whether the growth of SsbXoc transgenic plants
was enhanced, root lengths were measured after cultivation in
MS medium for 15 days. The transgenic lines OE1 and OE9
exhibited increased root lengths as compared with the WT
(Figures 2A,B), and the difference was significant (P < 0.05).
Four weeks after transplantation to pots, the transgenic lines
still exhibited enhanced plant growth (Figure 2C). Previously,
Goh et al. (2012) reported that genes in the expansin family,
e.g., AtEXPA1, AtEXPA5 and AtEXPA10, were required for leaf
growth, furthermore, the suppression of AtEXPA decreased foliar
growth in Arabidopsis. EIN2 is demonstrate as an essential
positive regulator in the ethylene signaling pathway, which
is involved in many aspects of the plant life cycle (Johnson
and Ecker, 1998; Wang et al., 2002). Thus, we measured the
expression levels of expansin-encoding gene, EXPA1, and EIN2,
to investigate whether the transcription of the two genes was
enhanced in SsbXoc transgenic plants. As shown in Figure 2D, the
transgenic lines exhibited higher expression of EXPA1 and EIN2
in comparison with WT, which further confirmed the enhanced
growth evident in transgenic plants (Figure 2D).
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FIGURE 2 | Growth phenotypes of WT and SsbXoc transgenic N. benthamiana plants. (A) Phenotypes of WT and transgenic lines incubation on MS medium for
15 days. (B) Root lengths on MS medium after 15 days. (C) Mature-stage phenotypes of plants after 6 weeks. (D) Expression analysis of EXPA1 and EIN2 by
qRT-PCR in mature leaves of WT and transgenic N. benthamiana. plants. Error bars represent SD, and values with different letters are significantly different at
P < 0.05.

SSBXoc Improves Defense Responses to
Hpa1 and Pst DC3000 in Transgenic
N. benthamiana
The Hpa1 protein and the pathogen of Pst DC3000 were
individually inoculated to WT and SsbXoc transgenic plants to
examine defense responses. DAB staining results indicated that
ROS levels were significantly enhanced in SsbXoc transgenic
lines as compared with WT (Figure 3A). H2O2 contents were
then evaluated to quantify ROS levels in treated leaves. As
shown in Figure 3B, transgenic lines exhibited higher levels of
H2O2 accumulation than WT plants after inoculation with Hpa1
(Figure 3B, upper panel) and Pst DC3000 (Figure 3B, lower
panel).

The accumulation of ROS in response to harpins and
incompatible pathogens is generally accompanied by the HR
(Zurbriggen et al., 2010). Therefore, WT and SsbXoc transgenic
lines were evaluated visually for the HR at 24 hpi. The results
showed that, after inoculated with Hpa1 and Pst DC3000 for
24 h, WT plants started to appear the HR, while transgenic
lines reacted earlier and formed a more prominent HR at the
inoculation site (Figure 3C), indicating that SsbXoc transgenic
plants activated defense response earlier than WT, and this
promoted the pathogen resistance.

SSBXoc Enhances the Expression of
Defense Related-Genes in Transgenic
N. benthamiana
The expression of many defense genes can be activated during
pathogen invasion in plants, including the pathogenesis-related
(PR) genes, which play an important role in plant defense
response (Maurhofer et al., 1994; Van Loon, 1997). To further
investigate the mechanism underlying the increased pathogen

resistance of SsbXoc transgenic plants, the expression levels of the
PR genes, PR1a and SGT1, HR marker genes, HIN1 and HSR203J,
and a gene involved in the MAPK-dependent signaling pathway,
MPK3, were examined during infection by Pst DC3000. The
results showed that at the time of inoculation with Pst DC3000
(0 hpi), the expression of defense-related genes was higher in
transgenic lines as compared to WT; at 6 hpi, the expression
levels of the five genes were all upregulated in all of the plants,
while they were increased more in transgenic lines (Figure 4
and Supplementary Figure S2), further indicating that SsbXoc
transgenic lines could respond more quickly to the invasion of
Pst DC3000.

Overexpression of SsbXoc Improves
Resistance to P. s. tabaci
In order to investigate whether SsbXoc transgenic plants could
improve bacterial disease resistance, one pathogenic bacteria, P. s.
tabaci, was used. As shown in Figure 5A, SsbXoc transgenic lines
displayed less disease symptoms than WT plants at 36 h after
inoculation with P. s. tabaci (Figure 5A). Correspondingly, the
growth of P. s. tabaci was significantly lower in transgenic lines
than that in WT plants at 1 and 2dpi, respectively (Figure 5B),
being consistent with the necrosis symptoms in plants. In
addition, the expression of defense genes was assayed in WT and
SsbXoc transgenic plants after inoculation with P. s. tabaci. The
results displayed that SsbXoc transgenic lines showed a higher
expression of the pathogenesis-related genes, PR1a, PR2, PR4 and
SGT1, than that of WT at the time of inoculation (0 hpi), and at
6 hpi, the expression levels of all the four genes were upregulated,
however, they were more higher in transgenic lines than in WT
(Figure 6 and Supplementary Figure S2). All of the above results
indicated that SsbXoc transgenic plants had an improvement in
resistance to the pathogenic bacterium, P. s. tabaci.
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FIGURE 3 | The oxidative burst assay in WT and SsbXoc transgenic N. benthamiana plants inoculated with Hpa1 and Pst DC3000. WT and transgenic plants were
injected with Hpa1 protein (10 µg ml−1) and Pst DC3000 pathogen (OD = 0.01), and at 6 hpi, treated leaves were collected. (A) Visualization of H2O2 accumulation
by DAB staining in leaves inoculated with Hpa1 and Pst DC3000. (B) Evaluation of H2O2 levels in leaves. Upper panel shows H2O2 levels in WT and transgenic lines
inoculated with empty vector preparation (EVP; negative control) and Hpa1; Lower panel shows H2O2 levels in WT and transgenic lines inoculated with 10 mM
MgCl2 (negative control) and Pst DC3000. (C) Phenotypes of WT and transgenic lines inoculated with Hpa1 and Pst DC3000 after 24 h. Inoculation sites are
indicated with open circles. Error bars represent SD, and values with different letters are significant at P < 0.05.

FIGURE 4 | Expression analysis of defense related-genes in WT and SsbXoc transgenic N. benthamiana plants inoculated with Pst DC3000. Two-month-old
seedlings were inoculated with Pst DC3000 (OD = 0.01). At 0 and 6 hpi, the leaves were sampled to extract the total RNA to synthesize cDNA, and the transcription
levels of PR1a, SGT1, HIN1, HSR203J and MPK3 genes were examined by qRT-PCR. Error bars represent SD, and values with different letters are significantly
different at P < 0.05.
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FIGURE 5 | Measurement of bacterial growth in WT and SsbXoc transgenic
N. benthamiana plants inoculated with P. s. tabaci. (A) Phenotypic
observation of the leaves in WT and transgenic lines after inoculation with P. s.
tabaci (OD = 0.01) for 36 h (B) Bacterial growth in WT and transgenic lines
was determined at 0, 1, and 2 days after inoculation with P. s. tabaci (105

CFU/ml). Error bars represent SD, and values with different letters are
significantly different at P < 0.05.

SSBXoc Enhances Seed Germination and
Chlorophyll Retention During Salt Stress
The potential role of SSBXoc in improving salt stress tolerance
was initially investigated by measuring the germination of the
seeds after treatment with 100 mM NaCl. As shown in Figure 7A,
the percentages of seed germination of the two SsbXoc transgenic
lines were 54.5 and 71%, respectively, which were significantly
higher than WT (38.8%). This result showed that the improved
germination rate was most pronounced in OE9 transgenic line
(Figure 7A).

Chlorophyll retention is used as a physiological indicator of
salt tolerance in plants (Sui et al., 2017). In the present study, a
chlorophyll retention assay was performed to evaluate the salt
tolerance in WT and SsbXoc transgenic plants when they were
exposed to 0, 200, and 400 mM NaCl. The results showed that
when exposed to 200 mM NaCl, the chlorophyll contents of WT,
OE1 and OE9 were 54.3, 65.9, and 67%, respectively, and they
were further reduced to 23.3, 39.1, 49% during treatment with
400 mM NaCl, respectively (Figures 7B,C). Thus, chlorophyll
retention was higher in SsbXoc transgenic lines than in WT,
suggesting that overexpression of SsbXoc improved salt tolerance
in transgenic N. benthamiana.

SSBXoc Decreases MDA Level and
Increases Proline Content During Salt
Stress
Malondialdehyde level has been used as a biological marker
for the end-point of lipid peroxidation (Yoshimura et al., 2004;
Wang et al., 2017), thus, we measured the MDA levels in
WT and SsbXoc transgenic plants under the salt stress. No
differences were observed in MDA contents between WT and
SsbXoc transgenic lines when exposed to 0 mM NaCl, however,
MDA level was significantly higher in WT than in transgenic lines
after treatment with 200 mM NaCl (Figure 8A), indicating that
lipid peroxidation, and hence membrane damage, was lower in
transgenic N. benthamiana.

The accumulation of proline in plant cells is indicative of
enhanced salt stress tolerance (Vinocur and Altman, 2005; Miller
et al., 2010; Wang et al., 2015). Therefore, we evaluated the
proline contents of leaves in WT and transgenic lines when they
were exposed to salt stress. As shown in Figure 8B, no obvious
differences were observed in proline contents between WT and
SsbXoc transgenic lines without NaCl treatment, however, in
transgenic lines, proline contents significantly increased more
than in WT after treatment with 200 mM NaCl (Figure 8B).
Thus, the increased proline contents implies the improved salt
tolerance in SsbXoc transgenic plants.

SSBXoc Improves the Expression of
Stress-Related Genes During Salt Stress
More and more results demonstrated that plants modulate
the expression of many stress-related genes as an adaptation
to environmental stress (Umezawa et al., 2006; Chinnusamy
et al., 2007; Hirayama and Shinozaki, 2010; Bharti et al., 2016).
To better understand the mechanistic basis of salt tolerance
in SsbXoc transgenic lines, we measured the expression levels
of three stress-related genes, APX, GPX and CAT1, which
separately encode ascorbate peroxidase, glutathione peroxidase,
and catalase. As shown in the Figure 9, SsbXoc transgenic plants
displayed a higher basal expression level of the three genes
as compared to WT without salt stress; under 200 mM NaCl
treatment, the expression levels of these three genes were all
significantly enhanced in WT and SsbXoc transgenic lines, while
they were increased more in the latter (Figure 9). These results
indicated that SsbXoc transgenic N. benthamiana plants improved
salt tolerance through up-regulating the expression of stress-
related genes.

DISCUSSION

SSBXoc Improves Plant Growth in
Transgenic N. benthamiana
We previously demonstrated that the exogenous application
of SSBXoc enhanced growth of tobacco and Arabidopsis (Li
et al., 2013). In this study, we cloned SsbXoc gene from
X. oryzae pv. oryzicola and transferred it into N. benthamiana via
Agrobacterium-mediated transformation. Two SsbXoc transgenic
lines (OE1 and OE9) were characterized, and both of them
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FIGURE 6 | Expression analysis of defense genes in WT and SsbXoc transgenic N. benthamiana plants inoculated with P. s. tabaci. Two-month-old seedlings were
inoculated with P. s. tabaci (OD = 0.01). At 0 and 6 hpi, the leaves were sampled to extract the total RNA to synthesize cDNA, and the expression levels of PR1a,
PR2, PR4, and SGT1 genes were analyzed by qRT-PCR. Error bars represent SD, and values with different letters are significantly different at P < 0.05.

FIGURE 7 | Effects of salt stress on seed germination and chlorophyll content in WT and SsbXoc transgenic N. benthamiana plants. (A) Analysis of percent seed
germination after treatment with 100 mM NaCl for 5 d. (B) Phenotypic observation of chlorophyll retention in WT and transgenic leaf disks after treatment with 0,
200, and 400 mM NaCl for 4 d. (C) Chlorophyll contents in WT and transgenic plants after treatment with 200 and 400 mM NaCl for 4 d. Error bars represent SD,
and values with different letters are significant at P < 0.05.

showed improved root elongation and enhanced foliar growth
as compared to WT plants (Figures 2A–C). Previous study
reported that the expansin family genes were required for leaf
growth (Goh et al., 2012) and EIN2 participated in the process of
plant development and positively regulated the ethylene signaling
pathway (Johnson and Ecker, 1998; Wang et al., 2002). Thus,
we measured the expression levels of one expansin-encoding
gene, EXPA1 and EIN2 to investigate whether or not they were
changed in SsbXoc transgenic plants. As shown in Figure 2D,
the transgenic lines exhibited higher expression of the two genes
in comparison with WT, which further confirmed the growth
phenotypes of SsbXoc transgenic plants (Figure 2C).

SSBXoc Transgenic Plants Exhibit
Potentiated Defense Responses
Many studies have demonstrated that the activation of MAPK-
dependent signaling cascades (Nakagami et al., 2005), ROS, and
defense gene expression (Nürnberger, 1999; Gómez-Gómez and
Boller, 2000) occurs in most plant-pathogen interactions, which
leads to an improved defense resistance. During this process,
the activities of defense enzymes are usually triggered initially
in the plant-pathogen interactions (Ramamoorthy et al., 2002),
and the speed of these defense responses is faster in incompatible
interactions (Kombrink and Somssich, 1995). Corresponded to
these conclusions, the expression of PR genes was increased more
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FIGURE 8 | Analysis of physiological indicators of lipid peroxidation (MDA) and proline in WT and SsbXoc transgenic N. benthamiana plants under salt stress.
(A) MDA levels and (B) Proline contents in WT and transgenic plants after treatment with 0 and 200 mM NaCl for 4 d. Error bars represent SD, and values with
different letters are significant at P < 0.05.

FIGURE 9 | Expression levels of stress-related genes in WT and SsbXoc transgenic N. benthamiana plants under salt stress. Two-month-old seedlings were treated
with 0 and 200 mM NaCl, and after 8 h, the leaves were sampled to extract the total RNA to synthesize cDNA. The expression levels of APX, GPX and CAT1 genes
were analyzed by qRT-PCR. Error bars represent SD, and values with different letters are significant at P < 0.05.

in WT and SsbXoc transgenic N. benthamiana when the tested
plants were inoculated with Pst DC3000 rather than P. s. tabaci,
excepting for the expression of SGT1 in WT plants.

Reactive oxygen species, e.g., H2O2 and O2
−, are primarily

produced at the site of attempted pathogen invasion in plant cells
(Nanda et al., 2010; Jwa and Hwang, 2017) and are indicative of
pathogen recognition and activation of plant defense responses
(Lamb and Dixon, 1997; Torres, 2010). Up to now, more and
more researches demonstrate that exogenous harpins, including
Hpa1, induce ROS accumulation in tobacco and Arabidopsis cell
cultures (Desikan et al., 1998; Andi et al., 2001; Samuel et al.,
2005; Zou et al., 2006; Li et al., 2013; Choi et al., 2013). In the
current study, the ROS level was higher in SsbXoc transgenic
plants after inoculation with Hpa1 protein and the incompatible
pathogen, Pst DC3000 (Figure 3B), which finally led to an earlier
HR (Figure 3C). In addition, the expression of PR genes, HR
marker genes, and MPK3 gene was also higher in transgenic
lines than that in WT after inoculation with Pst DC3000 for 6 h
(Figure 4). In a word, the higher levels of ROS and the improved
expression of defense-related genes in SsbXoc transgenic plants
were consistent with the rapid elicitation of the HR. Previous
studies have shown that the HR generally appears within 24 h
after inoculation with an incompatible pathogen or harpin (Wei
et al., 1992; He et al., 1993). In this study, we inoculated
N. benthamiana plants with reduced levels of Hpa1 (10 µg
ml−1) and Pst DC3000 (OD600 = 0.01). Using this approach,

we discovered that SsbXoc transgenic plants were more sensitive
to the two eliciting agents accompanied with the increased
expression of SsbXoc gene in transgenic plants, finally leading to
producing a stronger HR at 24 hpi than WT plants (Figure 3C
and Supplementary Figure S1).

Previously, Nicotiana tabacum cv. Xanthi plants infiltrated
with SSBXoc displayed an improved resistance to the tobacco
pathogen, Alternaria alternata (Li et al., 2013). In the current
study, another pathogenic bacterium, P. s. tabaci, was used to
inoculate WT and SsbXoc transgenic N. benthamiana plants. The
results showed that SsbXoc transgenic lines had the higher basal
transcription levels of PR1a, PR2, PR4, and SGT1 as compared to
WT plants. After inoculation with P. s. tabaci for 6 h, expression
of PR genes was significantly increased more in SsbXoc transgenic
lines, and this was accompanied by a slight reduction in pathogen
growth than WT plants (Figures 5, 6), suggesting the enhanced
bacterial resistance in SsbXoc transgenic N. benthamiana.

SsbXoc Transgenic Plants Show
Improved Salt Tolerance
Salt stress has many deleterious effects on plant growth
and development, and inhibits seed germination, chlorophyll
retention, root length, and fructification (Zhang et al., 2006;
Sui et al., 2017; Liang et al., 2018). We initially used percent seed
germination and chlorophyll retention to evaluate salt tolerance
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and discovered that SsbXoc transgenic N. benthamiana plants
displayed higher levels of germination rates and chlorophyll
contents when exposed to different concentrations of NaCl
(Figure 7), indicating the enhanced salt tolerance of transgenic
plants.

We next used MDA and proline as bioindicators to investigate
the salt stress tolerance of SsbXoc transgenic N. benthamiana
in the present study. MDA is the main product of membrane
lipid peroxidation when plants are under salt stress (Liang et al.,
2018), and MDA content has been used as a biological marker for
the degree of membrane damage (Yoshimura et al., 2004; Wang
et al., 2017). In our current study, we noted lower MDA levels
in SsbXoc transgenic lines than in WT under salt stress condition
(Figure 8A), suggesting that the degree of lipid peroxidation
was lower in transgenic lines. Proline is an important osmotic
adjustment compound in plant cells and plays a crucial role
in protecting macromolecules and cellular membranes (Singh
et al., 2000; Miller et al., 2010; Liang et al., 2018). The elevated
accumulation of proline in plant cells is indicative of enhanced
salt stress tolerance (Vinocur and Altman, 2005; Miller et al.,
2010). In our research, we also observed a significant increase of
proline contents in transgenic lines as compared to WT plants
(Figure 8B), implying the enhanced salt tolerance in SsbXoc
transgenic N. benthamiana.

During salt stress, the concentration of ROS increases to
a potentially toxic level. To overcome H2O2-related cellular
damage, organisms produce various antioxidant enzymes,
including ascorbate peroxidase (APX), glutathione peroxidase
(GPX), and catalase (CAT) (Ozyigit et al., 2016). The improved
expression of APX, GPX, and CAT was correlated with the
increased salt tolerance in both WT and transgenic plants
(Mishra and Tanna, 2017). In the current study, the expression of
APX, GPX and CAT1 was higher in SsbXoc transgenic lines than
in WT both under normal and salt stress conditions, particularly
in OE9 line, which had the higher expression level of SsbXoc
gene (Figure 9 and Supplementary Figure S1). Thus, in addition
to the elevated proline levels, the activities of ROS-scavenging
enzymes were also increased in transgenic lines, finally leading to
the enhanced tolerance to salt stress in SsbXoc transgenic plants.

However, little is known about the mechanisms how harpins
and SSB protein trigger many similar beneficial effects on plants,
though both harpins (including Hpa1) and SSB protein have
some common features as mentioned elsewhere in this report.
We hypothesize that, SSBXoc, like Hpa1, is translocated through
the T3SS into plant cells, and possibly also perceived in plant
apoplast, where it is recognized by unknown receptor(s) that
recruit other proteins to activate downstream signal transduction
cascades for HR induction, leading to expression of Eth-
dependent genes for plant growth and SA- or JA-dependent genes

for plant defense. Nevertheless, the discovery of harpin or SSB
receptors in plants is the key to understand this point.

CONCLUSION

Our previous research displays that SSB from X. oryzae pv.
oryzicola shares many features in common with the harpin Hpa1.
Similar to Hpa1, SSBXoc is an acidic glycine-rich, heat-stable
protein that lacks cysteine residues, which can also stimulate an
HR in tobacco (Li et al., 2013). Thus, in many aspects, SSBXoc
functions in a similar manner to harpins. The present studies have
shown that SSB proteins in Escherichia coli are found to bind to
ssDNA in a sequence-independent manner, and protect ssDNA
from forming secondary structures and subsequent degradation
by nucleases (Shereda et al., 2008; Bianco, 2017). Although
SSBXoc clearly functions as a harpin, it may also have additional
functions that are similar to SSB in E. coli. Thus, it is tempting
to speculate that SSBXoc may impart increased resistance to
ROS in transgenic plants via the protective roles, such as the
increased repair ability of single-stranded breaks due to oxidative
stress. In a word, regardless of the precision mechanisms in
the current study, SSBXoc has the potentials in improving plant
growth, imparting enhanced disease resistance and improving
salt tolerance in N. benthamiana.
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